Where are we?

major sections of this course

- Regression (supervised)
- Classification (supervised)
 - Feature selection
- Unsupervised models
 - Dimension Reduction (PCA)
 - Clustering (K-means, GMM/EM, Hierarchical)
- Learning theory
- Graphical models
 - (BN and HMM slides shared)
Unsupervised learning = learning from raw (unlabeled, unannotated, etc) data, as opposed to supervised data where a classification label of examples is given

- Data/points/instances/examples/samples/records: [rows]
- Features/attributes/dimensions/independent variables/covariates/predictors/regressors: [columns]

What is clustering?

- Find groups (clusters) of data points such that data points in a group will be similar (or related) to one another and different from (or unrelated to) the data points in other groups
Application (I): Search Result Clustering

Application (II): Navigation
Application (III): Visualization

Islands of Music
Analysis, Organization, and Visualization of Music Archives

piece of music: member of a music collection and inhabitant of islands of music. Groups of similar pieces of music (also known as genres) like to gather around large mountains or small hills depending on the size of the group. Groups which are similar to each other like to live close together. Individuals which are not members of specific groups usually live near the beach and some very individualistic pieces might be found swimming in deep water.

islands of music: serve as graphical user interface to a music collection and are intended to help the user explore vast amounts of music in an efficient way. Islands of music are generated automatically based on psychoacoustics models and self-organizing maps.

SOM
Application (III): Visualization
(feature changes ➔ clusters’ change)

Islands of music (Pampalk et al., KDD’ 03, http://www.ofai.at/~elias.pampalk/kdd03/
Visualizing Changes in the Structure of Data for Exploratory Feature Selection)
Roadmap: clustering

- Definition of "groupness"
- Definition of "similarity/distance"
- Representation for objects
- How many clusters?
- Clustering Algorithms
 - Partitional algorithms
 - Hierarchical algorithms
 - Formal foundation and convergence

Clustering Algorithms

- Partitional algorithms
 - Usually start with a random (partial) partitioning
 - Refine it iteratively
 - K means clustering
 - Mixture-Model based clustering

- Hierarchical algorithms
 - Bottom-up, agglomerative
 - Top-down, divisive
(1) Hierarchical Clustering

- Task
- Representation
- Score Function
- Search/Optimization
- Clustering
 - n/a
 - No clearly defined loss
 - greedy bottom-up (or top-down)
 - Dendrogram (tree)

(2) Partitional Clustering

- Nonhierarchcial
- Construct a partition of n objects into a set of K clusters
- User has to specify the desired number of clusters K.
Partitional clustering (e.g. $K=3$)

Original points

Partitional clustering

Partitional clustering (e.g. $K=3$)

age

\[
\]

age

11/11/15
Clustering Algorithms

- Partitional algorithms
 - Usually start with a random (partial) partitioning
 - Refine it iteratively
 - K means clustering
 - Mixture-Model based clustering

Partitioning Algorithms

- Given: a set of objects and the number K

- Find: a partition of K clusters that optimizes a chosen partitioning criterion
 - Globally optimal: exhaustively enumerate all partitions
 - Effective heuristic methods: K-means and K-medoids algorithms
K-Means

Algorithm
1. Decide on a value for k.
2. Initialize the k cluster centers randomly if necessary.
3. Decide the class memberships of the N objects by assigning them to the nearest cluster centroids (aka the center of gravity or mean)

$$\bar{\mu}_k = \frac{1}{C_k} \sum_{i \in C_k} \bar{x}_i$$

4. Re-estimate the k cluster centers, by assuming the memberships found above are correct.
5. If none of the N objects changed membership in the last iteration, exit. Otherwise go to 3.

K-means Clustering: Step 1 - random guess of cluster centers
K-means Clustering: Step 2
- Determine the membership of each data points

K-means Clustering: Step 3
- Adjust the cluster centers
K-means Clustering: Step 4
- redetermine membership

K-means Clustering: Step 5
- readjust cluster centers

Blue cluster gets more points
How K-means partitions?

When \(K \) centroids are set/fixed, they partition the whole data space into \(K \) mutually exclusive subspaces to form a partition.

A partition amounts to a Voronoi Diagram.

Changing positions of centroids leads to a new partitioning.

