Dr. Yanjun Qi / UVA CS 6316 / f16

UVA CS 6316/4501

B — Fall 2016 N

Machine Learning

Lecture 10: Supervised Classification
with Support Vector Machine

Dr. Yanjun Qi

University of Virginia

Department of
Computer Science

10/13/16 1



Dr. Yanjun Qi / UVA CS 6316 / f16

Where are we ? =
Five major sections of this course

oy ond sed _‘
[ Classification (supervised)
J Unsupervised models

 Learning theory
1 Graphical models

10/13/16
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Today

J Supervised Classification —‘
1 Support Vector Machine (SVM)

10/13/16 3
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e.g. SUPERVISED LEARNING

* Find function to map input space X to

output space Y f:X —Y _‘

* So that the difference between y and f(x)
of each example x 1s small.

e.g.

X | | believe that this book is
not at all helpful since it
does not explain thoroughly > -1
the material . it just provides
the reader with tables and
calculations that sometimes
are not easily understood ...

OutputY: {1/Yes, -1/No}
e.g. Is this a positive product review

Input X : e.g. a piece of English text
10/13/16 4
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X, X, X, Y
| A Dataset

for cIassiﬁcationW

_—-—-— [ —

fiXi—Y

Output Class:
categorical
variable

« Data/points/instances/examples/samples/records: [ rows ]

* Features/attributes/dimensions/independent variables/covariates/
predictors/regressors: [ columns, except the last]

» Target/outcome/response/label/dependent variable: special
column to be predicted [ last column ]

10/13/16



e.o. SUPERVISED Linear Binary Classitier
X

A

f Y

2
O Wzt 9 f(x,w,b) = sign(w” x + b)
wx+b>0d" )(\“ ﬁ‘}j <
W = . oqresom
® = N /’4(/‘2’/ I

» denotes +1 point
Cﬁs‘: B denotes -1 point

e ? denotes future
! points

10/13/16 Courtesy slide from Prof. Andrew Moore’s tutorfal
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Application 1: Classifying Galaxies

Courtesy: http://aps.umn.edu

Early Class: Attributes: \
e Stages of Formation e Image features,

e Characteristics of light
waves received, etc.

Intermediate

.

Data Size:
e 72 million stars, 20 million galaxies
e Object Catalog: 9 GB

e Image Database: 150 GB

From [Berry & Linoff] Data Mining Techniques, 1997

10/13/16 7
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Application 2: Cancer Classification
using gene expression

-

p genes’ quantities in blood cell

N patient
blood X
samples

10/13/16 8



Google

,\(4 News

op Stories
N ews Nnear you
—VOrid

= U.S.

p—Business

— Technology

iPhone

Microsoft Windows
Minecraft

Safety

IBM

General Motors
Facebook

Microsoft Corporation
Tablet computers
Tor

= Entertainment
ey, Sports

e Science

\

S—
10/13/38°M"aNt

Health
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Application 3: —

Text Documents, e.g. Google News

H Search News H Search the Web l

Search and browse 4,500 news sources updated continuously.

Technology

GameSpot

N

New York Daily

Microsoft Keyboard Works With Windows, i0S, and A
Android

PC Magazine - 53 minutes ago

With a handful of new peripherals, Microsoft is revamping older products and
embracing the new mobile reality. Oshares. Microsoft Universal Mobile Keyboard.

Microsoft announces new line of accessories for Related
Windows, Android, iOS, and ... BetaNews Microsoft Corporation »
Microsoft's new Universal Mobile Keyboard works Computer keyboards »

with iOS, Android and ... ZDNet Microsoft Windows »

Trending on Google+: Microsoft's Universal Bluetooth Keyboard Will Work With
Windows, Android, And ... Android Police

Opinion: Microsoft's New Universal Mobile Keyboard Has Android and iOS in
Mind Gizmodo

BetaNews PhoneDog SlashGear Hot Har

are

Microsoft/Minecraft Deal Gets a Skit On Conan O'Brien's Show

1 hour ago

During Monday's episode of Conan, the comedian aired a segment about how the inventor of
Minecraft would be celebrating the massive pay day.

Apple's iOS 8 available Wednesday

News - 15 minutes ago

You don't need to order an iPhone 6 to feel like you've gotten a brand new phone. Apple's
much-anticipated operating system update, iOS 8, will be available for download Wednesday.

IBM Watson Data Analysis Service Revealed



Text Document Repczggﬁntation

e Each document becomes a term' vector,
— each term is an (attribute) of the vector,

— the value of each describes the number of times
the corresponding term occurs in the document.

L)c Wz Ce wo
4 ’
» Bag of ‘words . e = | @
o] o o) o o © = 3 L
Q 0 |< S| o o = S5 = = ® &
3 S ® = @ o) - % S
Document 1 3 0 5 0 2 6 0 2 0 2
Document 2 0 7 0 2 1 0 0 3 0 0
Document 3 0 1 0 0 1 2 2 0 3 0




Text Categorization

{/Mﬂe}]‘
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r—l'-"re given categories and labeled documeﬁw
examples (Categories may form hierarchy)

. Classify new documents
tan rd supervised learning problem

3

L /J

Categorization ‘
System

O(M}
iq

10/13/16
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Education
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Examples of Text Categorization

* News article classification
 Meta-data annotation

* Automatic Email sorting

* Web page classification

12
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Application 4: — Objective recognition / Image
Labeling ( Label Images into predefined classes )
A

Motorbikes Airplanes Faces Cars (Side) Cars (Rear) Spotted Cats Background

10/13/16
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Image Representation for
— Objective recognition

* Image representation =» bag of “visual words”_‘

_\4§w1 .
Object —— Bag of ‘words’

@ An object image:
histogram of visual
vocabulary — a numerical
vector of D dimensions.

10/13/16
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Application 5: — Audio Classification

* Real-life applications:

— Customer service phone routing

— Voice recognition software

10/13/16 17



Music Information Retrieval Systems
e.g., Automatic Music Classification

 Many areas of research in music information
retrieval (MIR) involve using computers to classify

music in various ways

— Genre/or style classification

— d classification

— Performer o@idenﬁﬁcaﬁon

— Music recommendation

—eneration

~dictior
—c transcription

— etc.
e Such areas often share similar central procedures




Music Information Retrieval Systems
e.g., Automatic Music Classification

Musical data collection / Basic Classification Tasks \
— The instances (basic entities)

to classify M‘is‘ic
— Audio recordings, scores, )
cultural data, etc. Musical Data Metadata
, Collection “1 Analysis
Feature extraction
— Features represent
characteristic information - —~* Metadata
Sbout irstances Feature Extraction |
— Must provide sufficient
information to segment
instances among Classes y .f ----------- -v ------------ .
(categories) Machine Learning L Classifier
. . i Trainin
Machine learning S 8

— Algorithms (“classifiers” or : L :
“learners”) learn to associate Classifications
feature patterns of instances
with their classes




Audio, Types of features

Low-level

— Associated with signal
processing and basic auditory
perception

— e.g. spectral flux or RMS

— Usually not intuitively musical

High-level
— Musical abstractions

— e.g. meter or pitch class
distributions

Cultural

— Sociocultural information
outside the scope of auditory
or musical content

— e.g. playlist co-occurrence or
purchase correlations

/ Feature Extraction \

Low-Level
Features

High-Level
Features

Cultural
Features
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Where are we ? =»

Three major sections for classification

 We can divide the Iar%e variety of classification _‘
approaches into roughly three major types

E> 1. Discriminative

- directly estimate a decision rule/boundary
- e.g., support vector machine, decision tree, logistic regression

2. Generative:
- build a generative statistical model
- e.g., Bayesian networks, Naive Bayes classifier

3. Instance based classifiers

- Use observation directly (no models)
- e.g. K nearest neighbors

10/13/16 21
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conference on Machine learning

A study comparing Classifiers

An Empirical Comparison of Supervised Learning Algorithms

Rich Caruana
Alexandru Niculescu-Mizil

CARUANAQCS.CORNELL.EDU
ALEXNQ@QCS.CORNELL.EDU

Department of Computer Science, Cornell University, Ithaca, NY 14853 USA

Abstract

A number of supervised learning methods
have been introduced in the last decade. Un-
fortunately, the last comprehensive empiri-
cal evaluation of supervised learning was the
Statlog Project in the early 90’s. We present
a large-scale empirical comparison between
ten supervised learning methods: SVMs,
neural nets, logistic regression, naive bayes,
memory-based learning, random forests, de-
cision trees, bagged trees, boosted trees, and
boosted stumps. We also examine the effect
that calibrating the models via Platt Scaling
and Isotonic Regression has on their perfor-
mance. An important aspect of our study is

IR RPN S PV SR TN SRR Ry P

10/13/16

This paper presents results of a large-scale empirical
comparison of ten supervised learning algorithms us-
ing eight performance criteria. We evaluate the perfor-
mance of SVMSs, neural nets, logistic regression, naive
bayes, memory-based learning, random forests, deci-
sion trees, bagged trees, boosted trees, and boosted
stumps on eleven binary classification problems using
a variety of performance metrics: accuracy, F-score,
Lift, ROC Area, average precision, precision/recall
break-even point, squared error, and cross-entropy.
For each algorithm we examine common variations,
and thoroughly explore the space of parameters. For
example, we compare ten decision tree styles, neural
nets of many sizes, SVMs with many kernels, etc.

