Lecture 16: K-nearest-neighbor Classifier / Bias-Variance Tradeoff

Dr. Yanjun Qi

University of Virginia
Department of Computer Science

10/27/15

Announcements: Rough Plan

• HW3: due on Nov. 8th midnight
• Midphase Project Report: due on Nov. 4th

• Late Midterm:
 – Open note / Open lecture
 – Nov. 18th / conflicts with many students’ conference trips
 – Nov. 23rd ??? / conflicts ???

• HW4:
 – 20 samples questions for the preparation for exam
 – Due depending on Late-Midterm Date; if 23rd, due on 20th
Where are we? ➔

Five major sections of this course

- Regression (supervised)
- Classification (supervised)
- Unsupervised models
- Learning theory
- Graphical models

Where are we? ➔

Three major sections for classification

- We can divide the large variety of classification approaches into **roughly three major types**

1. **Discriminative**
 - directly estimate a decision rule/boundary
 - e.g., *logistic regression*, support vector machine, decisionTree

2. **Generative:**
 - build a generative statistical model
 - e.g., *naïve bayes classifier*, Bayesian networks

3. **Instance based classifiers**
 - Use observation directly (no models)
 - e.g. *K nearest neighbors*
Today:

- K-nearest neighbor
- Model Selection / Bias Variance Tradeoff

Nearest neighbor classifiers

- Basic idea:
 - If it walks like a duck, quacks like a duck, then it’s probably a duck

![Diagram of nearest neighbor classification process]

- Training samples
- Compute distance
- Choose k of the “nearest” samples
- Test sample
Nearest neighbor classifiers

Requires three inputs:
1. The set of stored training samples
2. Distance metric to compute distance between samples
3. The value of k, i.e., the number of nearest neighbors to retrieve

To classify unknown sample:
1. Compute distance to other training records
2. Identify k nearest neighbors
3. Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)
Definition of nearest neighbor

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

k-nearest neighbors of a sample x are datapoints that have the k smallest distances to x
Nearest neighbor classification

- Compute distance between two points:
 - For instance, Euclidean distance
 \[d(x, y) = \sqrt{\sum (x_i - y_i)^2} \]
- Options for determining the class from nearest neighbor list
 - Take majority vote of class labels among the \(k\)-nearest neighbors
 - Weight the votes according to distance
 - example: weight factor \(w = 1 / d^2\)

Choosing the value of \(k\):
- If \(k\) is too small, sensitive to noise points
- If \(k\) is too large, neighborhood may include points from other classes
Nearest neighbor classification

- Scaling issues
 - Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
 - Example:
 - height of a person may vary from 1.5 m to 1.8 m
 - weight of a person may vary from 90 lb to 300 lb
 - income of a person may vary from $10K to $1M

Problem with Euclidean measure:
- High dimensional data
 - curse of dimensionality
- Can produce counter-intuitive results

\[
\begin{array}{ccccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
\text{ vs }
\begin{array}{cccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\]

\[d = 1.4142\]

\[d = 1.4142\]

One solution: normalize the vectors to unit length
Nearest neighbor classification

- *k*-Nearest neighbor classifier is a **lazy** learner
 - Does not build model explicitly.
 - Classifying unknown samples is relatively expensive.

- *k*-Nearest neighbor classifier is a **local** model, vs. global model of linear classifiers.

K-Nearest Neighbor

<table>
<thead>
<tr>
<th>Task</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Score Function</td>
</tr>
<tr>
<td></td>
<td>Search/Optimization</td>
</tr>
</tbody>
</table>

classification

- Local Smoothness
 - NA
 - NA

Training Samples

Models, Parameters

KNN: num_train/all train samples

Testing & SVM: num support vectors, points

Dr. Yanjun Qi / UVA CS 6316 / f15

10/27/15
Decision boundaries in global vs. local models

- **Global**
 - Linear regression
 - Stable
 - Can be inaccurate

- **Local**
 - 15-nearest neighbor
 - 1-nearest neighbor
 - Accurate
 - Unstable

What ultimately matters: **GENERALIZATION**

K-Nearest-Neighbours for Classification (Extra)