K-means: another Demo

- K-means
 - Start with a random guess of cluster centers
 - Determine the membership of each data points
 - Adjust the cluster centers
K-means: another Demo

1. User set up the number of clusters they’d like. \((e.g. k=5)\)

2. Randomly guess K cluster Center locations
1. User set up the number of clusters they’d like. *(e.g. \(K=5 \))*
2. Randomly guess \(K \) cluster center locations
3. Each data point finds out which center it’s closest to. *(Thus each center “owns” a set of data points)*
4. Each center finds the centroid of the points it owns
K-means: another Demo

1. User set up the number of clusters they’d like. (e.g. \(K=5\))
2. Randomly guess \(K\) cluster centre locations
3. Each data point finds out which centre it’s closest to. (Thus each centre “owns” a set of data points)
4. Each centre finds the centroid of the points it owns
5. …and jumps there
6. …Repeat until terminated!

11/11/15
K-means

1. Ask user how many clusters they'd like. (e.g. k=5)

2. Randomly guess k cluster centers locations

3. Each datapoint finds out which Center it’s closest to.

4. Each Center finds the centroid of the points it owns

Any Computational Problem?

Computational Complexity: \(O(n)\) where \(n\) is the number of points?

Time Complexity

- Computing distance between two objs is \(O(p)\) where \(p\) is the dimensionality of the vectors.

- Reassigning clusters: \(O(Knp)\) distance computations,

- Computing centroids: Each obj gets added once to some centroid: \(O(np)\).

- Assume these two steps are each done once for \(l\) iterations: \(O(lKnp)\).
Roadmap: clustering

- Definition of "groupness"
- Definition of "similarity/distance"
- Representation for objects
- How many clusters?
- Clustering Algorithms
 - Partitional algorithms
 - Hierarchical algorithms
- Formal foundation and convergence

How to Find good Clustering?

- Find groups (clusters) of data points such that data points in a group will be similar (or related) to one another and different from (or unrelated to) the data points in other groups

Intra-cluster distances are minimized
Inter-cluster distances are maximized
How to Find good Clustering? E.g.

• Minimize the sum of distance within clusters

\[
\arg \min_{j, m_{i,j}} \sum_{i=1}^{n} \sum_{j=1}^{6} \left(x_i - \bar{C}_j \right)^2
\]

\[
m_{i,j} = \begin{cases}
1 & x_i \in \text{the j-th cluster} \\
0 & x_i \not\in \text{the j-th cluster}
\end{cases}
\]

\[
\sum_{j=1}^{6} m_{i,j} = 1
\]

\[
\rightarrow \text{any } x_i \in \text{a single cluster}
\]
Convergence

• Why should the K-means algorithm ever reach a fixed point?
 – A state in which clusters don’t change.
• **K-means is a special case of** a general procedure known as the Expectation Maximization (EM) algorithm.
 – EM is known to converge.
 – Number of iterations could be large.
• Cluster goodness measure / Loss function to minimize
 – sum of squared distances from cluster centroid:
• Reassignment **monotonically decreases the goodness measure** since each vector is assigned to the closest centroid.

Seed Choice

• Results can vary based on random seed selection.
• Some seeds can result in poor convergence rate, or convergence to **sub-optimal clusterings**.
 – Select good seeds using a heuristic (e.g., doc least similar to any existing mean)
 – Try out multiple starting points (very important!!!)
 – Initialize with the results of another method.
(2) K-means Clustering

Roadmap: clustering

- Definition of "groupness"
- Definition of "similarity/distance"
- Representation for objects
- How many clusters?
- Clustering Algorithms
 - Partitional algorithms
 - Hierarchical algorithms
 - Formal foundation and convergence
Other partitioning Methods

- Partitioning around medoids (PAM): instead of averages, use multidim medians as centroids (cluster “prototypes”). Dudoit and Freedland (2002).
- Self-organizing maps (SOM): add an underlying “topology” (neighboring structure on a lattice) that relates cluster centroids to one another. Kohonen (1997), Tamayo et al. (1999).
- Fuzzy k-means: allow for a “gradation” of points between clusters; soft partitions. Gash and Eisen (2002).
- Mixture-based clustering: implemented through an EM (Expectation-Maximization) algorithm. This provides soft partitioning, and allows for modeling of cluster centroids and shapes. Yeung et al. (2001), McLachlan et al. (2002)

A Gaussian Mixture Model for Clustering

- Assume that data are generated from a mixture of Gaussian distributions
- For each Gaussian distribution
 - Center: \(\mu_i \)
 - Variance: \(\Sigma_i \) (ignored in the following for simplified equations)
- For each data point
 - Determine membership
 \(z_{ij} \): if \(x_i \) belongs to j-th cluster
Learning a Gaussian Mixture
(with known covariance)