Because some of the performance metrics we examine
————le a1l ] ]

tddviccal e a A el MLl

22
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A study comparing Classifiers
11 binary classification problems

) by
PROBLEM #ATTR  TRAIN SIZE TEST SIZE ( %POZ 'aw
ADULT 14/104 5000 35222 25% | |
BACT 11/170 5000 34262 69%

COD 15/60 5000 14000 50%
CALHOUS 9 5000 14640 52%
COV_TYPE 54 5000 25000 36%

HS 200 5000 4366 24%
LETTER.P1 16 5000 14000 3%
LETTER.P2 16 5000 14000 53%

MEDIS 63 5000 8199 11%

MG 124 5000 12807 17%

SILAC 59 5000 25000 50%

10/13/16 23
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A study comparing Classifiers
= 11 bir}ary cIassiﬁcDaCtion problems A 8 metrics

¢ R
Table 2. Normalized scores for each learfing algorithm by metric (average over eleven problems)

MODEL CAL (ﬁcc S FSC LFT ROC APR BEP RMS MXE MEAN OPT-SEL
BST-DT PLT .843* 779 939 .963 938 .929%* .880 .896 .896 917
RF PLT 872% .805 .934* 957 931 .930 851 858 892 .898
BAG-DT - 846 781 .938%* .962% .937* 918 .845 872 8RT7* .899
BST-DT 1SO .826%* .860%* .929%* .952 921 .925% .854 815 885 917*
RF - 872 .790 .034%* 957 931 .930 .829 .830 .884 .890
BAG-DT PLT 841 774 .038* .962% .937* 918 .836 852 882 .895
RF 1SO .861%* 861 .923 .946 910 .925 .836 776 880 .895
BAG-DT 1SO 826 .843* .933* .954 921 915 .832 .791 B77 .894
SVM PLT 824 .760 .895 938 .898 913 831 .836 862 .880
ANN - .803 762 910 936 .892 .899 811 821 .854 885
SVM 1SO 813 .836%* .892 925 882 911 .814 744 852 .882
ANN PLT 815 .7T48 610 936 892 899 783 785 846 875
ANN 1SO .803 .836 .908 .924 876 .891 77 718 842 884
BST-DT - .834%* .816 .939 .963 938 .029% 598 605 828 .851
KNN PLT 757 707 .889 918 872 872 742 764 815 837
KNN . 756 728 .889 918 872 872 729 718 .810 .830
KNN 1SO 755 758 882 907 .854 .869 738 .706 .809 .844
BST-STMP PLT 724 .651 876 .908 .853 .845 716 .754 791 .808
SVM = 817 .804 .895 938 .899 913 514 467 .781 .810
BST-STMP 1SO .709 .744 873 .899 835 .840 .695 .646 780 .810
BST-STMP - 741 .684 876 .908 .853 .845 .394 382 710 726
DT I1SO 648 .654 818 838 756 778 .590 D89 .709 774

10/13/16 24
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Ratio of Positive Class (binary case)

e Class imbalance issue Y\uu«‘AP << V\quf\'\/

Retuud Povikne actia neaq
Bal d = 3 (TP | TN)
* Balanced accuracy: — 9 P N
&’ e N HEN
| ~ Labeled B
Corfusion  WMEtMY éﬁcw% TP fre
— | Ghud
predicted+ | TP)| FP }"K’W\ (o )
predicted— | FN | TN F‘) ;&Q‘QQE’C‘\&

10/13/16
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Af(a il (ortect Predd ced
) = H#oll Test xupes
~ _ IPtTN
TP+ e+ TN+ £N
Pl—e ( fS?ﬂV\_QS = .IP\- 2R,
o LA vl
A

Te+EN
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Ratio of Positive Class (binary case)

10/1

3/16

1,93 )
7¢  Achal P vory g/nl./ Cvs he 9 _|
= a custer cin predit VoY eXalp lp
18 Neﬁ
:7@ A PCD AN@ Acmm{y 97 o709
piedtt P O O Bulka =
e=IN ) 77 >l
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o - Y- clagior
F& il e = L (2B ) N

- ( - = 0476
anoth or (lession L\ 0,1 |
@~ AY AN‘ Fﬁ/d‘alﬂlAc[—~’/+———,/
ee | | O .
pN | o 97 A = T
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Today

J Supervised Classification _‘

] Support Vector Machine (SVM)

v’ History of SVM

v’ Large Margin Linear Classifier

v’ Define Margin (M) in terms of model parameter
v’ Optimization to learn model parameters (w, b)

v’ Linearly Non-separable case
v Optimization with dual form
v Nonlinear decision boundary
v' Multiclass SVM

10/13/16 29



History of SVM Young /

theoretically

sound /
* SVMis inspired from statistical learning theory [3] Impactful
* SVM was first introduced in 1992 [1]
 SVM becomes popular because of its success in handwritten digit

recognition (1994)
— 1.1% test error rate for SVM. This is the same as the error rates of a carefully
constructed neural network, LeNet 4.

e Section 5.11 in [2] or the discussion in [3] for details

* SVM is now regarded as an important example of “kernel methods” ,
arguably the hottest area in machine learning 20 years ago

[1] B.E. Boser et al. A Training Algorithm for Optimal Margin Classifiers. Proceedings of the Fifth Annual Workshop on
Computational Learning Theory 5 144-152, Pittsburgh, 1992.

[2] L. Bottou et al. Comparison of classifier methods: a case study in handwritten digit recognition. Proceedings of the 12th
IAPR International Conference on Pattern Recognition, vol. 2, pp. 77-82, 1994.

[3] V. Vapnik. The Nature of Statistical Learning Theory. 2" edition, Springer, 1999.



Applications of SVMs

Computer Vision

Text Categorization

Ranking (e.g., Google searches)
Handwritten Character Recognition
Time series analysis

Bioinformatics

— Lots of very successful applications!!!
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Handwritten digit recognitic
7 MNIST  (Sum) 8

O|/|3HB3M|5|e|7|8|5
g

21U1D121417(6]7(8(%

3-nearest-neighbor = 2.4% error
400-300-10 unit MLP = 1.6% error
Lel\[l\et: 768-192-30-10 unit MLP = 0.9% error

In 90s, SVM \>best (kernel machines, vision algorithms) ~ 0.6% error

> T et (V@f@@@

10/13/16
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A R A ¥ A Dataset
for binary/”

classiﬁcation_‘

—_—— [ —

fiXi—Y

-—— =

. -

Output as
Binary Class:
only two
possibilities

« Data/points/instances/examples/samples/records: [ rows ]

* Features/attributes/dimensions/independent variables/covariates/
predictors/regressors: [ columns, except the last]

» Target/outcome/response/label/dependent variable: special
column to be predicted [ last column ]

10/13/16 33
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Binesy Clessfinctn Re fresdon
_ /yé {\lv I} JER
> 10 (xer] s |0 x¢p
Y= S'4h(Wx+h) 3

BM“U WX4b=0=) T .
\_@l\f X--2 T
~— _o_eo )r e 52
DA 5

‘./-/«z

w_}) 2D E)CeQZ] Tg ) 2 ’ y: WX +b

Bowadary Wil o S X Y7 D o?
] | J = W'xb W xeR
A P dim (yepf] \

10/13/16 Bo "lhAlLlr'_‘j : h)’FOrC’/Nle 34
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Affine hyperplanes

| e https://en.wikipedia.org/wiki/Hyperplane _‘
* any hyperplane can be given in coordinates as

the solution of a single linear
algebraic ) equation of degree 1.

[am T 00 A A3 + -+ RoXp = 19], at last ene
a4 £

= ef clustefcion mel@ WX +b=0

)(GRP
beR

10/13/16 35
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Review :
Vector Product, Orthogonal, and Norm

For two vectors x and y,

x'y \

is called the (inner) vector product.

x and y are called orthogonal if

x'y=0

The square root of the product of a vector with

itself,
Valy

is called the 2-norm ( |x|,), can also write as |x|

10/13/16 36
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Today

J Supervised Classification _‘

] Support Vector Machine (SVM)

v’ History of SVM

v’ Large Margin Linear Classifier

v’ Define Margin (M) in terms of model parameter
v’ Optimization to learn model parameters (w, b)

v’ Linearly Non-separable case
v Optimization with dual form
v Nonlinear decision boundary
v' Multiclass SVM

10/13/16 37
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Linear Classifiers 1
X

»
»

~h

y€St

° denotes +1 \

o denotes -1 ° o
@ @
o ®
(&) ® °
1) (@)
o o How would you
@ o
J ° ° classify this data?
@ o o o
(@]
o o o
o o
© o
o o

10/13/16 38
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Linear Classifiers 1

v

X

~h

Y1

° denotes +1
denotes -1

How would you
classify this data?

