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What’s wrong with Bayesian networks

• Bayesian networks are very useful for modeling joint 
distributions 

• But they have their limitations: 
           - Cannot account for temporal / sequence models 
           - DAG’s (no self or any other loops)  

This is not a valid 
Bayesian network!



Hidden Markov models
• Model a set of observation with a set of hidden states 
    - Robot movement 
      Observations: range sensor, visual sensor 
      Hidden states: location (on a map) 
    - Speech processing 
      Observations: sound signals 
      Hidden states: parts of speech, words 
    - Biology 
      Observations: DNA base pairs 
      Hidden states: Genes

Hidden Markov models
• Model a set of observation with a set of hidden states 
    - Robot movement 
      Observations: range sensor, visual sensor 
      Hidden states: location (on a map) 
    - Speech processing 
      Observations: sound signals 
      Hidden states: parts of speech, words 
    - Biology 
      Observations: DNA base pairs 
      Hidden states: Genes

1. Hidden states generate observations 

2. Hidden states transition to other hidden states 



Examples: Speech processing

Example: Biological data

ATGAAGCTACTGTCTTCTATCGAACAAGCATGCGA
TATTTGCCGACTTAAAAAGCTCAAG 
TGCTCCAAAGAAAAACCGAAGTGCGCCAAGTGTC
TGAAGAACAACTGGGAGTGTCGCTAC 
TCTCCCAAAACCAAAAGGTCTCCGCTGACTAGGG
CACATCTGACAGAAGTGGAATCAAGG 
CTAGAAAGACTGGAACAGCTATTTCTACTGATTTTT
CCTCGAGAAGACCTTGACATGATT





Example: Gambling on dice outcome

• Two dices, both skewed (output model). 
• Can either stay with the same dice or switch to the second 

dice (transition mode). 
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A Hidden Markov model
• A set of states {s1 … sn} 
    - In  each time point we are in exactly one of these states 

denoted by qt 

• Πi, the probability that we start at state si 

• A transition probability model, P(qt = si | qt-1 = sj) 
• A set of possible outputs Σ
   - At time t we emit a symbol σ∈Σ
• An emission probability model, p(ot = σ | si)
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The Markov property
• A set of states {s1 … sn} 
    - In  each time point we are in exactly one of these states 

denoted by qt 

• Πi, the probability that we start at state si 

• A transition probability model, P(qt = si | qt-1 = sj) 
• A set of possible outputs Σ
   - In time point t we emit a symbol ot∈Σ

• An emission probability model, p(ot | si)
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An important aspect of this definitions is the Markov property:  
qt+1 is conditionally independent of qt-1 (and any earlier time 
points) given qt 

More formally P(qt+1 = si | qt = sj) = P(qt+1 = si | qt = sj ,qt-1 = sj) 

 

What can we ask when using a HMM?

A few examples: 
• “What dice is currently being used?” 
• “What is the probability of a 6 in the next role?” 
• “What is the probability of 6 in any of the next 3 roles?”
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Inference in HMMs
• Computing P(Q) and P(qt = si) 
    - If we cannot look at observations 
• Computing P(Q | O) and P(qt = si |O) 
    - When we have observation and care about the last state 

only 
• Computing argmaxQP(Q | O) 
    - When we care about the entire path

What dice is currently being used?

• We played t rounds so far 
• We want to determine P(qt = A) 
• Lets assume for now that we cannot observe any outputs 

(we are blind folded) 
• How can we compute this?
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P(qt = A)?
• Simple answer: 
    Lets determine P(Q) where Q is any path that ends in A 
    Q = q1, … qt-1, A 
    P(Q) = P(q1, … qt-1, A) = P(A | q1, … qt-1) P(q1, … qt-1) = 

P(A | qt-1) P(q1, … qt-1) = … = P(A | qt-1) … P(q2 | q1) P(q1)
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Markov property!

