UVA CS 6316
– Fall 2015 Graduate: Machine Learning

Lecture 6: Linear Regression Model with Regularizations

Dr. Yanjun Qi

University of Virginia
Department of Computer Science

9/30/15

Where we are? ➔
Five major sections of this course

- Regression (supervised)
- Classification (supervised)
- Unsupervised models
- Learning theory
- Graphical models

9/30/15
Today ➔
Regression (supervised)

- Four ways to train / perform optimization for linear regression models
 - Normal Equation
 - Gradient Descent (GD)
 - Stochastic GD
 - Newton’s method

- Supervised regression models
 - Linear regression (LR)
 - LR with non-linear basis functions
 - Locally weighted LR
 - LR with Regularizations

Today

- Linear Regression Model with Regularizations
 - Ridge Regression
 - Lasso Regression
 - Elastic net
A norm of a vector $\|x\|$ is informally a measure of the “length” of the vector.

$$\|x\|_p = \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p}$$

- Common norms: L_1, L_2 (Euclidean)
 $$\|x\|_1 = \sum_{i=1}^{n} |x_i|$$
 $$\|x\|_2 = \sqrt{\sum_{i=1}^{n} x_i^2}$$
- L_{∞}
 $$\|x\|_{\infty} = \max_i |x_i|$$

Review: Vector Norm (L2, when $p=2$)

$$\left\| \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\|_2 = \sqrt{1^2 + 2^2} = \sqrt{5}$$
Review: Normal equation for LR

- Write the cost function in matrix form:
 \[J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (x_i^T \theta - y_i)^2 \]
 \[= \frac{1}{2} (X\theta - \bar{y})^T (X\theta - \bar{y}) \]
 \[= \frac{1}{2} (\theta^T X^T X \theta - \theta^T X^T \bar{y} - \bar{y}^T X \theta + \bar{y}^T \bar{y}) \]

To minimize \(J(\theta) \), take derivative and set to zero:

\[\Rightarrow \quad X^T X \theta = X^T \bar{y} \]

Assume that \(X^T X \) is invertible

\[\theta^* = \left(X^T X \right)^{-1} X^T \bar{y} \]

Comments on the normal equation

- In most situations of practical interest, the number of data points \(N \) is larger than the dimensionality \(p \) of the input space and the matrix \(X \) is of full column rank. If this condition holds, then it is easy to verify that \(X^T X \) is necessarily invertible.

\[n > p \quad \text{rank}(X) \leq \min(n,p) \]

- The assumption that \(X^T X \) is invertible implies that it is positive definite (\(\Rightarrow \) SSE convex), thus the critical point we have found is a minimum.

- What if \(X \) has less than full column rank? \(\Rightarrow \) regularization (later).
Ridge Regression / L2

• If not invertible, a solution is to add a small element to diagonal

\[Y = \beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p \]

Basic Model,

\[\beta^* = \left(X^T X + \lambda I \right)^{-1} X^T \bar{y} \]

• The ridge estimator is solution from

\[\hat{\beta}^{ridge} = \arg\min(y - X\beta)^T(y - X\beta) + \lambda \beta^T \beta \]

to minimize, take derivative and set to zero

• Equivalently

\[\hat{\beta}^{ridge} = \arg\min(y - X\beta)^T(y - X\beta) \]

subject to \[\sum \beta_j^2 \leq s \]

Objective Function’s Contour lines from Ridge Regression
(1) Ridge Regression / L2

- The parameter $\lambda > 0$ penalizes β_j proportional to its size β_j^2
- Solution is $\hat{\beta}_\lambda = (X^T X + \lambda I)^{-1} X^T y$
- where I is the identity matrix.
- Note $\lambda = 0$ gives the least squares estimator;
- if $\lambda \to \infty$, then $\hat{\beta} \to 0$

Today

- Linear Regression Model with Regularizations
 - Ridge Regression
 - Lasso Regression
 - Elastic net
(2) **Lasso (least absolute shrinkage and selection operator) / L1**

- The lasso is a shrinkage method like ridge, but acts in a nonlinear manner on the outcome y.
- The lasso is defined by

\[
\hat{\beta}_{lasso} = \arg\min (y - X\beta)^T (y - X\beta)
\text{subject to } \sum |\beta_j| \leq s
\]

Lasso (least absolute shrinkage and selection operator)

- Notice that ridge penalty \(\sum \beta_j^2\) is replaced by \(\sum |\beta_j|\)

- Due to the nature of the constraint, if tuning parameter is chosen small enough, then the lasso will set some coefficients exactly to zero.
Lasso (least absolute shrinkage and selection)

\[
\hat{\beta}_{\text{lasso}} = \arg \min_{\beta} \left\{ \frac{1}{2} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{P} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{P} |\beta_j| \right\}.
\]