K

10/13/16

y€St

39
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Linear Classifiers 1
X

»
»

~h

y€St

° denotes +1 \

denotes -1

How would you
classify this data?

10/13/16 40
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Linear Classifiers 1
X

»
»

~h

y€St

<

° denotes +1
denotes -1 °

o

How would you
classify this data?

10/13/16 41
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Linear Classifiers 1
X

»
»

~h

yESt

° denotes +1 \

denotes -1 o °

o

Any of these would
be fine..

..but which is best?

10/13/16 42
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Classifier Margin
X

y€St

° denotes +1
denotes -1

o

10/13/16

z

Define the margin of
a linear classifier as
the width that the
boundary could be
increased by before
hitting a datapoint.

43
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Maximum Margin
X

° denotes +1
denotes -1

~h

»
»

y€St

10/13/16

_—

Linear SVM

<

The maximum
margin linear
classifier is the
linear classifier with
the, maximum
margin.

This is the simplest
kind of SVM (Called
an LSVM)

44



Maximum Margin
X
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‘ ° denotes +1 X2

denotes -1 °

o

Support Vectors are/T
those datapoints
that the margin
pushes up against

~h

»
»

y€St

x1
_

Linear SVM

10/13/16

<

The maximum
margin linear
classifier is the
linear classifier with
the, maximum
margin.

This is the simplest
kind of SVM (Called
an LSVM)

45
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Maximum Margin
X

‘ ° denotes +1
denotes -1 °

o

Support Vectors are/T
those datapoints
that the margin
pushes up against

L f

»
»

y€St

_—

Linear SVM

10/13/16

f(x,w,b) = sign(w'x + b) \

The maximum
margin linear
classifier is the
linear classifier with
the, maximum
margin.

This is the simplest
kind of SVM (Called
an LSVM)

46



Max margin classifiers

* Instead of fitting all points, focus on boundary points

» Learn a boundary that leads to the largest margin from both
sets of points

° ® y From all the
o / possible boundary
o % lines, this leads to
@ ! the largest margin
’ on both sides
o o ,/
/ ® ¢
/
; ® ®
/
/ o ®
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Max margin classifiers

* Instead of fitting all points, focus on boundary points \

» Learn a boundary that leads to the largest margin from points on both
sides

‘ ‘ //
Why?
o 5 / y

* Intuitive, ‘makes

sense’

/
o "/
s/ D
® @ //‘\b ®  Some theoretical
/
/
// .

support

» Works well in practice

10/13/16 48
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Max margin classifiers

* Instead of fitting all points, focus on boundary points

» Learn a boundary that leads to the largest margin from points on both
sides

o ¢ ’
PY / Also known as linear
° D/ support vector
y b machines (SVMs)
/
o /
‘. // ‘.
/
[ , / ®
These are the vectors ° ®

supporting the boundary °
| /;
/

10/13/16 49
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Max-margin & Decision Boundary

| * The decision boundary should be as far away from \

the data of both classes as possible

s o . N\
1. Correctly classifies all points

2. Maximizes the margin (or equivalently minimizes w'w)

’0."’ "’0 " . J
\" T. L l W is a p-dim
/\)< ,\»L m-. ‘ ° W Xtb 2 vector; b is a
\h - . ‘0" ’0’. Class 1 Scalar

L] O
Class -1

wix+b=1

v

wix+b=-1"

10/13/16 50
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(Specifying a max margin classifier

Y <
| pred“G‘ c\as® Class +1 plane \
T boundary
\fo—\r‘o‘*'\ \

\Nw,@b‘o i A Class -1 plane

Classify as +1 if wix+b >= 1 M‘J
{ Classify as -1 if wix+b <= - 1 }-Fww\q ’:d'r'a\

Undefined if -1 <wTx+b < 1

10/13/16 51
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Specifying a max margin classifier
S -+

+ g¥\ 4 1
| pred""‘f;\/as-l' s the“finear separation >
umpti ealistic?
\N'Y)(—\"oﬁ‘\"\ /

v=0 — -~
o — qcess_ — We will deal with this shortly,

A ot ©) - -
Ty Pfed_ — but lets assume it for now

M‘)A ¢s umug

-

Classify as +1 if wix+b >= 1
Such [
Classify as -1 if wix+b <= -1 ) /mef
LYt
Undefined if -1 <w'x+b < 1

M owr thiy

10/13/16 52
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Today

J Supervised Classification _‘

] Support Vector Machine (SVM)

v’ History of SVM

v’ Large Margin Linear Classifier

v’ Define Margin (M) in terms of model parameter
v’ Optimization to learn model parameters (w, b)

v’ Linearly Non-separable case
v Optimization with dual form
v Nonlinear decision boundary
v' Multiclass SVM

10/13/16 53
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Maximizing the margin

Undefined if -1 <w'x+b <1

Classify as +1 if wTx+b >=1
Y \@ Classify as -1 if w'x+b <=-1

* How can we encode our

» Lets start with a few obsevrations

goal of maximizin

* Lets define the width of the margin by M
g@n terms of

10/13/16 54
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Margin M

-

xA
.+ c\asSS
ictC > )
P‘ed \ Classify as +1 if wTx+b >= 1
A ) Classify as -1 if w'x+b <=-1
Ty ¥~ : '
W 40 Undefined if -1 <wix+b <1
\NT)(-\' - S A
A gict ©\2°
W‘Y)Q\'b P"e

M < Ix+~><‘l f@ﬂ%f?
w(w(x"-xj
= Hol to petont (X"-x) 277

10/13/16 55
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=» Review :Vector Subtraction

10/13/16 56
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rgin.

Maximizing the marg
observation-1

XA
gicto2s® Y WM
pre Classify as +1 if w'x+b >=1
Classify as -1 if w'x+b <=-1

T)(_\_\Oz'\"\ . .
W Undefined if -1 <wTx+b <1
\NT)(—\—‘O‘O A
s -
= gict ©\2°
o S0} pre

* Observation 1: the vector w is orthogonal to the@plane

7 wWluy) = W n-w =0-b)-(I-b)=p

= W srthapad

Letiu and vibe two points on the +1 plane, o (U-y)
then for the vector defined by u and v we have

w'(u-v) =0

10/13/16 Corollary: the vector w is orthogonal to the -1 plane 57



10/13/16

The gradient points in the direction of the greatest
rate of increase of the function and its magnitude is
the slope of the graph in that direction

)/ UVA CS 6316 / f16
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Observation 1
=>» Review,: Orthogona

) . Cl,2) | T Prduct ]
_ W(U)=0

® ¢ ® @ - >
o L ® [ ) o
o L ® [ o

L2 )< ;) =0



Maximizing the margin:
observation-1

*| Observation 1: the vector w is orthogonal to the‘—:l Ian{a
~I P{/me

O |-plane
W ;

Class 1

WTx—I—b: —-1-

10/13/16 60
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Maximizing the margin
observatlon 2

Classify as -1 if w'x+b <=-
Undefined if -1 <wTx+b <1

ict g c\as® " )
Classify as +1 if wTx+b >=1
1 \

* Observation 1: the vector w is orthogonal to the +1 and -1 planes

» Observation 2: if x* is a point on the +1 plane and x" is the closest point
to x* on the -1 plane then

XP=AW+X

Since w is orthogonal to both planes
we need to ‘travel’ some distance

along w to get from x* to x-
10/13/16 61
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Putting it together

M= ™ X-| —‘

| xt-x|=M
2

We can now define M in \,f’—l/\/

terms of w and b
10/13/16 F\ 62
whinJ
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Putting it together

wl x* + b = +1 \

=>

wl (Aw + x) + b = +1
=>

wix +b +Aw'w = +1
=>

-1 + Aw'w = +1

=>

We can now define M in A = 2/wTw
terms of wand b

10/13/16 64
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Putting it together

=>
M=IAwl=Alwl= AVw'w

=>
T
\ 2
M <2 WTW _
W W w'w

MAX (NA)
=2 = i (W'wW)

We can now define M in

terms ofwand b
10/13/16 65
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Finding the optimal parameters

We can now search for the optimal parameters by finding a
solution that:

1. Correctly classifies all points

2. Maximizes the margin (or equivalently minimizes wTw)

Several optimization methods can be used:
Gradient descent, simulated annealing, EM etc.

