UVA CS 6316 - Fall 2015 Graduate: Machine Learning

Lecture 26: Hidden Markov models (HMMs)

Dr. Yanjun Qi

University of Virginia

Department of Computer Science Dr. Yanjun Qi / UVA CS 6316 / f15

11/9/15

What's wrong with Bayesian networks

- Bayesian networks are very useful for modeling joint distributions
- But they have their limitations:
 - Cannot account for temporal / sequence models
 - DAG's (no self or any other loops)

This is not a valid Bayesian network!

1

Hidden Markov models

- Model a set of observation with a set of hidden states
 - Robot movement
 Observations: range sensor, visual sensor
 Hidden states: location (on a map)
 Speech processing
 Observations: sound signals
 Hidden states: parts of speech, words
 Biology
 Observations: DNA base pairs
 Hidden states: Genes

- Model a set of observation with a set of hidden states
 - Robot movement

Observations: range sensor, visual sensor

G Hidden states: location (on a map)

- 1. Hidden states generate observations
- 2. Hidden states transition to other hidden states

Contents

Prej	Preface	
1	Introduction	1
1.1	Sequence similarity, homology, and alignment	2
1.2	Overview of the book	2
1.3	Probabilities and probabilistic models	4
1.4	Further reading	10
2	Pairwise alignment	12
2.1	Introduction	12
2.2	The scoring model	13
2.3	Alignment algorithms	17
2.4	Dynamic programming with more complex models	28
2.5	Heuristic alignment algorithms	32
2.6	Linear space alignments	34
2.7	Significance of scores	36
2.8	Deriving score parameters from alignment data	41
2.9	Further reading	45
3	Markov chains and hidden Markov models	46
3.1	Markov chains	48
3.2	Hidden Markov models	51
3.3	Parameter estimation for HMMs	62
3.4	HMM model structure	68
3.5	More complex Markov chains	72
3.6	Numerical stability of HMM algorithms	77
3.7	Further reading	79
4	Pairwise alignment using HMMs	80
4.1	Pair HMMs	81
4.2	The full probability of x and y, summing over all paths	87
4.3	Suboptimal alignment	89
4.4	The posterior probability that x_i is aligned to y_i	91
4.5	Pair HMMs versus FSAs for searching	95
	v	

vi Copyrighted Material

4.6	Further reading	98
5	Profile HMMs for sequence families	100
5.1	Ungapped score matrices	102
5.2	Adding insert and delete states to obtain profile HMMs	102
5.3	Deriving profile HMMs from multiple alignments	105
5.4	Searching with profile HMMs	108
5.5	Profile HMM variants for non-global alignments	113
5.6	More on estimation of probabilities	115
5.7	Optimal model construction	122
5.8	Weighting training sequences	124
5.9	Further reading	132
6	Multiple sequence alignment methods	134
6.1	What a multiple alignment means	135
6.2	Scoring a multiple alignment	137
6.3	Multidimensional dynamic programming	141
6.4	Progressive alignment methods	143
6.5	Multiple alignment by profile HMM training	149
6.6	Further reading	159
7	Building phylogenetic trees	160
7.1	The tree of life	160
7.2	Background on trees	161
7.3	Making a tree from pairwise distances	165
7.4	Parsimony	173
7.5	Assessing the trees: the bootstrap	179
7.6	Simultaneous alignment and phylogeny	180
7.7	Further reading	188
7.8	Appendix: proof of neighbour-joining theorem	190
8	Probabilistic approaches to phylogeny	192
8.1	Introduction	192
8.2	Probabilistic models of evolution	193
8.3	Calculating the likelihood for ungapped alignments	197
8.4	Using the likelihood for inference	205
8.5	Towards more realistic evolutionary models	215
8.6	Comparison of probabilistic and non-probabilistic methods	224
8.7	Further reading	231

Example: Gambling on dice outcome

- Two dices, both skewed (output model).
- Can either stay with the same dice or switch to the second dice (transition mode).

A Hidden Markov model

• A set of states {s₁ ... s_n}

- In each time point we are in exactly one of these states denoted by \boldsymbol{q}_t

- Π_i , the probability that we *start* at state s_i
- A transition probability model, $P(q_t = s_i | q_{t-1} = s_i)$
- A set of possible outputs Σ
 - At time *t* we emit a symbol $\sigma \in \Sigma$

The Markov property

• A set of states {s₁ ... s_n}

- In each time point we are in exactly one of these states denoted by \boldsymbol{q}_t

- Π_i , the probability that we start at state s_i
- A transition probability model, $P(q_t = s_i | q_{t-1} = s_i)$

An important aspect of this definitions is the Markov property: q_{t+1} is conditionally independent of q_{t-1} (and any earlier time points) given q_t

More formally $P(q_{t+1} = s_i | q_t = s_j) = P(q_{t+1} = s_i | q_t = s_j, q_{t-1} = s_j)$

What can we ask when using a HMM?