- Suppose in 2 dimension
- \(\beta = (\beta_1, \beta_2) \)
- \(|\beta_1| + |\beta_2| = \text{const}\)
- \(|\beta_1| + |-\beta_2| = \text{const}\)
- \(|-\beta_1| + |\beta_2| = \text{const}\)
- \(|-\beta_1| + |-\beta_2| = \text{const}\)

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions \(|\beta_1| + |\beta_2| \leq t\) and \(\beta_1^2 + \beta_2^2 \leq t^2\), respectively, while the red ellipses are the contours of the least squares error function.
Today

- Linear Regression Model with Regularizations
 - Ridge Regression
 - Lasso Regression
 - Elastic net

(3) Hybrid of Ridge and Lasso

Elastic Net regularization

$$\hat{\beta} = \arg \min_\beta \| y - X \beta \|^2 + \lambda_2 \| \beta \|^2 + \left(\lambda_1 \| \beta \|_1 \right)$$

- The ℓ_1 part of the penalty generates a sparse model.
- The quadratic part of the penalty
 - Removes the limitation on the number of selected variables;
 - Encourages grouping effect;
 - Stabilizes the ℓ_1 regularization path.
Movie Reviews and Revenues: An Experiment in Text Regression, Proceedings of HLT ’10 Human Language Technologies:

III. Model

- Linear regression with the elastic net (Zou and Hastie, 2005)

\[
\hat{\theta} = \arg\min_{\theta=(\beta_0, \beta)} \frac{1}{2n} \sum_{i=1}^{n} \left(y_i - (\beta_0 + x_i^T \beta) \right)^2 + \lambda P(\beta)
\]

\[
P(\beta) = \sum_{j=1}^{p} \left(\frac{1}{2} (1 - \alpha) \beta_j^2 + \alpha |\beta_j| \right)
\]

Use linear regression to directly predict the opening weekend gross earnings, denoted \(y \), based on features \(x \) extracted from the movie metadata and/or the text of the reviews.

More: A family of shrinkage estimators

\[
\beta = \arg\min_{\beta} \sum_{i=1}^{N} (y_i - x_i^T \beta)^2
\]

subject to \(\sum |\beta_j|^q \leq s \)

• for \(q \geq 0 \), contours of constant value of \(\sum_j |\beta_j|^q \) are shown for the case of two inputs.

![Contours](image)

FIGURE 3.12. Contours of constant value of \(\sum_j |\beta_j|^q \) for given values of \(q \).
Regularized multivariate linear regression

Task
- Representation
- Score Function
- Search/Optimization
- Models, Parameters

Regression
- \(Y = \text{Weighted linear sum of } X \text{'s} \)
- Least-squares + Regularization
- Linear algebra
- Regression coefficients (constrained)

Summary:
Regularized multivariate linear regression

- **Model:**
 \[\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \cdots + \hat{\beta}_p x_p \]

- **LR estimation:**
 \[\min SSE = \sum (Y - \hat{Y})^2 \]

- **LASSO estimation:**
 \[\min SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 + \sum_{j=1}^{p} |\beta_j| \]

- **Ridge regression estimation:**
 \[\min SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 + \sum_{j=1}^{p} \beta_j^2 \]

Error on data + **Regularization**
Today

- Linear Regression Model with Regularizations
 - Ridge Regression
 - Lasso Regression
 - Extra: how to perform training
 - Elastic net
due to the nature of L_1 norm, the viable solutions are limited to the corners, which are on one axis only - in the above case x_1. Value of $x_2 = 0$. This means that the solution has eliminated the role of x_2 leading to sparsity.

Regularization path of a Ridge Regression

Regularization path of a Lasso Estimator

FIGURE 3.10. Profiles of lasso coefficients, as the tuning parameter \(\lambda \) is varied. Coefficients are plotted versus \(s = t/\sum |\beta_j| \). A vertical line is drawn at \(s = 0.35 \), the value chosen by cross-validation. Compare Figure 3.8 on page 65; the lasso profiles hit zero, while those for ridge do not. The profiles are piece-wise linear, and so are computed only at the points displayed; see Section 3.4.4 for details.
How to Learn Parameter for Lasso

\[\hat{\beta}_{lasso} = \text{arg min} (y - X\beta)^T (y - X\beta) \]
subject to \(\sum |\beta_j| \leq s \)

- \(\ell_1 \)-norm is non differentiable!
 - cannot compute the gradient of the absolute value
 \[\Rightarrow \text{Directional derivatives (or subgradient)} \]

\[\text{RSS Loss} (\lambda) = \sum_{i=1}^{n} (y_i - X_i \beta)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \]