10/13/16 66
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Today

| 1 Support Vector Machine (SVM) _‘
v’ History of SVM
v’ Large Margin Linear Classifier
v’ Define Margin (M) in terms of model parameter
‘\/ Optimization to learn model parameters (w, b)
v’ Linearly Non-separable case
v Optimization with dual form
v Nonlinear decision boundary
v’ Practical Guide

10/13/16 67
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Optimization Step
l.e. learning optimal parameter for SVM

g ¥\ \N\ M- 2

{ 1. Correctly classifies all points )

2. Maximizes the margin (or equivalently minimizes w'w)
J

Min (w'w)/2
subject to the following constraints:

Ml ( \JTW /z )
wTx+b >= 1 A total of n grt ' ‘A)Txi' 4[95/ ‘ PS

_ constrajnts if ™
For all xin class -1 ' \/\) K) (_Lg_‘
WTx+b <= -1 samples V\%

-~
10/13/16 68
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Support Vector Machine
Task classification :
| | kxo=0w ow
Represlentation . Kernel Func K(xi, xj) |
Score Function Margin + Hinge
1 5 Loss (olptlonal)
Search/Optimization QP with Dual form
f : 1 W=Eaixiyz
Models, . i
Parameters Dual Weights
S max Yo=Y aayyx’x
argminzflwiZwLCEgi o0 bt i oy et iV X X
w.,b - i : Y

subjectitos VX, € Dirain: y, (xl. "W+ b) >]-
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Optimization Step
l.e. learning optimal parameter for SVM

A
Gc\ 5‘5"' \N\ M = T
W W \

{ 1. Correctly classifies all points }

2. Maximizes the margin (or equivalently minimizes w'w)

Min (w'w)/2
subject to the following constraints:

5 PS Y=, WX > |
For all xin class+1' _
ot BT p ey (W) >

constrajnts if

For all xin class -1 we hafe n
WTx+b <= -1 'j\": -\ input’samples—) ‘\Qﬁ f:j-\" - ‘I\) 9(-;('L< |

f10/13/16 :\J'\z (H X\"" L))Z l 70




Dr. Yanjun Qi / UVA CS 6316 / f16

Optimization Step
.e. Iearnmg optimal parameter for SVM

A
g c\d ass ™ \N\ M=—=
W W \

p
1. Correctly classifies all points
2. Maximizes the margin (or equivalently minimizes w'w)

Min (w'w)/2
subject to the following constraints:

argmin . w’
w.b

For all xin class + 1

subject to Vx. € Dirain

wix+b >=1 A total ofin
constrajnts if

For all xin class - 1

wix+b <= -1

-~
10/13/16
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Optimization Review:
Ingredients

e Objective function _‘
e Variables
e Constraints

Find values of the variables
that minimize or maximize the objective function
while satisfying the constraints

10/13/16 72
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Optimization with Quadratic
programming (QP)

Quadratic programming solves optimization problems of the following form: \

N = Varisbs

T
i Ru

min,

subject to n inequality constraints:

a,u, + a,u, +...< b,

. . . &LQ' ratic term
.anlul + c.znzu2 + s b, W%l(’y;)roble’r?\ céi)ﬁf%(‘/ﬂk. 5

cified as a QP problem we

: . can use solvers that are better
and k equivalency constraints: .
than gradient descent or

A, Uy + Ay Uy + =D simulated annealing

A, Uy T4, LUy T+ = b,

10/13/16 73
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SVM as a QP prOblem R as | matrix, d as zero

vector, c as 0 value

__ 2 )

T
wow . u'Ru
min,, +d u+c
2

subject to n inequality constraints:

a, U, + a, U, + ...< b,

a . u +a,u,+..<b

Min (wTw)/2

subject to the following inequality and k equivalency constraints:

constraints: Aoyl + Ayl + =D,

For all xin class + 1

wTx+b >= 1 A total of n Aoty + @y oty + .= b,
_ constraints if

For all xin class -1 we have n

wTx+b <= -1 input samples

10/13/16 74
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Today

| 1 Support Vector Machine (SVM) _‘
v’ History of SVM
v’ Large Margin Linear Classifier
v’ Define Margin (M) in terms of model parameter
v Optimization to learn model parameters (w, b)
‘\/ Linearly Non-separable case
v Optimization with dual form
v Nonlinear decision boundary
v’ Practical Guide
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Linearly Non separable case

» So far we assumed that a linear plane can perfectly
separate the points

 But this is not usally the case
How can we convert this to a

- hoise, outliers QP problem?
Hard to solve (two - Minimize training errors?
o o° minimization problems) { min wTw
o © min #errors
®
®
®
¢ ® ®
o ® ¢

10/13/16 76
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Linearly Non separable case

» So far we assumed that a linear plane can perfectly
separate the points

 But this is not usally the case
How can we convert this to a

- hoise, outliers QP problem?

Hard to solve (two - Minimize training errors?

o o° minimization problems) min wTw

o © min #errors

o
o - Penalize training errors:

min wTw+C*(#errors)
® o o o
o ® ¢ /

® Hard to encode in a QP
problem

10/13/16 77
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Linearly Non separable case

* Instead of minimizing the number of misclassified points we can
minimize the distance between these points and their correct plane

The new optimization problem is:

T n
W W i ::
min +Z Ce
w 2 . 1
i=1

V4
10/13/16 . 78
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Linearly Non separable case

* Instead of minimizing the number of misclassified points we can
minimize the distance between these points and their correct plane

The new optimization problem is:

O WwW &
min +Z Ce.
w 1

i=1

2

subject to the following inequality
constraints:

For all x;in class + 1
wTx+b >=1-E&.

For all x;in class - 1
wTx+b <= -1+E&.

Wait. Are we missing
something?

V4
10/13/16 . 79
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Final optimization for linearly
non-separable case

The new optimization problem is: \
T n

min, ~—+ ¥ Ce,
+1 E)Iane . 2 i=1 . . .
o o R subject.to the following inequality
o,/ ;" -1plane constraints:

For all x; in class + 1
Wix+b >=1-€, ygxt al %f n.
For all x;in class - 1 = ‘:6

WX +b <=-1+&,

For all i

| £, 20 }a}rt‘:z:&sm?%

80
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Final optimization for linearly
non-separable case

The new optimization problem iS:

min, W@F Jeevpsrh

o o® R subjecttothefollowmg inequality
' Y ;" -1plane constraints:

For all x;in class + 1

WiXtb >=1-£, total of n
For all x;in class - 1 nstralnts

wix+b <= -1+ i

‘! . For all i }
r! other n

8,- >0 constraints

10/13/16 81
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Where are we ?

Two optimization problems: For the separable and non separable cases

T
A A%

min,,

For all xinclass + 1
wix+b >= 1
For all xin class - 1

wix+b <=-1

ge“mbkﬁl

e/
) () / // /
// // //
/ /
) ° / //
/ / ,/o
/ / )
/ / /
/ /
/ ;7 ® °
/ / o
/ / //
/ / , o

y 2
* 10/13/16

T n
. WW
min,, +EC£i ]
i=lI

2 %
Forall x;in c':'lﬁs+1 o

For all x; in class - 1

wix+b <= -1+€ i

For all i Noh ge‘,m)ou

e =0 /
1 PY ® /
¢ °/ ;
) () / / /
() / / /
/ / /
/ /
° o 7 // °
/ / /o
/ /
/ )
/ / / o
/ / / °
/ / [ ] [ ]
/ / / o
/ / /
/ / / ®
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Model Selection, find right C
A ‘ A ’

Ly -

Select the

(a) Training data and an overfitting classifier (b) Applying an overfitting classifier on testing
data

onall

10/13/16

83
(c) Training data and a better classifier (d) Applying a better classifier on testing data
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Today

1 Support Vector Machine (SVM) _‘
v’ History of SVM
v’ Large Margin Linear Classifier
v’ Define Margin (M) in terms of model parameter
v Optimization to learn model parameters (w, b)
v'Linearly non-separable case
—) Optimization with dual form
v Nonlinear decision boundary
v’ Practical Guide
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Where are we ?

Two optimization problems: For the separable and non separable cases

L W'W g
Min (wTw)/2 min, ==+ 2,Ce —‘

Forall xin class + 1 Forall ;in class + 1

WTX+b >= 1 wixi+b >=1-&;

, For all x;inclass - 1
Forall xin class -1
wix+b <= -1+&,

wix+b <=-1
For all i

81.20

* Instead of solving these QPs directly we will solve a dual
formulation of the SVM optimization problem

» The main reason for switching to this type of representation
Is that it would allow us to use a neat trick that will make our
lives easier (and the run time faster)

10/13/16 85
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Optimization Review:
Constrained Optimization

L)=(*

-

min,, u? N . owed min
s.t.u>=b N ~
~—y
M in
Case 1: /
/'////’
, .
Allowed min

Case 2:

10/13/16 86
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Optimization Review:
Constrained Optimization

S o

min,, u? N . %Allowed min ID > 0
N 7

s.t.u>=b ~ -7
| e S | _ |t
(S“:Llfaf ‘GO—J Case 1: T elobal min ‘J'(V) ] b

P <
N y i
.~ , Allowed min L< 0
~ ~\ =

b Global min _5“/\\: V

Case 2: !