Initial probability

P(qt = A)?
• Simple answer: 
    1. Lets determine P(Q) where Q is any path that ends in A 
    Q = q1, … qt-1, A 
    P(Q) = P(q1, … qt-1, A) = P(A | q1, … qt-1) P(q1, … qt-1) = P(A 

| qt-1) P(q1, … qt-1) = … = P(A | qt-1) … P(q2 | q1) P(q1) 

   2. P(qt = A) = ΣP(Q)
where the sum is over all sets of t 
states that end in A



P(qt = A)?
• Simple answer: 
    1. Lets determine P(Q) where Q is any path that ends in A 
    Q = q1, … qt-1, A 
    P(Q) = P(q1, … qt-1, A) = P(A | q1, … qt-1) P(q1, … qt-1) = P(A 

| qt-1) P(q1, … qt-1) = … = P(A | qt-1) … P(q2 | q1) P(q1) 

   2. P(qt = A) = ΣP(Q)
where the sum is over all sets of t 
sates that end in A

Q: How many sets Q 
are there? 

A: A lot! (2t-1) 

Not a feasible solution

P(qt = A), the smart way

• Lets define pt(i) as the probability of being in state i at time t: 
pt(i) = p(qt = si) 

• We can determine pt(i) by induction 

    1. p1(i) = Πi  
    2. pt(i) = ?



P(qt = A), the smart way

• Lets define pt(i) = probability state i at time t = p(qt = si) 

• We can determine pt(i) by induction 

    1. p1(i) = Πi  

    2. pt(i) = Σj p(qt = si | qt-1 = sj)pt-1(j) 

P(qt = A), the smart way

• Lets define pt(i) = probability state i at time t = p(qt = si) 

• We can determine pt(i) by induction 

    1. p1(i) = Πi  

    2. pt(i) = Σj p(qt = si | qt-1 = sj)pt-1(j) 

This type of computation is called 
dynamic programming 

Complexity: O(n2*t)

Time / 
state

t1 t2 t3

s1 .3

s2 .7

Number of states in our HMM



Inference in HMMs
• Computing P(Q) and P(qt = si) 

• Computing P(Q | O) and P(qt = si |O) 

• Computing argmaxQP(Q)

√

But what if we observe outputs?
• So far, we assumed that we could not observe the outputs 
• In reality, we almost always can. 
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v P(v |A) P(v |B)
1 .3 .1
2 .2 .1
3 .2 .1
4 .1 .2
5 .1 .2
6 .1 .3



But what if we observe outputs?
• So far, we assumed that we could not observe the outputs 
• In reality, we almost always can. 

v P(v |A) P(v |B)
1 .3 .1
2 .2 .1
3 .2 .1
4 .1 .2
5 .1 .2
6 .1 .3

Does observing the sequence  

5, 6, 4, 5, 6, 6 

Change our belief about the state?
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P(qt = A) when outputs are observed

• We want to compute P(qt = A | O1 … Ot) 
• For ease of writing we will use the following notations 

(commonly used in the literature) 
• aj,i = P(qt = si | qt-1 = sj) 

• bi(ot) = P(ot | si)
Transition 
probability

Emission 
probability



P(qt = A) when outputs are observed

• We want to compute P(qt = A | O1 … Ot) 
• Lets start with a simpler question. Given a sequence of 

states Q, what is P(Q | O1 … Ot) = P(Q | O)? 
    - It is pretty simple to move from P(Q) to P(qt = A )  
    - In some cases P(Q) is the more important question 
        - Speech processing 
        - NLP 

P(Q | O)
• We can use Bayes rule:
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OP
QPQOPOQP =

Easy, P(O | Q) = P(o1 | q1) P(o2 | q2) … P(ot | qt)



P(Q | O)
• We can use Bayes rule:

)(
)()|()|(

OP
QPQOPOQP =

Easy, P(Q) = P(q1) P(q2 | q1) … P(qt | qt-1)

P(Q | O)
• We can use Bayes rule:

)(
)()|()|(

OP
QPQOPOQP =

Hard!



P(O)
• What is the probability of seeing a set of observations:                                                                  

- An important question in it own rights, for example 
classification using two HMMs 

• Define αt(i) = P(o1, o2 …, ot ∧  qt = si) 

• αt(i) is the probability that we: 
           1. Observe o1, o2 …, ot  
           2. End up at state i

How do we compute αt (i)?
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Computing αt(i)
• α1(i) = P(o1 ∧  qt = i) = P(o1 | qt = si)ΠI

We must be at a state in time t

chain rule

Markov property



Example: Computing α3(B) 
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ΠA=0.7  
Πb=0.3