- Probability \(p(x = x_i) \)
 \[
 p(x = x_i) = \sum_{\mu_j} p(x = x_i, \mu = \mu_j) = \sum_{\mu_j} p(\mu = \mu_j)p(x = x_i | \mu = \mu_j)
 \]
 Total low of probability

\[
\begin{align*}
\text{Log-likelihood of data} & \quad \log p(x_1, x_2, x_3, \ldots, x_n) = \\
& = \sum_i \log p(x = x_i) = \sum_i \log \left[\sum_{\mu_j} p(\mu = \mu_j) \frac{1}{(2\pi\sigma^2)^{d/2}} \exp \left(-\frac{||x_i - \mu_j||^2}{2\sigma^2} \right) \right]
\end{align*}
\]

Apply MLE to find optimal parameters \(\{p(\mu = \mu_j), \mu_j\} \)
Learning a Gaussian Mixture
(with known covariance)

E-Step

\[E[z_{ij}] = p(\mu = \mu_j \mid x = x_i) \]
\[= \frac{p(x = x_i \mid \mu = \mu_j) p(\mu = \mu_j)}{\sum_{n=1}^{k} p(x = x_i \mid \mu = \mu_n) p(\mu = \mu_j)} \]
\[= \frac{\sum_{n=1}^{k} e^{-\frac{1}{2\sigma^2}(x_i - \mu_j)^2} p(\mu = \mu_j)}{\sum_{n=1}^{k} e^{-\frac{1}{2\sigma^2}(x_i - \mu_n)^2} p(\mu = \mu_n)} \]

M-Step

\[\mu_j \leftarrow \frac{1}{N_j} \sum_{i=1}^{n} E[z_{ij}] x_i \]
\[p(\mu = \mu_j) \leftarrow \frac{1}{n} \sum_{i=1}^{n} E[z_{ij}] \]

Covariance: \(\Sigma_j \) (j: 1 to K) will also be derived in the M-step under a full setting
Expectation-Maximization for training GMM

- **Start:**
 - "Guess" the centroid m_k and covariance S_k of each of the K clusters
- **Loop** each cluster, revising both the mean (centroid position) and covariance (shape)

Recap: K-means iterative learning

$$\arg\min_{\{\tilde{C}_j, m_{i,j}\}} \sum_{i=1}^{n} \sum_{j=1}^{K} m_{i,j} (\tilde{x}_i - \tilde{C}_j)^2$$

Memberships $\{m_{i,j}\}$ and centers $\{C_j\}$ are correlated.

E-Step

Given centers $\{\tilde{C}_j\}$, $m_{i,j} = \begin{cases} 1 & j = \arg\min_k (\tilde{x}_i - \tilde{C}_j)^2 \\ 0 & \text{otherwise} \end{cases}$

M-Step

Given memberships $\{m_{i,j}\}$, $\tilde{C}_j = \frac{\sum_{i=1}^{n} m_{i,j} \tilde{x}_i}{\sum_{i=1}^{n} m_{i,j}}$
Compare: K-means

- The EM algorithm for mixtures of Gaussians is like a "soft version" of the K-means algorithm.
- In the K-means “E-step” we do hard assignment:
- In the K-means “M-step” we update the means as the weighted sum of the data, but now the weights are 0 or 1:

Gaussian Mixture Example: Start
After First Iteration

For each point, revising its proportions belonging to each of the K clusters

For each cluster, revising its mean (centroid position), covariance (shape) and proportion in the mixture

After 2nd Iteration

For each point, revising its proportions belonging to each of the K clusters

For each cluster, revising its mean (centroid position), covariance (shape) and proportion in the mixture
After 3rd Iteration

For each point, revising its proportions belonging to each of the K clusters

For each cluster, revising its mean (centroid position), covariance (shape) and proportion in the mixture

After 4th Iteration

For each point, revising its proportions belonging to each of the K clusters

For each cluster, revising its mean (centroid position), covariance (shape) and proportion in the mixture
After 5th Iteration

For each point, revising its proportions belonging to each of the K clusters

For each cluster, revising its mean (centroid position), covariance (shape) and proportion in the mixture

After 6th Iteration

For each point, revising its proportions belonging to each of the K clusters

For each cluster, revising its mean (centroid position), covariance (shape) and proportion in the mixture
After 20th Iteration

For each point, revising its proportions belonging to each of the K clusters

For each cluster, revising its mean (centroid position), covariance (shape) and proportion in the mixture