10/13/16 87



Optimization Review:
Constrained Optimization with Lagrange

* When with equal constraints

» =>» optimize f(x), subject to g{x)<=0 . e L
120,
* We can solve the above using the “Method of

Lagrange multipliers”

— convert to a higher-dimensional problem
— l.e., to Minimize

! :
J(x)+ Eﬂ’igi (x)

Azl

. w.r.t. (x,...x ;A ... 4)

/

Introducing a Lagrange multiplier for each constraint
Construct the Lagrangian for the original optimization problem
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Optimization Review:
Constrained Optimization with Lagrange

| * When with equal constraints _‘
» =>» optimize f(x), subject to g,(x)<=0

* We can solve the above using the “Method of
Lagrange multipliers (f{(’ﬁ/ )
— convert to a higher-dimensional problem

—i.e., to Mlnlmlze\\,s,\a\ \_%

] f<Q>+2/L-g,-<x> Ay (/)

- w.r.t. @xm) )

Introducing a Lagrange multiplier for onstraint

Construct the Lagrangian for the original optimization problem  #°

m

10/13/16
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i 2
min, u

st.u>=b

10/13/16 90
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M OCO (’M) - /u

Fia (

st.u>=b ﬂ)"é S:‘% L._(l/( <0 (Pq)\m(o(él"/\

i 2
min, u

10/13/16 91
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min o ()=
o1

s.t.u>=b w
St. b-u<o
& y»w.l“*‘flf‘w Var (R

L ~
b L4, %) = A7+ x(bh),

(w1 (X1 0 \<(7

10/13/16 92
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st.u>=b
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s | B0 = Llwe) = %0 g Xy




16 / f16

/s.t.u>—b 8(0(
k) Ve L
U ,0¢
. o(/2> —-ZE N g D(
[lo-———

gll) =
— =~ b(z
+ b




s
/ ACE
£ (w) o
U= x/z ) D .
‘—E nQi/UVACS6
+ o (| L:W

9il) =
— =~ b(z
+ b

\ 9
9(el)
_
- Z ~+b
= 0
XK= 0

30(
—
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i 2
min, u

st.u>=b
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Optimization Review:
Lagrangian Duality

e The Primal Problem
min_ f (w)

Primal: St f(w)<0, i=1,..k

The generalized Lagrangian:

Lw,0)= fO(w)+Zoci f,(w)

the a's (a20) are called the Lagarangian multipliers

f,(w) if w satisfies primal constraints
max Lw,x)=

o ,ocl.ZO

A re-writte

min max___ L(w,o) j
10/13/16 i © Eric Xing @ CMU, 2006-2008

QQ

Lemma: {

oo o/w
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Optimization Review:
Lagrangian Duality, cont.

Recall the Primal Problem:

min_ max, . L(w,x)
The Dual Problem:

max .. min_ Lw,a)
Theorem (weak duality):

d = max, ., min L(w,o) < min max, ., Lw,a)=p

Theorem (strong duality):

Iff there exist a saddle point of L(w,a)

we have * *
d =p



An alternative representation of the
SVM QP

4 Min (w'w)/2 )

* We will start with the linearly separable case

* Instead of encoding the correct classification rule s.t.
and constraint we will use Lagrange multiplies to T _
encode it as part of the our minimization problem (WiX+b)y; >= 1

\_ /

Recall that Lagrange multipliers can be
applied to turn the following problem:

W

Lpnmalz—HwH —205 (y (W-x. +b) 1)
w\}



SVM QP

* We will start with the linearly separable case

* Instead of encoding the correct classification rule
and constraint we will use Lagrange multiplies to
encode it as part of the our minimization problem

Recall that Lagrange multipliers can be

applied to turn the following problem: + X (

.

10/13/16
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An alternative representation of the

YL Oo’hgf,rﬂu‘l's /

{ (Wix+b)y, >= 1= M=b

i(yi(w-xi+b)—1)
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min , max @ 205 (w X, +b)y —1]

3L =0 = (/\)”’ZO( )(Vyv =0

W

10/13/16 105
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min , max —Za.[(wa.+b)y.—1] '—?MAX run L(lﬁ),lo,"()
e T ’ < W.b 2

05120 Vi

I Tran
r 3{:), =0 > W "_ZO(iK;%/ =0
§ o Y

\ oL SUNES ZDZ\;'%,-’—O
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The Dual Problem

max , .o Enw,b < (w,b,x) Dual—f&p\ub(ﬁm_‘

 We minimize L with respect to w and b first:

train

V L(w,b,o) =w- z(xiyixi =0, (%)
i=1

train

V. Lwba)=> oy =0, (%)
i=1

(% % %)

_ - T
L(w,b,o)= ) o — Zaiajyiyj(xixj)

10/13/16 i1 i1
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HWH 205 (y (W-X +b)— 1)

pml 2

T
Lo\uhl ’-li @‘d:xf’)‘j@; 0 'U}) 4\ Z,O(i, 7'\,@,0(;)&/(7)) Xi

— 20’\,% b+ & O(v
O

T I - 3 LT oy «gvya(xvx»

\
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Summary: Dual for SVM

Solving for w that gives maximum margin: _‘

1. Combine objective function and constraints into new
objective function, using Lagrange multipliers \alpha,
1

Ly = Wlf X0 (3,0, +5)-1)
i=1

2. To minimize this Lagrangian, we take derivatives of w and b
and set them to O:

10/13/16 109
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Summary: Dual for SVM

-

3. Substituting and rearranging gives the dual of the Lagrangian:

Ldual 206 __2 2061 J.y.yx X

which we try to maximize (not minimize).

4. Once we have the \alpha, we can substitute into previous
equations to get w and b.

5. This defines w and b as linear combinations of the training
data.

train
W= 2 aiyixi
i=1

10/13/16 110
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Summary: Dual SVM for linearly
separable case

| B

Substituting w into our target
function and using the
additional constraint we_get:

Min (ww)/2

subject to the following inequality
constraints:

Dual formulation

1 7 For all xin class + 1
max EOC.——EOC.O{. V. X. X.
(01 : l :2 < l ijl){] 17°7] X&£12§tj2,:’=: 1 /\'thEil()f|1
! _ constraints if
EaiYi =0 For all xin class -1 s [y [
i wTx+b <= -1 input samples
a. =0 Yi

l

Easier than original QP, more efficient algorithms exist to find a,

10/13/16 111



Optimization Review: Dual Problem

* Solving dual problem if the dual
form is easier than primal form

Primal Problem

* Need to change primal
minimization to dual
maximization (OR =» Need to
change primal maximization to
dual minimization)

Dual Problem,

* Only valid when the original
optimization problem is convex/
concave (strong duality)
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EXTRA

10/13/16 113
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Optimization Review: Lagrangian (even

more general standard form)
standard form problem (not necessarily convex)

minimize Cfo(m)j
subject to sz- r) < O,—) i=1,...,m
hi(cc)zo, ’i=1,...,p

variable x € R", domain D, optimal value p*

Lagrangian: L : R" x R™ x R? — R, with dom L =D x R™ x R?,

L(CIJ‘, A, V) — fO(x) + ZAZfz(x) + Z V’ih’i(x)

e weighted sum of objective and constraint functions
e )\; is Lagrange multiplier associated with f;(x) <0

e v; is Lagrange multiplier associated with h;(x) =0

10/13/%6 114
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Optimization Review: Lagrange dual function

Lagrange dual function: g : R x R — R,

g\, v)

sep L ) L(X,),V) ‘

= inf fo(aj) -+ v )\zfz(a:) + - Vzhz(w))
L/\>a\<o

g is concave, can be —oo for some A, v

lower bound property: if A > 0, then g(\,v) < p*

Inf(.): greatest
lower bound

fo() > L(z,\,v) > 1n L(:v A, V) —g@
(/V\

s

proof: if Z is feasible and A > 0, then

ominimizing over all feasible Z gives p* > g(\, v)
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Optimization Review:

__
@Iementary slack@

assume strong duality holds, * is primal optimal, (A*,v*) is dual optimal
(s ‘
0by 3 f(u) 4(%)

lm W | w¥=2)
" {L(a wio | o?-0

inf (.): greatest Iower bound

| >0 <0 "
hence, the two inequalities hold with equality B> O(.L( (W 7(1, Zy],
e z* minimizes L(z,\*,v*) D, 70
o \fi(x*) =0fori=1,...,m (known as complementary slack@f,s) 2
o>

