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Where	are	we	?	è		
Five	major	secFons	of	this	course	

q 	Regression	(supervised)	
q 	ClassificaFon	(supervised)	
q 	Unsupervised	models		
q 	Learning	theory		
q 	Graphical	models		
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Today	

q 	Supervised	ClassificaFon		
q 	Support	Vector	Machine	(SVM)	
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 e.g. SUPERVISED LEARNING 
•  Find function to map input space  X  to 

output space Y  
 
•  So that the difference between y and f(x) 

of each example x is small. 
 

 
 

10/13/16	

I	believe	that	this	book	is	
not	at	all	helpful	since	it	
does	not	explain	thoroughly	
the	material	.	it	just	provides	
the	reader	with	tables	and	
calculaFons	that	someFmes	
are	not	easily	understood	…	

x	

y	
-1	

Input	X	:	e.g.	a	piece	of	English	text		

Output	Y:				{1	/	Yes	,		-1	/	No	}		
e.g.	Is	this	a	posiFve	product	review	?	

e.g.		
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A	Dataset		
for	classificaFon		

•  Data/points/instances/examples/samples/records:	[	rows	]	
•  Features/a0ributes/dimensions/independent	variables/covariates/

predictors/regressors:	[	columns,	except	the	last]		
•  Target/outcome/response/label/dependent	variable:	special	

column	to	be	predicted	[	last	column	]		

10/13/16	 5	

Output Class: 
categorical 

variable	
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 e.g. SUPERVISED Linear Binary Classifier 

    f          x y 

f(x,w,b) = sign(wT x + b) 

w	x	+	b<0	

Courtesy	slide	from	Prof.	Andrew	Moore’s	tutorial	
	

?	

?	

w	x	+	b>0	

denotes +1 point 

denotes -1 point 

denotes future 
points 

 

?	
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ApplicaFon	1:	Classifying	Galaxies	
Early	

Intermediate	

Late	

Data Size:  
•  72 million stars, 20 million galaxies 
•  Object Catalog: 9 GB 
•  Image Database: 150 GB  

Class:  
•  Stages of Formation 

Attributes: 
•  Image features,  
•  Characteristics of light 

waves received, etc. 

Courtesy: http://aps.umn.edu 

From [Berry & Linoff] Data Mining Techniques, 1997 
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ApplicaFon	2:	Cancer	ClassificaDon	
using	gene	expression			
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X	N patient 
blood 

samples 

p genes’ quantities in blood cell  
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ApplicaFon	3:	–	
Text	Documents,	e.g.	Google News 
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•  Each	document	becomes	a	`term'	vector,		
– each	term	is	an	(akribute)	of	the	vector,	
–  the	value	of	each	describes	the	number	of	Fmes	
the	corresponding	term	occurs	in	the	document.		

Document 1

season

tim
eout

lost

w
in

gam
e

score

ball

play

coach

team

Document 2

Document 3

3 0 5 0 2 6 0 2 0 2

0

0

7 0 2 1 0 0 3 0 0

1 0 0 1 2 2 0 3 0

Text	Document	RepresentaFon	

10/13/16	
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11 

Text Categorization 
 

•  Pre-given categories and labeled document 
examples (Categories may form hierarchy) 

•  Classify new documents  
•  A standard supervised learning problem 

Categorization 
System 

… 

Sports 
 
Business 
 
Education 
 
 
Science 
 
 

… 
Sports 
Business 
 
Education 

10/13/16	
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Examples of Text Categorization 

•  News article classification 
•  Meta-data annotation 
•  Automatic Email sorting 
•  Web page classification  

10/13/16	



ApplicaFon	4:	–	ObjecFve	recogniFon	/	Image	
Labeling		(	Label	Images	into	predefined	classes	)	
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Image	RepresentaFon	for		
–	ObjecFve	recogniFon		

•  Image	representaFon	è	bag	of	“visual	words”	

10/13/16	
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ApplicaFon	5:	–	Audio	ClassificaFon	

	
	
	
	
	

•  Real-life	applicaFons:	
–  Customer	service	phone	rouFng	
–  Voice	recogniFon	sonware	

10/13/16	
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Music	InformaFon	Retrieval	Systems	
e.g.,	AutomaFc	Music	ClassificaFon	

•  Many	areas	of	research	in	music	informaFon	
retrieval	(MIR)	involve	using	computers	to	classify	
music	in	various	ways	
–  Genre	or	style	classificaFon	
– Mood	classificaFon	
–  Performer	or	composer	idenFficaFon	
– Music	recommendaFon		
–  Playlist	generaFon	
–  Hit	predicFon	
–  Audio	to	symbolic	transcripFon	
–  etc.	