- K acts as a smoother
- For $N \to \infty$, the error rate of the 1-nearest-neighbour classifier is never more than twice the optimal error (obtained from the true conditional class distributions).
KNN METHODS IN HIGH DIMENSIONS (Extra)

- In high dimensions, all sample points are close to the edge of the sample
- \(N \) data points uniformly distributed in a \(p \)-dimensional unit ball centered at the origin
- Median distance from the closest point to the origin

\[
d(p, N) = \left(1 - \frac{1}{2N} \right)^{1/p}
\]

- \(d(10, 500) = 0.52 \)
 - More than half the way to the boundary (unit ball’s boundary edge is 1 distance to the origin)

Vs. Locally weighted regression

- aka locally weighted regression, locally linear regression, LOESS, …

\[
K_\lambda(x_i, x_0)
\]

\[
\text{linear_func}(x) \rightarrow y
\]

\[\Rightarrow\]

could represent only the neighbor region of \(x_0 \)

Use RBF function to pick out/emphasize the neighbor region of \(x_0 \)

Figure 2: In locally weighted regression, points are weighted by proximity to the current \(x \) in question using a kernel. A regression is then computed using the weighted points.
Vs. Locally weighted regression

- Separate weighted least squares at each target point x_0:

$$\min_{\alpha(x_0), \beta(x_0)} \sum_{i=1}^{N} K_{\lambda}(x_i, x_0)[y_i - \alpha(x_0) - \beta(x_0)x_i]^2$$

$$\hat{f}(x_0) = \hat{\alpha}(x_0) + \hat{\beta}(x_0)x_0$$

$$K_{\tau}(x_i, x_0) = \exp\left(-\frac{(x_i - x_0)^2}{2\tau^2}\right)$$

Today:

- K-nearest neighbor
- Model Selection / Bias Variance Tradeoff
- EPE
- Decomposition of MSE
- Bias-Variance tradeoff
- High bias? High variance? How to respond?
e.g. Training Error from KNN, Lesson Learned

- When \(k = 1 \),
- No misclassifications (on training): **Overtraining**

- Minimizing training error is not always good (e.g., 1-NN)

Statistical Decision Theory

- Random input vector: \(X \)
- Random output variable: \(Y \)
- Joint distribution: \(\Pr(X, Y) \)
- Loss function \(L(Y, f(X)) \)

- Expected prediction error (EPE):

 \[
 \text{EPE}(f) = E(L(Y, f(X))) = \int L(y, f(x)) \Pr(dx, dy)
 \]

 e.g. \(\int (y - f(x))^2 \Pr(dx, dy) \)

 e.g. Squared error loss (also called L2 loss)
Expected prediction error (EPE)

\[\text{EPE}(f) = \mathbb{E}(L(Y, f(X))) = \int L(y, f(x)) \Pr(dx, dy) \]

- For L2 loss: e.g., \(\int (y - f(x))^2 \Pr(dx, dy) \)
 under L2 loss, best estimator for EPE (Theoretically) is:
 \[\hat{f}(x) = \mathbb{E}(Y | X = x) \]

 e.g. KNN

 NN methods are the direct implementation (approximation)

- For 0-1 loss: \(L(k, \emptyset) = 1 - d_{kl} \)
 \[\hat{f}(X) = C_k \text{ if } \Pr(C_k | X = x) = \max_{g \in C} \Pr(g | X = x) \]

Bayes Classifier

LR VS. KNN FOR MINIMIZING EPE

- We know under L2 loss, best estimator for EPE (Theoretically) is:
 \[f(x) = \mathbb{E}(Y | X = x) \]

- Two simple approaches using different approximations:
 - Least squares assumes that \(f(x) \) is well approximated by a globally linear function
 - Nearest neighbors assumes that \(f(x) \) is well approximated by a locally constant function.
Review: WHEN EPE USES DIFFERENT LOSS