• We observed 2,3,6 
α1(A) = P(2 ∧  q1 = A) = P(2 | q1 = A)ΠA =.2*.7 = .14, α1(B) = .1*.3 = .03  

α2(A) = Σj=A,,BbA(3)aj,A α1( j)=.2*.8*.14+.2*.2*.03 = 0.0236, α2(B) = 0.0052 

α3(B) = Σj=A,,BbB(6)aj,B α2( j)=.3*.2*.0236+.3*.8*.0052 = 0.00264

Where we are
• We want to compute P(Q | O) 
• For this, we only need to compute P(O) 
• We know how to compute αt(i) 

From now its easy 
    αt(i) = P(o1, o2 …, ot ∧  qt = si) 
    so 
    P(O) = P(o1, o2 …, ot) = ΣiP(o1, o2 …, ot ∧  qt = si) = Σi αt(i) 
    note that 
    p(qt=si | o1, o2 …, ot ) =  

         

  

α t (i)
α t (j)

j
∑

P(A | B) = P(A ∧ B) / P(B)



Complexity
• How long does it take to compute P(Q | O)? 
• P(Q): O(n) 
• P(O|Q): O(n) 
• P(O): O(n2t)

Inference in HMMs
• Computing P(Q) and P(qt = si) 

• Computing P(Q | O) and P(qt = si |O) 

• Computing argmaxQP(Q)

√

√



Most probable path
• We are almost done … 
• One final question remains 
    How do we find the most probable path, that is Q* such 

that  
                     P(Q* | O) = argmaxQP(Q|O)? 

• This is an important path 
     - The words in speech processing 
     - The set of genes in the genome 
    - etc.

Example
• What is the most probable set of states leading to the 

sequence: 
                          1,2,2,5,6,5,1,2,3 ?
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Most probable path
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We will use the following definition: 

In other words we are interested in the most likely 
path from 1 to t that: 

1. Ends in Si     

2. Produces outputs O1 … Ot  
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Q: Given δt(i), how can we compute δt+1(i)? 

A: To get from δt(i) to δt+1(i) we need to 

1. Add an emission for time t+1 (Ot+1) 

2. Transition to state si 
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The Viterbi algorithm

  

  

δt+1(i) =max
q1…qt

p(q1…qt ∧qt+1 = si ∧O1...Ot+1)

=max
j
δt ( j )p(qt+1 = si |qt = sj )p(Ot+1 |qt+1 = si )

=max
j

δt ( j )aj ,ibi (Ot+1)

• Once again we use dynamic programming for 
solving δt(i) 

• Once we have δt(i), we can solve for our P(Q*|O) 

By: 

P(Q* | O) = argmaxQP(Q|O) = 

                  path defined by argmaxj  δt(j),  

Inference in HMMs
• Computing P(Q) and P(qt = si) 

• Computing P(Q | O) and P(qt = si |O) 

• Computing argmaxQP(Q)  
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Learning in HMMs

A Hidden Markov model
• A set of states {s1 … sn} 
    - In  each time point we are in exactly one of these states 

denoted by qt 

• Πi, the probability that we start at state si 

• A transition probability model, P(qt = si | qt-1 = sj) 
• A set of possible outputs Σ
   - At time t we emit a symbol σ∈Σ
• An emission probability model, p(ot = σ | si)
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Inference in HMMs
• Computing P(Q) and P(qt = si) 

• Computing P(Q | O) and P(qt = si |O) 

• Computing argmaxQP(Q)  

√
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Learning HMMs
• Until now we assumed that the emission and transition 

probabilities are known 
• This is usually not the case 
    - How is “AI” pronounced by different individuals? 
    - What is the probability of hearing “class” after “AI”? 
 

While we will discuss learning the transition and 
emission models, we will not discuss selecting the 
states. 

This is usually a function of domain knowledge. 



Example
• Assume the model below 
• We also observe the following sequence: 
                          1,2,2,5,6,5,1,2,3,3,5,3,3,2 …..  
• How can we determine the initial, transition and emission 

probabilities?