•  Such	areas	onen	share	similar	central	procedures	
18	10/13/16	
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Music	InformaFon	Retrieval	Systems	
e.g.,	AutomaFc	Music	ClassificaFon	

•  Musical	data	collecFon	
–  The	instances	(basic	enFFes)	

to	classify	
–  Audio	recordings,	scores,	

cultural	data,	etc.	
•  Feature	extracFon	

–  Features	represent	
characterisFc	informaFon	
about	instances	

–  Must	provide	sufficient	
informaFon	to	segment	
instances	among	classes	
(categories)	

•  Machine	learning	
–  Algorithms	(“classifiers”	or	
“learners”)	learn	to	associate	
feature	pakerns	of	instances	
with	their	classes	

Musical	Data	
CollecDon	

	

Basic	ClassificaDon	Tasks	

Feature	ExtracDon	
	

Machine	Learning	

Metadata	

Metadata	
Analysis	

 

	

ClassificaDons	

Music	

Classifier	
Training 

	

10/13/16	
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Audio,	Types	of	features	
•  Low-level	

–  Associated	with	signal	
processing	and	basic	auditory	
percepFon	

–  e.g.	spectral	flux	or	RMS	
–  Usually	not	intuiFvely	musical	

•  High-level	
–  Musical	abstracFons	
–  e.g.	meter	or	pitch	class	

distribuFons	
•  Cultural	

–  Sociocultural	informaFon	
outside	the	scope	of	auditory	
or	musical	content	

–  e.g.	playlist	co-occurrence	or	
purchase	correlaFons	

Feature	ExtracDon	

Low-Level	
Features 

	

High-Level	
Features	

	

Cultural	
Features	
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Where	are	we	?	è		
Three	major	secFons	for	classificaFon 

•  We can divide the large variety of classification 
approaches into roughly three major types  

      
 1. Discriminative 
              - directly estimate a decision rule/boundary 
              - e.g., support vector machine, decision tree, logistic regression 
  
 2. Generative: 
              - build a generative statistical model 
              - e.g., Bayesian networks, Naïve Bayes classifier 
       
  3. Instance based classifiers 
          - Use observation directly (no models) 
          - e.g. K nearest neighbors 

10/13/16	 21	
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A study comparing Classifiers	

10/13/16	 22	
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A study comparing Classifiers  
è 11	binary	classificaFon	problems		
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A study comparing Classifiers  
è 11	binary	classificaFon	problems	/	8	metrics		
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RaFo	of	PosiFve	Class	(binary	case)	

•  Class	imbalance	issue	

•  Balanced	accuracy:		

10/13/16	
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RaFo	of	PosiFve	Class	(binary	case)	

10/13/16	
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Today	

q 	Supervised	ClassificaFon		
q 	Support	Vector	Machine	(SVM)	

ü 	History	of	SVM		
ü 	Large	Margin	Linear	Classifier		
ü 	Define	Margin	(M)	in	terms	of	model	parameter	
ü 	OpFmizaFon	to	learn	model	parameters	(w,	b)		
ü 	Linearly	Non-separable	case	
ü 	OpFmizaFon	with	dual	form		
ü 	Nonlinear	decision	boundary		
ü 		MulFclass	SVM			
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History	of	SVM	
•  SVM	is	inspired	from	staFsFcal	learning	theory	[3]	
•  SVM	was	first	introduced	in	1992	[1]		
•  SVM	becomes	popular	because	of	its	success	in	handwriken																		digit	

recogniFon	(1994)	
–  1.1%	test	error	rate	for	SVM.	This	is	the	same	as	the	error	rates	of	a	carefully	

constructed	neural	network,	LeNet	4.	
•  SecFon	5.11	in	[2]	or	the	discussion	in	[3]	for	details	

•  SVM	is	now	regarded	as	an	important	example	of	“kernel	methods”,	
arguably	the	hokest	area	in	machine	learning	20	years	ago		

[1] B.E. Boser et al. A Training Algorithm for Optimal Margin Classifiers. Proceedings of the Fifth Annual Workshop on 
Computational Learning Theory 5 144-152, Pittsburgh, 1992.  

[2] L. Bottou et al.  Comparison of classifier methods: a case study in handwritten digit recognition. Proceedings of the 12th 
IAPR International Conference on Pattern Recognition, vol. 2, pp. 77-82, 1994. 

[3] V. Vapnik. The Nature of Statistical Learning Theory. 2nd edition, Springer, 1999. 
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ApplicaFons	of	SVMs	

•  Computer	Vision	
•  Text	CategorizaFon	
•  Ranking	(e.g.,	Google	searches)	
•  Handwriken	Character	RecogniFon	
•  Time	series	analysis	
•  BioinformaFcs	
•  ……….		

	àLots	of	very	successful	applicaFons!!!	

10/13/16	
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Handwriken	digit	recogniFon	

In	90s,	SVM	
achieves	the	

10/13/16	
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A	Dataset		
for	binary		

classificaFon		

•  Data/points/instances/examples/samples/records:	[	rows	]	
•  Features/a0ributes/dimensions/independent	variables/covariates/

predictors/regressors:	[	columns,	except	the	last]		
•  Target/outcome/response/label/dependent	variable:	special	

column	to	be	predicted	[	last	column	]		

10/13/16	 33	

Output as 
Binary Class:  

only two 
possibilities	
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Affine	hyperplanes	

•  hkps://en.wikipedia.org/wiki/Hyperplane	
•  any	hyperplane	can	be	given	in	coordinates	as	
the	soluFon	of	a	single	linear	(
algebraic	)	equaFon	of	degree	1.	