<table>
<thead>
<tr>
<th>Loss Function</th>
<th>Estimator (\hat{f}(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_2)</td>
<td>(\hat{f}(x) = E[Y</td>
</tr>
<tr>
<td>(L_1)</td>
<td>(\hat{f}(x) = \text{median}(Y</td>
</tr>
<tr>
<td>0-1</td>
<td>(\hat{f}(x) = \arg \max_{Y} P(Y</td>
</tr>
</tbody>
</table>

Today:

- K-nearest neighbor
- Model Selection / Bias Variance Tradeoff
- EPE
- Decomposition of MSE
- Bias-Variance tradeoff
- High bias? High variance? How to respond?
Decomposition of EPE

- When additive error model:

 - Notations

 \[Y = f(X) + \epsilon, \; \epsilon \sim (0, \sigma^2) \]

 - Output random variable: \(Y \)
 - Prediction function: \(f \)
 - Prediction estimator: \(\hat{f} \)

 \[
 \text{EPE}(x_0) = E[(Y - \hat{f})^2|X = x_0] \\
 = E[(Y - f) + (f - \hat{f})^2|X = x_0] \\
 = E[(Y - f)^2|X = x_0] + E[(f - \hat{f})^2|X = x_0] \\
 = \sigma^2 + \text{Var}(f) + \text{Bias}^2(f)
 \]

 Irreducible / Bayes error

Bias-Variance Trade-off for EPE:

\[
\text{EPE} (x_0) = \text{noise}^2 + \text{bias}^2 + \text{variance}
\]

- Unavoidable error
- Error due to incorrect assumptions
- Error due to variance of training samples
BIAS AND VARIANCE TRADE-OFF for MSE (more general setting !!!):

- **Bias** $E[(\hat{\theta} - \theta)^2]$
 - measures accuracy or quality of the estimator
 - low bias implies on average we will accurately estimate true parameter or function from training data

- **Variance** $E[(\bar{\theta} - \theta)^2]$
 - Measures precision or specificity of the estimator
 - Low variance implies the estimator does not change much as the training set varies

θ could be w for LR, f for EPE

BIAS AND VARIANCE TRADE-OFF for MSE of parameter estimation:

In EPE case, $E[(f - \hat{f})^2 | X = X_0] = MSE$

$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2]$$

$$= E[((\hat{\theta} - \theta) + (\bar{\theta} - \theta))^2]$$

$$= E[(\hat{\theta} - \bar{\theta})^2] + E[(\bar{\theta} - \theta)^2] + 2E[(\hat{\theta} - \bar{\theta})(\bar{\theta} - \theta)]$$

$$= Var(\hat{\theta}) + Bias^2(\hat{\theta}) + 0$$

Error due to variance of training samples

Error due to incorrect assumptions

$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2] = Bias^2(\hat{\theta}) + Var(\hat{\theta})$$

10/27/15
e.g., BIAS AND VARIANCE IN KNN (Extra)

- **Prediction**
 \[
 \hat{f}_k(x_0) = \frac{1}{k} \sum_{l=1}^{k} f(x_l)
 \]

- **Bias**
 \[
 \text{Bias}^2(\hat{f}_k(x_0)) = E[f(x_0) - \hat{f}_k(x_0)]^2 = E[f(x_0) - \frac{1}{k} \sum_{l=1}^{k} f(x_l)]^2
 \]

- **Variance**
 \[
 \text{Var}(\hat{f}_k(x_0)) = \frac{\sigma^2}{k}
 \]

- When under data model:
 \[
 Y = f(X) + \epsilon, \ \epsilon \sim (0, \sigma^2)
 \]

Today:

- ✔ K-nearest neighbor
- ✔ Model Selection / Bias Variance Tradeoff
 - ✔ EPE
 - ✔ Decomposition of MSE
- ✔ Bias-Variance tradeoff
 - ✔ High bias ? High variance ? How to respond ?
Bias-Variance Tradeoff / Model Selection

Which is the best?

Highest Bias
Lowest variance
Model complexity = low

Medium Bias
Medium Variance
Model complexity = medium

Smallest Bias
Highest variance
Model complexity = high

Why not choose the method with the best fit to the data?