- \(\beta = (\beta_1, \beta_2, \beta_3) \)
 \[\Rightarrow \beta_{-2} = (\beta_1, \beta_3) \]

- \[\frac{\partial}{\partial \beta_j} = \sum_{i=1}^{n} 2(y_i - \hat{y}_i) \hat{y}_i' \beta_j \]
\[+ \lambda \frac{\partial}{\partial \beta_j} |\beta_j| \]
\[
\begin{align*}
\frac{\partial}{\partial \beta_j} &= 2 \sum_{i=1}^{n} x_{ij} \beta_j - 2 \sum_{i=1}^{n} (y_i - x_{ij} \beta_j) \frac{1}{a_j} - \frac{n \beta_j}{\partial \beta_j} |\beta_j| + \lambda \frac{\partial}{\partial \beta_j} |\beta_j| \\
&= a_j \beta_j - C_j + \lambda \frac{\partial}{\partial \beta_j} |\beta_j| \overset{\text{set to } 0}{=} 0
\end{align*}
\]

\[y = f(x) = |x|\]

\[\begin{align*}
9/30/15 & & \text{31}
\end{align*}\]
Coordinate descent based Learning of Lasso

Coordinate descent (WIKI): one does line search along one coordinate direction at the current point in each iteration. One uses different coordinate directions cyclically throughout the procedure.

LARS: Least Angle Regression (state-of-art LASSO solver algorithm)

1. **Initialize** β
2. **Repeat** until converged
3. **For** $j = 1, 2, \ldots, p$ **do**

 $a_j = \sum_{i=1}^{n} x_{ij}^2$

 $e_j = \sum_{i=1}^{n} x_{ij} (y_i - x_i^T \beta + x_i j) $

 if $e_j < -\lambda$

 $\beta_j = (e_j + \lambda) / a_j$

 else if $e_j > \lambda$

 $\beta_j = (e_j - \lambda) / a_j$

 else

 $\beta_j = 0$

Coordinate descent (WIKI) ➔ one does line search along one coordinate direction at the current point in each iteration. One uses different coordinate directions cyclically throughout the procedure.
Lasso when p>n

• Prediction **accuracy and model interpretation** are two important aspects of regression models.

• LASSO does **shrinkage and variable selection** simultaneously for better prediction and model interpretation.

Disadvantage:
- In p>n case, lasso selects at most n variable before it saturates
- If there is a group of variables among which the pairwise correlations are very high, then lasso select one from the group

Today

- **Linear Regression Model with Regularizations**
 - **Ridge Regression**
 - **Lasso Regression**
 - **Extra:** how to perform training
 - **Elastic net**
 - **Extra:** how to perform training
(3) Elastic Net: Hybrid of Ridge and Lasso

Elastic Net regularization

\[
\hat{\beta} = \arg\min_{\beta} \| y - X\beta \|^2 + \lambda_2 \| \beta \|^2 + \lambda_1 \| \beta \|_1
\]

- The ℓ_1 part of the penalty generates a sparse model.
- The quadratic part of the penalty
 - Removes the limitation on the number of selected variables;
 - Encourages grouping effect;
 - Stabilizes the ℓ_1 regularization path.

Naïve elastic net

- For any non negative fixed λ_1 and λ_2, naïve elastic net criterion:
 \[
 L(\lambda_1, \lambda_2, \beta) = |y - X\beta|^2 + \lambda_2 |\beta|^2 + \lambda_1 |\beta|_1.
 \]
 \[
 |\beta|^2 = \sum_{j=1}^p \beta_j^2, \quad |\beta|_1 = \sum_{j=1}^p |\beta_j|.
 \]
- The naïve elastic net estimator is the minimizer of equation
 \[
 \hat{\beta} = \arg\min_{\beta} \{ L(\lambda_1, \lambda_2, \beta) \}.
 \]

- Let $\alpha = \lambda_2 / (\lambda_1 + \lambda_2)$
 \[
 \hat{\beta} = \arg\min_{\beta} |y - X\beta|^2, \quad \text{subject to } (1 - \alpha) |\beta|_1 + \alpha |\beta|^2 < t \text{ for some } t.
 \]
Geometry of elastic net

2-dimensional illustration $\alpha = 0.5$

Connecting LASSO and Elastic net

- Lemma: Given (λ_1, λ_2), define an artificial data set (y^*, X^*)

Let $\gamma = \lambda_1 / \sqrt{1 + \lambda_2}$ and $\beta^* = \sqrt{(1 + \lambda_2)} \beta$. Then the naive elastic net criterion can be written as

$$L(\gamma, \beta) = L(\gamma, \beta^*) = \|y^* - X^* \beta^*\|_2^2 + \gamma \|\beta^*\|_1 \Rightarrow \beta^*$$