U.Z

A few examples:

- "What dice is currently being used?"
- "What is the probability of a 6 in the next role?"
- "What is the probability of 6 in any of the next 3 roles?"

Inference in HMMs

- Computing P(Q) and $P(q_t = s_i)$
 - If we cannot look at observations
- Computing P(Q | O) and $P(q_t = s_i | O)$
 - When we have observation and care about the last state only
- Computing argmax_QP(Q | O)
 - When we care about the entire path

What dice is currently being used?

- We played *t* rounds so far
- We want to determine $P(q_t = A)$
- Lets assume for now that we cannot observe any outputs (we are blind folded)
- · How can we compute this?

$P(q_t = A)$, the smart way

- Lets define $p_t(i)$ = probability state i at time t = $p(q_t = s_i)$
- We can determine p_t(i) by induction
 - 1. $p_1(i) = \Pi_i$ 2. $p_t(i) = \Sigma_i p(q_t = s_i | q_{t-1} = s_i)p_{t-1}(j)$

$P(q_t = A)$, the smart way

- Lets define $p_t(i)$ = probability state i at time t = $p(q_t = s_i)$
- We can determine p_t(i) by induction
 - 1. p₁(i) = П_i
 - 2. $p_t(i) = \sum_j p(q_t = s_i | q_{t-1} = s_j)p_{t-1}(j)$

This type of computation is called dynamic programming

Complexity: O(n^{2*}t)

Time / state	t1	t2	t3	
s1	.3			
s2	.7			

Number of states in our HMM

Inference in HMMs

- Computing P(Q) and P($q_t = s_i$) $\sqrt{}$
- Computing P(Q | O) and $P(q_t = s_i | O)$
- Computing argmax_QP(Q)

But what if we observe outputs?

- So far, we assumed that we could not observe the outputs
- In reality, we almost always can.

But what if we observe outputs?

- So far, we assumed that we could not observe the outputs
- In reality, we almost alwavs can.

$P(q_t = A)$ when outputs are observed

- We want to compute $P(q_t = A | O_1 \dots O_t)$
- For ease of writing we will use the following notations (commonly used in the literature)

•
$$a_{j,i} = P(q_t = s_i | q_{t-1} = s_j)$$

$P(q_t = A)$ when outputs are observed

- We want to compute $P(q_t = A | O_1 \dots O_t)$
- Lets start with a simpler question. Given a sequence of states Q, what is P(Q | O₁ ... O_t) = P(Q | O)?
 - It is pretty simple to move from P(Q) to $P(q_t = A)$
 - In some cases P(Q) is the more important question
 - Speech processing

- NLP

• We can use Bayes rule:

Easy, $P(O | Q) = P(o_1 | q_1) P(o_2 | q_2) \dots P(o_t | q_t)$

Example: Computing $\alpha_3(B)$

• We observed 2,3,6 $\begin{aligned} &\alpha_1(A) = P(2 \land q_1 = A) = P(2 \mid q_1 = A)\Pi_A = .2^*.7 = .14, \ \alpha_1(B) = .1^*.3 = .03 \\ &\alpha_2(A) = \Sigma_{j=A,,B} b_A(3) a_{j,A} \alpha_1(j) = .2^*.8^*.14 + .2^*.2^*.03 = 0.0236, \ \alpha_2(B) = 0.0052 \\ &\alpha_3(B) = \Sigma_{j=A,,B} b_B(6) a_{j,B} \alpha_2(j) = .3^*.2^*.0236 + .3^*.8^*.0052 = 0.00264 \end{aligned}$

Where we are

- We want to compute P(Q | O)
- For this, we only need to compute P(O)
- We know how to compute $\alpha_t(i)$

```
From now its easy
```

```
\begin{split} &\alpha_{t}(i) = \mathsf{P}(o_{1}, o_{2} \dots, o_{t} \land q_{t} = s_{i}) \\ &\text{so} \\ &\mathsf{P}(O) = \mathsf{P}(o_{1}, o_{2} \dots, o_{t}) = \Sigma_{i} \mathsf{P}(o_{1}, o_{2} \dots, o_{t} \land q_{t} = s_{i}) = \Sigma_{i} \alpha_{t}(i) \\ &\text{note that} \\ &p(q_{t} = s_{i} \mid o_{1}, o_{2} \dots, o_{t}) = \sum_{j} \frac{\alpha_{t}(i)}{\sum_{j} \alpha_{t}(j)} \\ &\mathsf{P}(\mathsf{A} \mid \mathsf{B}) = \mathsf{P}(\mathsf{A} \land \mathsf{B}) / \mathsf{P}(\mathsf{B}) \end{split}
```


Most probable path

- We are almost done ...
- One final question remains
 How do we find the most probable path, that is Q* such that

 $P(Q^* | O) = argmax_Q P(Q|O)?$

• This is an important path

- The words in speech processing

- The set of genes in the genome

- etc.