AF > 0= fi(z*) =0, fi(z*) < 0= A7 =0
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Optimization Review:
Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with
differentiable f;, h;):

1. primal constraints: f;(x) <0,i=1,...,m, hi(x)=0,i=1,...,p

2. dual constraints: A > 0

3. complementary slackness: \;fi(z) =0,i=1,...,m

4. gradient of Lagrangian with respect to x vanishes:

Vo(x +Z>\ Vfi(z +ZVZVh

OB pan@@I®: if strong duality holds and z, ), v are optimal, then they
must satisfy the KKT conditions
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-

NOT EXTRA
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KKT Condition for Strong Duality
| V"U;\w X (_(“/Vj_

Primal Problem

minimize | fo(z)
subject :o %ff(:c) 1

Dual Problem,
MAX e
oy [ (w,

Lagrangian: L : R” x R™ x R? - R, with dom L =D x R™ x R?,
m p
L(IE, A, I/) = fo((L‘) + Z /\zfz(iL‘) + Z I/,,hz(.’IJ)

complementary slackness: Aifi(z) =0,i=1,...,m \

[

10/13/16 119
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KKT => Support vectors

* Note the KKT condition --- only a few a;'s can —‘
be nonzero!!

o (yi (wai +b)— 1) =0, i=1Y%0

Class 2 Call the training data points

whose a/'s are nonzero the
support vectors (SV)

o

7 @=0 ~o
"o éz—
0’.’
‘9;=0.8

awlx4+b=1

10/13/16
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a,(y,(w-x,+b)-1)=0, i=1,.,n

* Class 2

WMo SE o =0

Q)

. ".‘WTX + b =
ag=0 ”0’ *
=0 T —
Class 1 % "." W X _I_ b=
wlix+b=—

10/13/16 121
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separable case — i

M=

1"

Training 7

( )'?l _‘
Our dual target function: max Eai _%Eaiajyiyj
i ij

EO{l.yi =0 Dot product for all
i training samples

ocl.?() Vi

12, R (¢

[ ]

L\ (. _J nxn
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{O’l O(")_ 0(; 0('\&\
separable case —

" Dot product with (“all” ?7?)
| TeStI ng training samples
To evaluate a new sample x, s /

we need to ComPUte.’_ w' X, +b:zaiiniTth +b O( Nn> INI&’)
/B Seph (Wxb) =

j> y _Slgng eSupportVecto s{agi(Xi XtS)—I_b]
V «<i>0

0 (%g&/ vIw\w)
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Dual SVM - interpretation

For o;that are O,
o influence

10/13/16
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aI formulation for linearly

non-separable case

Za,-yi =0

Dual target function: \

max Zoc ——z(xl oy.y X X

Hyperparameter C
should be tuned
through k-folds CV

The only difference is

that the \alpha are now
bounded /

10/13/16

-

This is very similar to the

optimization problem in the linear
separable case, except that there is

an upper bound C on a,now

Once again, efficient algorithm exist

to find a,
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Dual formulation for linearly
non-separable case

2.0y, =0

Dual target function: \

1 r
mdx, Zai _Ezaiajyiiji X;
i i

Hyperparameter C
should be tuned
through k-folds CV

The only difference is
that the \alpha are now

bounded /

10/13/16

-

\_

To evaluate a new sample )gt
we need to corp\pute:

~
est

WT{l.é;tb= i=?iYiXiTXﬂb

/

This is very similar to the
optimization problem in the linear
separable case, except that there is
an upper bound C on a,now

Once again, efficient algorithm exist
to find a,

126
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EXTRA
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Dual formulation for Ilnearly non_ +/

T
separable case Co=t
| (o
Substituting (1), (2), and (3) into the Lagrange, we have: V) !
(244 1
N N N D(’J;)
Lla) = Za, — — ZZa;aky;ykxiTxk, with 0 < ;< C and Za;y,- =0. (4)

o &; > 0: which implies y;(x”W + b) — 1 + & = 0 according to (5). These
points are the support vectors

o & = 0: which implies f; > 0 from (6) and sfrom (3). There are the

support points which lie on the edge of the margin:
o & > 0: which implies f; = 0 from (6) and so@z’:'}rom (3). There are the

support points which violate the margin.

@ &; = 0: These points are not support vectors,Awhich play no role in
determining the hyperplane.

10/13/16 128



Fast SVM Implementations

SMO: Sequential Minimal Optimization
SVM-Light

LibSVM

BSVM
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SMO: Sequenti I\/Iinim,al thlmlzatlon

WS~ 2 2
. Keyidea Ofm.: z— Vel oo z )ﬁz

— Divide the large QP problem of SVM into a series of
smallest possible QP problems, which can be solved
analytically and thus avoids using a time-consuming
numerical QP in the loop (a kind of SQP method).

— Space complexity: O(n).
— Since QP is greatly simplified, most time-consuming part of

SMO is the evaluation of decision function, therefore it is
very fast for linear SVM and sparse data.

i ( %L/WTXHE)—’FO
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SMO

* At each step, SMO chooses 2 Lagrange multipliers to
jointly optimize, find the optimal values for these
multipliers and updates the SVM to reflect the new
optimal values.

* Three components
— An analytic method to solve for the two Lagrange multipliers
— A heuristic for choosing which (next) two multipliers to optimize

— A method for computing b at each step, so that the KTT
conditions are fulfilled for both the two examples
(corresponding to the two multipliers )



Choosing Which Multipliers to Optimize

e First multiplier

— |terate over the entire training set, and find an example
that violates the KTT condition.

e Second multiplier

— Maximize the size of step taken during joint optimization.
— |E;-E, |, where E; is the error on the i-th example.
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-

NOT EXTRA
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Today

1 Support Vector Machine (SVM) _‘
v’ History of SVM
v’ Large Margin Linear Classifier
v’ Define Margin (M) in terms of model parameter
v Optimization to learn model parameters (w, b)
v Non linearly separable case
v Optimization with dual form
) v Nonlinear decision boundary
v’ Practical Guide

10/13/16 134



Dual SVM for linearly separable
case — Training / Testing

Our dual target function: max Ea __zalajylijlx

\

Ea Dot product for all
training samples

a; =0 Vi Dot product with (“all” ??)

training samples

To evaluate a new sample x,, /
we need to compute: T T
WX, +b= EOCI,ini X, +b
i

)/l;:sign( 2 Ociyi(xiTxtS)+b)

ieSupportVectors
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max Zai —%;ai(xjyi _y] max Zai —%OC,-OC iy (x.) TcI)(Xj)

ZaiinO -—_;> Zaiyi:O

C>oa 20,Vi C>o,20,Vi
‘ n
| 2 - N L 2 < 3
I , [ : A
4 : l
—_ X: L. . -
v 7 1 - - Jedeg) | -
h ; .
L R | |

NXN

136
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T _ T
WX, +b= Z“Ofl.yixi X +b

SN

Y, =sign

10/13/16

1
[ie

SupportVectors

)Y

wN —

e

X{S

X X

~

aiy,.(x,rxts)w)

YLx|
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S
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Classifying in 1-d

Can an SVM correctly

classify this data?

10/13/16

X

-

What about this?

138
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Classifying in 1-d

Can an SVM correctly And now? (extend with polynomial basis )
classify this data?

/
X2 /

o o o o % P

10/13/16 139



Dr. Yanjun Qi / UVA CS 6316 / f16

RECAP: Polynomial regression

For example, ¢(z) = [1, z, 2°]

10+ .(L"}éi‘ ¢C")O

=Q,+X0, tX'Q

10/13/16 140
Dr. Nando de Freitas’s tutorial slide
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Non-linear SVMs: 2D

e The original input space (x) can be mapped to some higher-dimensional
feature space (d(x) )where the training set is separable:

2

_ 2 A
P(x) =(X1%,X,%, 2 XXy,
o
o
o
S
o
o
¢ o
o o
. *.\: :X22
® o ® ° ¢
o

Jf‘?{ilsa/s]IPde is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt l
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Non-linear SVMs: 2D

e The original input space (x) can be mapped to some higher-dimensional
feature space (d(x) )where the training set is separable:

X=(X,X;) O(x) =(X%X,% 2XXy,
t . 7X1X2 1)
If data 1s mapped into sufficiently high dimension, then
o - c .
0 samples will in general be linearly separable;
/ N data points are in general separable in a space of N-1
° | dimensions or more!!!
° ¢ ': ° ®
. o . o ° :Xzz
o - . ........... . ------- o ‘ . ° )
o . ¢

Jf% 3/s]I|6de is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt 142
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A little bit theory:
Vapnik-Chervonenkis (VC) dimension

r If data 1s mapped into sufficiently high dimension, then samples
will in general be linearly separable;
N data points are in general separable in a space of N-1
dimensions or more!!!