- Let,

$$\hat{\beta}^* = \arg \min_{\beta^*} L\{(\gamma, \beta^*)\};$$

- Then

$$\hat{\beta} = \frac{1}{\sqrt{1 + \lambda_2}} \hat{\beta}^*_{\text{lasso augmented}}$$
Advantage of Elastic net

- Native Elastic set can be converted to lasso with augmented data
 \[\Rightarrow X_{n \times p} \]

- In the augmented formulation,
 - sample size \(n+p \) and \(X^* \) has rank \(p \)
 - \(\Rightarrow X_{(n+p) \times p} \)
 - can potentially select all the predictors

- Naïve elastic net can perform automatic variable selection like lasso

Grouping Effect of Naïve Elastic net

Theorem 1. Given data \((y, X)\) and parameters \((\lambda_1, \lambda_2)\), the response \(y\) is centred and the predictors \(X\) are standardized. Let \(\hat{\beta}(\lambda_1, \lambda_2)\) be the naïve elastic net estimate. Suppose that \(\hat{\beta}_i(\lambda_1, \lambda_2) \neq \hat{\beta}_j(\lambda_1, \lambda_2) > 0\). Define

\[
D_{\lambda_1, \lambda_2}(i, j) = \frac{1}{|y|} |\hat{\beta}_i(\lambda_1, \lambda_2) - \hat{\beta}_j(\lambda_1, \lambda_2)|;
\]

then

\[
D_{\lambda_1, \lambda_2}(i, j) \leq \frac{1}{\lambda_2 \sqrt{2(1 - \rho)}},
\]

where \(\rho = x_i^T x_j\), the sample correlation.

- \(D\) is the difference between the coefficient paths of predictors \(i\) and \(j\).
- If \(x_i\) and \(x_j\) are high correlated \(\rho=1\), this theorem provides a quantitative description for the grouping effect of Naive Elastic Net.
Elastic Net: Re-scaling of Naive Elastic Net

- **Deficiency of the Naive Elastic Net:** Empirical evidence shows the Naive Elastic Net does not perform satisfactorily. The reason is that there are two shrinkage procedures (Ridge and LASSO) in it. Double shrinkage introduces unnecessary bias.

- Re-scaling of Naive Elastic Net gives better performance, yielding the Elastic Net solution:

\[
\hat{\beta}(\text{ENet}) = (1 + \lambda_2) \cdot \hat{\beta}(\text{Naive ENet})
\]

- Reason: Undo shrinkage.

Theorem 2. Given data \((y, X)\) and \((\lambda_1, \lambda_2)\), then the elastic net estimates \(\hat{\beta}\) are given by

\[
\hat{\beta} = \arg\min_\beta \beta^T \left(\frac{X^TX + \lambda_2 I}{1 + \lambda_2} \right) \beta - 2y^T X \beta + \lambda_1 |\beta|_1.
\]

(14)

It is easy to see that

\[
\hat{\beta}(\text{lasso}) = \arg\min_\beta \beta^T (X^TX) \beta - 2y^T X \beta + \lambda_1 |\beta|_1.
\]

(15)

Hence theorem 2 interprets the elastic net as a stabilized version of the lasso. Note that \(\hat{\Sigma} = X^TX\) is a sample version of the correlation matrix \(\Sigma\) and

\[
\frac{X^TX + \lambda_2 I}{1 + \lambda_2} = (1 - \gamma) \hat{\Sigma} + \gamma I
\]

- Rescaling after the elastic net penalization is mathematically equivalent to replacing \(\Sigma\) with its shrunken version in the lasso.
Computation of Elastic Net

- First solve the Naive Elastic Net problem, then rescale it.
- For fixed λ_2, the Naive Elastic Net problem is equivalent to a LASSO problem, with a huge design matrix if $p >> n$
- LASSO already has an efficient solver called LARS (Least Angle Regression).

Today Recap

- Linear Regression Model with Regularizations
 - Ridge Regression
 - Lasso Regression
 - Extra: how to perform training
 - Elastic net
 - Extra: how to perform training
Extra: Shrinkage Bias Term?

- If the data is not centered, there exists bias term

\[
\hat{\beta}^{\text{lasso}} = \arg\min_{\beta} \left\{ \frac{1}{2} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}
\]

- We normally assume we centered x and y. If this is true, no need to have bias term, e.g., for lasso,

\[
\hat{\beta} = \arg\min_{\beta} \| y - X\beta \|^2 + \lambda_1 \| \beta \|_1
\]

References

- Big thanks to Prof. Eric Xing @ CMU for allowing me to reuse some of his slides
- Prof. Nando de Freitas’s tutorial slide
- Regularization and variable selection via the elastic net, Hui Zou and Trevor Hastie, Stanford University, USA