Most probable path

$$\arg \max_{Q} P(Q \mid O) = \arg \max_{Q} \frac{P(O \mid Q)P(Q)}{P(O)}$$
$$= \arg \max_{Q} P(O \mid Q)P(Q)$$

We will use the following definition:

$$\delta_t(i) = \max_{q_1 \dots q_{t-1}} p(q_1 \dots q_{t-1} \wedge q_t = s_i \wedge O_1 \dots O_t)$$

In other words we are interested in the most likely path from 1 to t that:

- 1. Ends in S_i
- 2. Produces outputs $O_1 \dots O_t$

Computing $\delta_t(i)$

 $\delta_{1}(i) = p(q_{1} = s_{i} \land O_{1})$ = $p(q_{1} = s_{i}) p(O_{1} | q_{1} = s_{i})$ = $\pi_{i} b_{i}(O_{1})$ $\delta_t(i) = \max_{q_1 \dots q_{t-1}} p(q_1 \dots q_{t-1} \wedge q_t = s_i \wedge O_1 \dots O_t)$

- Q: Given $\delta_t(i)$, how can we compute $\delta_{t+1}(i)$?
- A: To get from $\delta_t(i)$ to $\delta_{t+1}(i)$ we need to
- 1. Add an emission for time t+1 (O_{t+1})
- 2. Transition to state s_i

$$\begin{split} \delta_{t+1}(i) &= \max_{q_1 \dots q_t} \, p(q_1 \dots q_t \wedge q_{t+1} = s_i \wedge O_1 \dots O_{t+1}) \\ &= \max_j \delta_t(j) \, p(q_{t+1} = s_i \mid q_t = s_j) \, p(O_{t+1} \mid q_{t+1} = s_i) \\ &= \max_j \delta_t(j) a_{j,i} b_i(O_{t+1}) \end{split}$$

The Viterbi algorithm

$$\delta_{t+1}(i) = \max_{q_1...q_t} p(q_1...q_t \land q_{t+1} = s_i \land Q_1...Q_{t+1})$$

= $\max_j \delta_t(j) p(q_{t+1} = s_i | q_t = s_j) p(O_{t+1} | q_{t+1} = s_i)$
= $\max_j \delta_t(j) a_{j,i} b_i(O_{t+1})$

- Once again we use dynamic programming for solving $\delta_t(i)$

- Once we have $\delta_t(i),$ we can solve for our $\mathsf{P}(\mathsf{Q}^*|\mathsf{O})$ By:

 $P(Q^* | O) = \operatorname{argmax}_{O} P(Q|O) =$

path defined by $argmax_i \delta_t(j)$,

Inference in HMMs

- Computing P(Q) and P(q_t = s_i) $\sqrt{}$
- Computing P(Q | O) and P(q_t = s_i|O) $\sqrt{}$
- Computing $\operatorname{argmax}_{Q}P(Q) = \sqrt{}$

Learning in HMMs

A Hidden Markov model

• A set of states $\{s_1 \dots s_n\}$

- In each time point we are in exactly one of these states denoted by \boldsymbol{q}_t

- Π_i , the probability that we *start* at state s_i
- A transition probability model, $P(q_t = s_i | q_{t-1} = s_i)$
- A set of possible outputs Σ
 - At time *t* we emit a symbol $\sigma \in \Sigma$

Inference in HMMs

- Computing P(Q) and P(q_t = s_i) $\sqrt{}$
- Computing P(Q | O) and P(q_t = s_i | O) $\sqrt{}$
- Computing argmax_QP(Q)

Learning HMMs

- Until now we assumed that the emission and transition probabilities are known
- This is usually not the case
 - How is "AI" pronounced by different individuals?
 - What is the probability of hearing "class" after "AI"?

While we will discuss learning the transition and emission models, we will not discuss selecting the states.

This is usually a function of domain knowledge.