* VC dimension of the set of oriented lines in R2is 3

— |t can be shown that the VC dimension of the family of
oriented separating hyperplanes in RN is at least N+1

O o e o
o\\ \\ O o
o O

O O

O O O O
0// <// o ®
10/13/16 O O N ® 143
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Transformation of Inputs

K‘Possible problems s this too much computational woyk?

- High computation burden due to high-dimensionality @
- Many more parameters @

X — DO

If data 1s mapped into sufficiently high dimension, then
samples will in general be linearly separable;
N data points are in general separable in a space of N-1
dimensions or more!!!

T
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Transformation of Inputs

KPOSSible problems s this too much computational woyk?

- High computation burden due to high-dimensionality@

- Many more parameters @
—_—

« SVM solves these two issues simultaneously
—“Kernel tricks” for efficient computation @
—Dual formulation only assigns parameters to samples, not

L features @ {\“Z o,

v

10/13/16 IIlpU.t Space Feature Space 145
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« SVM solves these two issues simultaneously
—“Kernel tricks” for efficient computation
—Dual formulation only assigns parameters to samples, not features

.

(1). “"Kernel tricks” for efficient computation

-

Never yepresent featuref explicitly

[0 Compute dot products in closed form

Very interesting theory — Reproducing Kernel Hilbert Spaces
[J Not covered in detail here

10/13/16 146
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K(x;,%x;) = ¢(x;)T¢(x;) is called the kernel function

X ¢ R"
* Linear kernel (we've seen it) K(x,z)=x"z B . ff’ _‘

* Polynomial kernel (we just saw an example)

K(x,z)= (1+X Z Sp()( @(8)

where p = 2, 3, ... To get the feature vectors we concatenate aIIpth order 20(14
polynomial terms of the components of x (weighted appropriately) )

T
e Radial basis kernel K(x,2)= exp(—rHX—Z‘ ‘2) — @yb() ?y(5>

In this case., r is hyperpara. The feature space of the RBF kernel has an infinite
number of dimensions

Never represent features explicitly
[0 Compute dot products in closed form
Very interesting theory — Reproducing Kernel Hilbert Spaces

10/13/16 . .
13/ [ Not covered in detail here
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Kernel Trick: Quadratic kernels

* While working in higher dimensions is
beneficial, it also increases our running time
because of the dot product computation

 However, there is a neat trick we can use

0 ] “
* consider aII terms for x,, x . :
qm‘" k"mAﬁ @\ number of

weights on ( E features in
quadratic ‘E" « m+1 linear terms each vector
terms will Vax, X > @/

become @

clear in the o : : T

oxt slide : m quadratic terms [K(X, 7) = D(x) (I)(Zﬂ

m(m-1)/2 pairwise terms

10/13/16 — o \IQ,VSM \N&kd 148
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Dot product for quadratic kernels

8 y%;)Jerations do we need fort?rle dot product? 93(«?2:
‘ ( ,”ﬁr\ " D(m?) i _‘
o D1/

J2x, J2z,
2_2
X 7 =E2xizi+2xizi +E Einszizj+1
: : i i i j=i+l
X2 Z2
g m m m m(m-1)/2 =~ m?

K(x.2) = D(x)' D(2)

10/13/16 149



K(x,2)=(1+x"z) (;( Zj (’P 2}( (’r, 7(2)

(& 2;)

ko:3) =(1+ %3, Ry _>

= (), EY%, &x Y,,%TXXZ

< |):F[2§,1,Y2_’252) ’&I/‘}Z)L’Z‘ %(BZ)

— @(x)T CE(ZQ
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The kernel trick

How many operations do we need for the dot product? \
T —
13)-92 (I)(i)—Zinzi+2x Z EHlex 2,2, +1
v, g
O(m ) m m m(m-1)/2  =~m?

N
(X5 +1)
However, we can obtain dramatic savings by noting that //\

/

D) D) x z+1) * (x.z+1) (x. z)2 +2(x.2)+1

D(™) \
P ST
i i i j=i+l
We onl_y need m So, if we define the kernel function as follows, there is
operations! no need to carry out basis function Q( )explicitly

10/13/16 K(x,2)= (XTZ + 1)2 151
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~ nel Trick -
(D(X) To evaluate a new sample xk_‘

we need to compute:

l()( j)(ﬂ TCI>()££+I9 E%Y@b
¢ ) V)(
DR / k( Xo,Y8)

(4
D [? mr operations where r are

the number of support
vectors (whose \alpha>0)

~fost, m\
) Lw('

mn? operations at each
iteration

_b(ﬂ\( NOD K(x,7)= (kaz +1)

10/13/16




Summary:
Modification Due to Kernel Trick

 Change all inner products to kernel functions
* For training,

1
o max O —— ) 0oLy Yo
Original “z,.“ ’ 221“ ’ ]yly]

Linear Yay =0

C>o. 2 0,Vietrain

: 1
With kernel mavaai—EZOtiOdjyiyj

function - i
nonlinear Y ay =0

C>o. 2 0,Vietrain



Summary:
Modification Due to Kernel Function

* For testing, the new data x_ts

Original —~ ( j
: Y, =sign oy\ b
Linear : tz

With kernel

function - y. :SigHL Y oay b)
nOnllnear ietrain
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An example: Support vector machines with
polynomial kernel

0.9

I

O
O
!

0.7

0.6

0.4

0.3

0.2

0.1

Figure 5.29. Decision boundary produced by a nonlinear SVM with polynomial kernel.
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Kernel Trick: Implicit Basis
Representation

* For some kernels (e.g. RBF ) the implicit
transform basis form \phi( x ) is infinite-

dimensional!

— But calculations with kernel are done in original space, so
computational burden and curse of dimensionality aren’t a

problem. _
=>» Gaussian RBF Kernel corresponds to an

infinite-dimensional vector space.

2
K(X’Z) B exp(—r‘ ‘X_ ZH ) YouTube video of Caltech: Abu-Mostafa
explaining this in more detail
https://www.youtube.com/watch?
v=XUj5JbQihlU&t=25m53s




Dr. Yanjun Qi / UVA CS 6316 / f16

Kernel Functions

* In practical use of SVM, only the kernel function (and notQ'()()s \
specified

e Kernel function can be thought of as a similarity measure
between the input objects

* Not all similarity measure can be used as kernel function
howe cer's condition states that any positive se@
definite kernelK(x, y), i.e.
Z K(zi, zj)cic; > 0

can_be expressed as a dot product in a high dimensional space.

10/13/16 157
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Choosing the Kernel Function

* Probably the most tricky part of using SVM.

* The kernel function is important because it creates the kernel
matrix, which summarize all the data

 Many principles have been proposed (diffusion kernel, Fisher
kernel, string kernel, tree kernel, graph kernel, ...)

— Kernel trick has helped Non-traditional data like strings and trees able
to be used as input to SVM, instead of feature vectors

In practice, a low degree polynomial kernel or RBF kernel with
a reasonable width is a good initial try for most applications.

10/13/16 158
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Kernel Matrix

* The kernel function is important because it —‘
creates the kernel matrix, which summarize all
thedata «x, x. . i . . ¥,

X[

) 31

2 Jk(fi%)" N :; kﬂxh
' [\mme(J

XV\ JL . J VV\.WIX
Y1x N VbS c‘;;f S~
\l‘

10/13/16 159
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Kernel trick has helped Non- r. Yanjun Qi / /

traditional data like strings and trees
able to be used as input to SVM, ( 3,
instead of feature vectors >< /

Vector vs. Relational data

e.g. Graphs,
Sequences,
3D structures,

10/13/16 Original Space Feature Space 6o



Mercer Kernel vs. Smoothing Kernel

 The Kernels used in Support Vector Machines
are different from the Kernels used in

LocalWeighted /Kernel Regression.

e We can think

— Support Vector Machines’ kernels as Mercer
Kernels

— Local Weighted / Kernel Regression’s kernels as
Smoothing Kernels
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Why do SVMs work?

|EI If we are using huge features spaces (e.g., with _‘
kernels), how come we are not overfitting the data?

v" Number of parameters remains the same (and most
are set to 0)

v While we have a lot of input values, at the end we
only care about the support vectors and these are
usually a small group of samples

v' The minimization (or the maximizing of the margin)
function acts as a sort of regularization term leading to
reduced overfitting

10/13/16 162



Why SVM Works?