A B

Initial probabilities
Q: assume we can observe the following sets of states: 
                 AAABBAA 
                   AABBBBB 
                   BAABBAB 
     how can we learn the initial probabilities? 
A: Maximum likelihood estimation 
    Find the initial probabilities π such that 
    

A B
πA = #A/ (#A+#B)
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k is the number of 
sequences avialable for 
training



Transition probabilities
Q: assume we can observe the set of states: 
                   AAABBAAAABBBBBAAAABBBB 
     how can we learn the transition probabilities? 
A: Maximum likelihood estimation 
    Find a transition matrix a such that 
    

aA,B = #AB / (#AB+#AA)

€ 

a* = argmaxa π
k
∏ (q1) p(qt |qt−1)

t= 2

T

∏ ⇒

a* = argmaxa p(qt |qt−1)
t= 2

T

∏

A B

remember that we defined 
ai,j=p(qt=sj|qt-1=si)

Emission probabilities
Q: assume we can observe the set of states: 
                   A A A B B A A A A B B B B B A A 
     and the set of dice values 
                   1 2 3  5  6  3 2 1  1 3 4 5  6 5  2 3 
     how can we learn the emission probabilities? 
A: Maximum likelihood estimation 
    

A B

bA(5)= #A5 / (#A1+#A2 + … +#A6)



Learning HMMs
• In most case we do not know what states generated each 

of the outputs (fully unsupervised) 
• … but had we known, it would be very easy to determine 

an emission and transition model! 
• On the other hand, if we had such a model we could 

determine the set of states using the inference methods 
we discussed

Expectation Maximization (EM)
• Appropriate for problems with ‘missing values’ for the 

variables. 
• For example, in HMMs we usually do not observe the 

states 
    



Expectation Maximization (EM): Quick 
reminder

• Two steps 
• E step: Fill in  the expected values for the missing variables 
• M step: Regular maximum likelihood estimation (MLE) using the 

values computed in the E step and the values of the other variables 
• Guaranteed to converge (though only to a local minima).

M stepE step

expected values for 
(missing) variables

parameters

Forward-Backward 
• We already defined a forward looking variable 

• We also need to define a backward looking variable  

€ 

α t (i) = P(O1…Ot ∧qt = si)

)|,,()( 1 isOOPi tTtt == + !β



Forward-Backward 
• We already defined a forward looking variable 

• We also need to define a backward looking variable  
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α t (i) = P(O1…Ot ∧qt = si)
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Forward-Backward 
• We already defined a forward looking variable 

• We also need to define a backward looking variable 

• Using these two definitions we can show

  

€ 

α t (i) = P(O1…Ot ∧qt = si)
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State and transition probabilities
• Probability of a state 

• We can also derive a transition probability 
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P(qt = si,qt+1 = s j |o1,!,on ) =

=
α t (i)P(qt+1 = s j |qt = si)P(ot+1 |qt+1 = s j )βt+1( j)

α t ( j)βt ( j)
j
∑

=
def

St (i, j)

E step
• Compute St(i) and St(i,j) for all t, i, and j (1≤t≤n, 1≤i≤k, 

2≤j≤k)
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M step (1)
Compute transition probabilities: 

     where 

∑
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M step (2)
Compute emission probabilities (here we assume a 

multinomial distribution): 
     define: 

     then 
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Complete EM algorithm for learning the 
parameters of HMMs (Baum-Welch)

• Inputs: 1 .Observations O1 … OT 

                          2. Number of states, model 
1. Guess initial transition and emission parameters 
2. Compute E step: St(i) and St(i,j) 

3. Compute M step  
4. Convergence? 
5. Output complete model

No

We did not discuss initial probability estimation. These can 
be deduced from multiple sets of observation (for example, 
several recorded customers for speech processing)

Matching states
Insertion states

Deletion states

No of matching states = average sequence length in the family 
PFAM Database - of Protein families 
 (http://pfam.wustl.edu) 

Building HMMs–Topology



A HMM model for a DNA motif alignments, The transitions are 
shown with arrows whose thickness indicate their probability. In 
each state, the histogram shows the probabilities of the four 
bases.

ACA   - - -  ATG      
TCA  ACT  ATC 
ACA  C - -  AGC 
AGA   - - -  ATC 
ACC  G - -  ATC

Building – from an existing alignment

Transition probabilities
Output Probabilities

insertion

What you should know
• Why HMMs? Which applications are suitable? 
• Inference in HMMs 
    - No observations 
    - Probability of next state w. observations 
    - Maximum scoring path (Viterbi)
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