Transition probabilities Q: assume we can observe the set of states:

Emission probabilities

Q: assume we can observe the set of states: AAABBAAAABBBBBAA and the set of dice values 1235632113456523 how can we learn the emission probabilities? A: Maximum likelihood estimation $b_A(5) = #A5/(#A1+#A2 + ... +#A6)$ A B

Learning HMMs

- In most case we do not know what states generated each of the outputs (fully unsupervised)
- ... but had we known, it would be very easy to determine an emission and transition model!
- On the other hand, if we had such a model we could determine the set of states using the inference methods we discussed

Expectation Maximization (EM)

- Appropriate for problems with 'missing values' for the variables.
- For example, in HMMs we usually do not observe the states

Expectation Maximization (EM): Quick reminder

- Two steps
- E step: Fill in the expected values for the missing variables
- M step: Regular maximum likelihood estimation (MLE) using the values computed in the E step and the values of the other variables
- Guaranteed to converge (though only to a local minima).

Forward-Backward

• We already defined a forward looking variable

$$\alpha_t(i) = P(O_1 \dots O_t \land q_t = s_i)$$

• We also need to define a *backward* looking variable

$$\beta_t(i) = P(O_{t+1}, \cdots, O_T \mid s_t = i)$$

Forward-Backward

• We already defined a forward looking variable

 $\alpha_t(i) = P(O_1 \dots O_t \land q_t = s_i)$

• We also need to define a *backward* looking variable

$$\beta_{t}(i) = P(O_{t+1}, \dots, O_{T} | q_{t} = s_{i}) = \sum_{j} a_{i,j} b_{j}(O_{t+1}) \beta_{t+1}(j)$$

Forward-Backward

• We already defined a forward looking variable

$$\alpha_t(i) = P(O_1 \dots O_t \land q_t = s_i)$$

• We also need to define a *backward* looking variable

$$\beta_t(i) = P(O_{t+1}, \cdots, O_T \mid q_t = s_i)$$

P(A|B)=P(A,B)/P(B)

· Using these two definitions we can show

$$P(q_t = s_i | O_1, \dots, O_T) = \frac{\alpha_t(i)\beta_t(i)}{\sum_j \alpha_t(j)\beta_t(j)} = S_t(i)$$

State and transition probabilities

• Probability of a state

$$P(q_t = s_i | O_1, \dots, O_T) = \frac{\alpha_t(i)\beta_t(i)}{\sum_j \alpha_t(j)\beta_t(j)} \stackrel{def}{=} S_t(i)$$

• We can also derive a transition probability

$$P(q_{t} = s_{i}, q_{t+1} = s_{j} | o_{1}, \dots, o_{T}) = S_{t}(i, j)$$

$$P(q_{t} = s_{i}, q_{t+1} = s_{j} | o_{1}, \dots, o_{n}) =$$

$$= \frac{\alpha_{t}(i)P(q_{t+1} = s_{j} | q_{t} = s_{i})P(o_{t+1} | q_{t+1} = s_{j})\beta_{t+1}(j)}{\sum_{j} \alpha_{t}(j)\beta_{t}(j)} = S_{t}(i, j)$$

E step

• Compute $S_t(i)$ and $S_t(i,j)$ for all t, i, and j ($1 \le t \le n$, $1 \le i \le k$, $2 \le j \le k$)

$$P(q_{t} = s_{i} | O_{1}, \dots, O_{T}) = S_{t}(i)$$

$$P(q_{t} = s_{i}, q_{t+1} = s_{j} | O_{1}, \dots, O_{T}) = S_{t}(i, j)$$

M step (1)

Compute transition probabilities:

$$a_{i,j} = \frac{\hat{n}(i,j)}{\sum_{k} \hat{n}(i,k)}$$

where

$$\hat{n}(i,j) = \sum_{t} S_{t}(i,j)$$

M step (2)

Compute emission probabilities (here we assume a multinomial distribution): define:

$$B_k(j) = \sum_{t \mid o_t = j} S_t(k)$$

then

$$b_k(j) = \frac{B_k(j)}{\sum_i B_k(i)}$$

Complete EM algorithm for learning the parameters of HMMs (Baum-Welch)

- Inputs: 1 .Observations O₁ ... O_T
 - 2. Number of states, model
- 1. Guess initial transition and emission parameters
- 2. Compute E step: $S_t(i)$ and $S_t(i,j)$
- 3. Compute M step

No

- 4. Convergence?
- 5. Output complete model

We did not discuss initial probability estimation. These can be deduced from multiple sets of observation (for example, several recorded customers for speech processing)

What you should know

- Why HMMs? Which applications are suitable?
- Inference in HMMs
 - No observations
 - Probability of next state w. observations
 - Maximum scoring path (Viterbi)

References

 Big thanks to Prof. Ziv Bar-Joseph @ CMU for allowing me to reuse some of his slides