How well are you going to predict future data?
Bias-Variance Trade-off

- Models with too few parameters are inaccurate because of a large bias (not enough flexibility).
- Models with too many parameters are inaccurate because of a large variance (too much sensitivity to the sample randomness).

Training vs Test Error

- Training error can always be reduced when increasing model complexity,
- But risks over-fitting and generalize poorly.
Regression: Complexity versus Goodness of Fit

What ultimately matters: **GENERALIZATION**

Classification, Decision boundaries in global vs. local models

What ultimately matters: **GENERALIZATION**
Model “bias” & Model “variance”

• Middle RED:
 – TRUE function

• Error due to bias:
 – How far off in general from the middle red

• Error due to variance:
 – How wildly the blue points spread

need to make assumptions that are able to generalize

• Components of generalization error
 – **Bias**: how much the average model over all training sets differ from the true model?
 • Error due to inaccurate assumptions/simplifications made by the model
 – **Variance**: how much models estimated from different training sets differ from each other

• **Underfitting**: model is too “simple” to represent all the relevant class characteristics
 – High bias and low variance
 – High training error and high test error

• **Overfitting**: model is too “complex” and fits irrelevant characteristics (noise) in the data
 – Low bias and high variance
 – Low training error and high test error
MODEL COMPLEXITY CONTROL,
EXAMPLES (Extra)

- Regularization (Bayesian)
 \[
 PRSS(f; \lambda) = \sum_{i=1}^{N} (y_i - f(x_i))^2 + \lambda \int [f''(x)]^2 dx
 \]

- Kernel methods and local regression
 \[
 RSS(f_{\theta}; x_0) = \sum_{i=1}^{N} K(\lambda, x_i, x_0)(y_i - f_{\theta}(x_i))^2
 \]

- Basis functions
 \[
 f_{\theta} = \sum_{m=1}^{m} \theta_m h_m(x)
 \]

Today:

- K-nearest neighbor
- Model Selection / Bias Variance Tradeoff
 - EPE
 - Decomposition of MSE
 - Bias-Variance tradeoff
- High bias ? High variance ? How to respond ?
High variance

Typical learning curve for high variance:

- Test error still decreasing as \(m \) increases. Suggests larger training set will help.
- Large gap between training and test error.
- Low training error and high test error

Could also use CrossV Error

How to reduce variance?

- Choose a simpler classifier
- Regularize the parameters
- Get more training data
- Try smaller set of features
High bias

Typical learning curve for high bias:

- Even training error is unacceptably high.
- Small gap between training and test error.

High training error and high test error

How to reduce Bias?

- E.g.
 - Get additional features
 - Try adding basis expansions, e.g. polynomial
 - Try more complex learner
For instance, if trying to solve “spam detection” using (Extra)

L2 - logistic regression, implemented with gradient descent.

Fixes to try: **If performance is not as desired**
- Try getting more training examples.
- Try a smaller set of features.
- Try a larger set of features.
- Try email header features.
- Run gradient descent for more iterations.
- Try Newton’s method.
- Use a different value for λ.
- Try using an SVM.

Model Selection and Assessment

- **Model Selection**
 - Estimating performances of different models to choose the best one

- **Model Assessment**
 - Having chosen a model, estimating the *prediction error* on new data
Model Selection and Assessment (Extra)

- Data Rich Scenario: Split the dataset
 - Train | Validation | Test
 - Model Selection
 - Model assessment

- Insufficient data to split into 3 parts
 - Approximate validation step analytically
 - AIC, BIC, MDL, SRM
 - Efficient reuse of samples
 - Cross validation, bootstrap

Today Recap:

- K-nearest neighbor
- Model Selection / Bias Variance Tradeoff
 - EPE
 - Decomposition of MSE
 - Bias-Variance tradeoff
 - High bias? High variance? How to respond?
References

- Prof. Tan, Steinbach, Kumar’s “Introduction to Data Mining” slide
- Prof. Andrew Moore’s slides
- Prof. Eric Xing’s slides