(3) GMM Clustering

\[
\sum_i \log p(x = x_i) = \sum_i \log \left[\sum_{\mu_j} p(\mu = \mu_j) \frac{1}{(2\pi\sigma^2)^{d/2}} \exp \left(-\frac{\|x_i - \mu_j\|^2}{2\sigma^2} \right) \right]
\]
M-step (more in L23 EM lecture)

\[
\Sigma_{(t+1)}^{(t+1)} = \sum_{i=1}^{n} E[Z_{ij}]^{(t)} (x_i - \mu_j^{(t+1)}) (x_i - \mu_j^{(t+1)})^T \\
\sum_{i=1}^{n} E[Z_{ij}]^{(t)}
\]

Problems (I)

• Both k-means and mixture models need to compute centers of clusters and explicit distance measurement
 – Given strange distance measurement, the center of clusters can be hard to compute

 E.g.,
 \[
 \|\bar{x} - \bar{x}'\|_\infty = \max \left(|x_1 - x_1'|, |x_2 - x_2'|, \ldots, |x_p - x_p'| \right)
 \]

 \[
 \|x - y\|_\infty = \|x - z\|_\infty
 \]
Problem (II)

• Both k-means and mixture models look for compact clustering structures
 – In some cases, connected clustering structures are more desirable

Graph based clustering
 e.g. MinCut, Spectral clustering

e.g. Image Segmentation through minCut
Roadmap: clustering

- Definition of "groupness"
- Definition of "similarity/distance"
- Representation for objects
- How many clusters?
- Clustering Algorithms
 - Partitional algorithms
 - Hierarchical algorithms
 - Formal foundation and convergence

How can we tell the right number of clusters?

In general, this is a unsolved problem. However there exist many approximate methods.
When \(k = 1 \), the objective function is 873.0

\[
\arg \min_{\{\tilde{C}_j, m_{i,j}\}} \sum_{j=1}^{K} \sum_{i=1}^{n} m_{i,j} (\tilde{x}_i - \tilde{C}_j)^2
\]

When \(k = 2 \), the objective function is 173.1
When \(k = 3 \), the objective function is 133.6

\[
K = n, \quad \text{obj} = 0
\]

We can plot the objective function values for \(k \) equals 1 to 6...

The abrupt change at \(k = 2 \), is highly suggestive of two clusters in the data. This technique for determining the number of clusters is known as "knee finding" or "elbow finding".

Note that the results are not always as clear cut as in this toy example.
What Is A Good Clustering?

• **Internal** criterion: A good clustering will produce high-quality clusters in which:
 – the intra-class (that is, intra-cluster) similarity is high
 – the inter-class similarity is low
 – The measured **quality** of a clustering depends on both the data **representation** and the **similarity** measure used

• **External** criteria for clustering quality
 – Quality measured by its ability to discover some or all of the hidden patterns or latent classes in gold standard data
 – Assesses a clustering with respect to ground truth
 – Example:
 • **Purity**
 • entropy of classes in clusters (or mutual information between classes and clusters)

External Evaluation of Cluster Quality, e.g. using purity

• Simple measure: **purity** the ratio between the dominant class in the cluster and the size of cluster
 – Assume data samples with C gold standard classes/groups, while the clustering algorithms produce K clusters, \(\omega_1, \omega_2, ..., \omega_K \) with \(n_i \) members.

 \[
 \text{Purity}(w_i) = \frac{1}{n_i} \max_{j \in C} (n_{ij})
 \]

 – Example

 Cluster I: Purity = 1/6 (max(5, 1, 0)) = 5/6
 Cluster II: Purity = 1/6 (max(1, 4, 1)) = 4/6
 Cluster III: Purity = 1/5 (max(2, 0, 3)) = 3/5
References

- Big thanks to Prof. Eric Xing @ CMU for allowing me to reuse some of his slides
- Big thanks to Prof. Ziv Bar-Joseph @ CMU for allowing me to reuse some of his slides
- clustering slides from Prof. Rong Jin @ MSU

Extra practice: K-means

1. Ask user how many clusters they’d like. (e.g. k=5)
2. Randomly guess k cluster Center locations
Extra practice: K-means

1. Ask user how many clusters they’d like. \((e.g. \ k=5) \)
2. Randomly guess \(k \) cluster Center locations
3. Each datapoint finds out which Center it’s closest to. (Thus each Center “owns” a set of datapoints)
4. Each Center finds the centroid of the points it owns
K-means: extra practice

1. Ask user how many clusters they’d like. (e.g. k=5)
2. Randomly guess k cluster Center locations
3. Each datapoint finds out which Center it’s closest to.
4. Each Center finds the centroid of the points it owns

11/11/15