Vapnik argues that the fundamental problem is not the number of parameters
to be estimated. Rather, the problem is about the flexibility of a classifier

Vapnik argues that the flexibility of a classifier should not be characterized by
the number of parameters, but by the capacity of a classifier

— This is formalized by the “VC-dimension” of a classifier

The SVM objective can also be justified by structural risk minimization: the
empirical risk (training error), plus a term related to the generalization ability
of the classifier, is minimized

Another view: the SVM loss function is analogous to ridge regression. The
term % | |w| |2 “shrinks” the parameters towards zero to avoid overfitting
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Today

1 Support Vector Machine (SVM) _‘
v’ History of SVM

v’ Large Margin Linear Classifier

v’ Define Margin (M) in terms of model parameter

v Optimization to learn model parameters (w, b)

v Non linearly separable case

v Optimization with dual form

v Nonlinear decision boundary

‘\/ Practical Guide
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Software

A list of SVM implementation can be found at
— http://www.kernel-machines.org/software.html

Some implementation (such as LIBSVM) can handle
multi-class classification

SVMLight is among one of the earliest implementation
of SVM

Several Matlab toolboxes for SVM are also available



Summary: Steps for Using SVM in HW

Prepare the feature-data matrix
Select the kernel function to use

Select the parameter of the kernel function and the

value of C

— You can use the values suggested by the SVM software, or you
can set apart a validation set to determine the values of the
parameter

Execute the training algorithm and obtain the \alpha.

Unseen data can be classified using the \alpha.and the
support vectors
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Practical Guide to SVM

* From authors of as LIBSVM: _‘

— A Practical Guide to Support Vector Classification
Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen
Lin, 2003-2010

— http://www.csie.ntu.edu.tw/~cjlin/papers/guide/
cuide.pdf

10/13/16 167



LIBSVM

e http://www.csie.ntu.edu.tw/~cjlin/libsvm/
v'Developed by Chih-Jen Lin etc.
v'Tools for Support Vector classification

v'Also support multi-class classification

v C++/Java/Python/Matlab/Perl wrappers
v'Linux/UNIX/Windows

v'SMO implementation, fast!!!

A Practical Guide to Support Vector
Classification



(a) Data file formats for LIBSVM

* Training.dat

+1 1:0.708333 2:1 3:1 4:-0.320755

-1 1:0.583333 2:-1 4:-0.603774 5:1

+1 1:0.166667 2:1 3:-0.333333 4:-0.433962
-1 1:0.458333 2:1 3:1 4:-0.358491 5:0.374429

 Testing.dat
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(b) Feature Preprocessing

(1) Categorical Feature _‘

— Recommend using m numbers to represent an m-
category attribute.

— Only one of the m numbers is one, and others are zero.

— For example, a three-category attribute such as {red,
green, blue} can be represented as (0,0,1), (0,1,0), and
(1,0,0)

A Practical Guide to Support Vector

10/13/16 . re . 170
13/ Classification
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Feature Preprocessing

e (2) Scaling before applying SVM is very _‘
Important

— to avoid attributes in greater numeric ranges
dominating those in smaller numeric ranges.

— to avoid numerical difficulties during the calculation

— Recommendlinearly s%ach attribute to the
range [1, +1] or [O, 1]. o 0

D Nﬂwlz‘yﬁw Y sed |
X~ Xnin Té@gmlz% = ﬂ(‘k?__g"@(.,b]

} . WY —X M A Practical Guide to Support Vector

10/13/16 J Classification i
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Cov i-Th chtw-e§ liper

fparstim
‘ _ oh X X p
D§ Comtorwd = X X, D EMQ=0
_ | _ X — h\l‘h(yt\)
SCI\I,% . QXL +£ = 9'2- M:X(X,)" an(x,‘)
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Of course we have to use the same method to scale both training and testing
data. For example, suppose that we scaled the first attribute of training data from
[—10,+10] to [—1, +1]. If the first attribute of testing data lies in the range [—11, +8],
we must scale the testing data to [—1.1,+0.8]. See Appendix B for some real examples.

l If training and testing sets are separately scaled to [0, 1], the resulting accur;is
lower than 70%.

$ ../svm-scale -1 0 svmguide4 > svmguide4.scale

$ ../svm-scale -1 0 svmguide4.t > svmguide4.t.scale
$ python easy.py svmguide4.scale svmguide4.t.scale
Accuracy = 69.2308% (216/312) (classification)

Using the same scaling factors for training and testing sets, we obtain much better

accuracy.

$ ../svm-scale -1 0 -s range4 svmguide4 > svmguide4.scale
$ ../svm-scale -r range4 svmguide4.t > svmguide4.t.scale
$ python easy.py svmguide4.scale svmguide4.t.scale
Accuracy = 89.4231% (279/312) (classification)



Feature Preprocessing

* (3) missing value
— Very very tricky !
— Easy way: to substitute the missing values by the
mean value of the variable

— A little bit harder way: imputation using nearest
neighbors

— Even more complex: e.g. EM based (beyond the
scope)

A Practical Guide to Support Vector
Classification
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(c) Model Selection

Our goal: find the model M which minimizes the test error:

A

test error
error —/

training error

model complexity

10/13/16 175
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(c) Model Selection (e.g. for linear kernel)

T

i

e linear: K(x;,X;) =X

Xj. O

Select the

(a) Training data and an overfitting classifier (b) Applying an overfitting classifier on testing
data

10/13/16 176

(c) Training data and a better classifier (d) Applying a better classifier on testing data
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(c) Model Selection

I ]
e radial basis function (RBF): K (x;,x;) = exp(—7||xi — x;||°), v > 0.

two parameters for an RBF kernel: C and v

e polynomial: K(x;,x;) = (yx;7x; +1)% v > 0.

Three parameters for a polynomial kernel

A Practical Guide to Support Vector

10/13/16 . re . 177
/13/ Classification



(d) Pipeline Procedures

e (1) train / test
e (2) k-folds cross validation

e (3) k-CV on train to choose
hyperparameter / then test
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Evaluation Choice-I:
Train and Test

target/class
|
‘;’* Training dataset
B model  |consists of input-
training .
dataset i learn f output pairs
B
test
dataset

apply
model

=3 | = |2 2| -
b o O =

Measure Loss on pair

1x,) > (fx), ¥

10/13/16 179
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Evaluation Choice-11:
Cross Validation

|_-_Problem: don’t have enough data to set aside a
test set
e Solution: Each data point is used both as train
and test
e Common types:
-K-fold cross-validation (e.g. K=5, K=10)
-2-fold cross-validation
-Leave-one-out cross-validation (LOOCV)

A good practice is : to random shuffle all
training sample before splitting

10/13/16 180



Why Maximum Margin for SVM ?

1. Intuitively this feels safest.
| . 2. If we' ve made a small error in the
denotes +1 R location of the boundary (it s been jolted
° denotes -1 . . in 1ts perpendicular direction) this gives us
° least chance of causing a
1 - ) misclassification.
/ B . 3. LOOCYV is easy since the model is
~ 0 ° > o °
Support Vectors L - immune to removal of any non-support-
are those ) vector datapoints.
datapoints that the < , _
margin pushes up 4. There s some th.eory (using VC
against ° o dimension) that 1s related to (but not the
same as) the proposition that this is a good
thing.
/ 5. Empirically it works very very well.

10/13/16 Dr. Yanjun Qi / UVA CS 6316/

f16
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Evaluation Choice-111I:

Many beginners use the following procedure now:

r e Transform data to the format of an SVM package \

e Randomly try a few kernels and parameters

We propose that beginners try the following procedure first:

e Transform data to the format of an SVM package

e Conduct simple scaling on the data

e Consider the RBF kernel K (x,y) = e 7Ix~v/*
e Use cross-validation to find the best parameter C and
e Use the best parameter C' and + to train the whole training set®

A Practical Guide to Support Vector Classification
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File Run
Training File —~ Scalar ———~ Gnd
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# Running ~/ibsvm-2.36d/svm-predict AimpA@12792.8 AmpA@13338.10 AmpA@13338.12
Accuracy = 87.8049% (36/41) (classification)

Mean squared error = 0.487805 (regression) . .
Squared correlation coefficient = nan (regression) A Practical Guide to Support Vector
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|




Dr. Yanjun Qi / UVA CS 6316 / f16

Today: Review & Practical Guide

. Support Vector Machine (SVM) _‘
v’ History of SVM

v’ Large Margin Linear Classifier

v’ Define Margin (M) in terms of model parameter

v’ Optimization to learn model parameters (w, b)

v Non linearly separable case

v' Optimization with dual form

v Nonlinear decision boundary

-\/ Practical Guide

v’ File format / LIBSVM
v’ Feature preprocsssing
v Model selection

v’ Pipeline procedure
10/13/16 184
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Support Vector Machine
Task classification :
| |  Kkxo=-0w ew@
Represlentation . Kernel Tric- Func K(xi, xj) !
Score Function Margin + Hinge
1 5 Loss (olptlonal)
Search/Optimization QP with Dual form
f : 1 W=Eaixiyz
Models, . i
Parameters Dual Weights
S max Yo=Y aayyx’x
argminzflwiZwLCEgi o0 bt i oy et iV X X
w.,b - i : Y

subject to Vx. € Dtrain: y, (xl. "W+ b) >]- Z(x,.yi =0, o 20 185
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