	

10/13/16	
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Review	:	
Vector		Product,	Orthogonal,	and	Norm	

For	two	vectors	x	and	y,		

xTy	

is	called	the	(inner)	vector	product.	

The	square	root	of	the	product	of	a	vector	with	
itself,		

is	called	the	2-norm	(	|x|2	),	can	also	write	as	|x|		

x	and	y	are	called	orthogonal	if	

xTy	=	0	

10/13/16	 36	
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Today	

q 	Supervised	ClassificaFon		
q 	Support	Vector	Machine	(SVM)	

ü 	History	of	SVM		
ü 	Large	Margin	Linear	Classifier		
ü 	Define	Margin	(M)	in	terms	of	model	parameter	
ü 	OpFmizaFon	to	learn	model	parameters	(w,	b)		
ü 	Linearly	Non-separable	case	
ü 	OpFmizaFon	with	dual	form		
ü 	Nonlinear	decision	boundary		
ü 		MulFclass	SVM			
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 Linear	Classifiers	
f										x	 yest	

denotes	+1	
denotes	-1	

How	would	you	
classify	this	data?	

10/13/16	 38	
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 Linear	Classifiers	
f										x	 yest	

denotes	+1	
denotes	-1	

How	would	you	
classify	this	data?	
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 Linear	Classifiers	
f										x	 yest	

denotes	+1	
denotes	-1	

How	would	you	
classify	this	data?	
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 Linear	Classifiers	
f										x	 yest	

denotes	+1	
denotes	-1	

How	would	you	
classify	this	data?	
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 Linear	Classifiers	
f										x	 yest	

denotes	+1	
denotes	-1	

Any	of	these	would	
be	fine..	
	
..but	which	is	best?	

10/13/16	 42	
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Classifier	Margin	
f										x	 yest	

denotes	+1	
denotes	-1	 Define	the	margin	of	

a	linear	classifier	as	
the	width	that	the	
boundary	could	be	
increased	by	before	
hi{ng	a	datapoint.	

10/13/16	 43	
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Maximum	Margin	
f										x	 yest	

denotes	+1	
denotes	-1	 The	maximum	

margin	linear	
classifier	is	the	
linear	classifier	with	
the,	maximum	
margin.	
This	is	the	simplest	
kind	of	SVM	(Called	
an	LSVM)	

Linear	SVM	
10/13/16	 44	
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Maximum	Margin	
f										x	 yest	

denotes	+1	
denotes	-1	 The	maximum	

margin	linear	
classifier	is	the	
linear	classifier	with	
the,	maximum	
margin.	
This	is	the	simplest	
kind	of	SVM	(Called	
an	LSVM)	

Support	Vectors	are	
those	datapoints	
that	the	margin	
pushes	up	against	

Linear	SVM	
10/13/16	 45	
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Maximum	Margin	
f										x	 yest	

denotes	+1	
denotes	-1	 The	maximum	

margin	linear	
classifier	is	the	
linear	classifier	with	
the,	maximum	
margin.	
This	is	the	simplest	
kind	of	SVM	(Called	
an	LSVM)	

Support	Vectors	are	
those	datapoints	
that	the	margin	
pushes	up	against	

Linear	SVM	

f(x,w,b)	=	sign(wTx	+	b)	

10/13/16	 46	
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Max margin classifiers 

•  Instead of fitting all points, focus on boundary points 

•  Learn a boundary that leads to the largest margin from both 
sets of points 

From all the 
possible boundary 
lines, this leads to 
the largest margin 
on both sides 

10/13/16	 47	
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Max margin classifiers 

•  Instead of fitting all points, focus on boundary points 

•  Learn a boundary that leads to the largest margin from points on both 
sides 

D 

D 
Why?  

•  Intuitive, ‘makes 
sense’ 

•  Some theoretical 
support 

•  Works well in practice 

10/13/16	 48	
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Max margin classifiers 

•  Instead of fitting all points, focus on boundary points 

•  Learn a boundary that leads to the largest margin from points on both 
sides 

D 

D 
Also known as linear 
support vector 
machines (SVMs) 

These are the vectors 
supporting the boundary 

10/13/16	 49	
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Max-margin	&	Decision	Boundary	
•  The	decision	boundary	should	be	as	far	away	from	

the	data	of	both	classes	as	possible	

Class -1 

Class 1 

W is a p-dim 
vector; b is a 

scalar	

10/13/16	
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Specifying a max margin classifier 

Predict class +1 

Predict class -1 
wTx+b=+1 

wTx+b=0 

wTx+b=-1 

Classify as +1            if                  wTx+b >= 1 
 
Classify as -1             if                  wTx+b <= - 1 
 
Undefined                  if                 -1 <wTx+b < 1 

Class +1 plane 

boundary 

Class -1 plane 

10/13/16	 51	
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Specifying a max margin classifier 

Predict class +1 

Predict class -1 
wTx+b=+1 

wTx+b=0 

wTx+b=-1 

Classify as +1            if                  wTx+b >= 1 
 
Classify as -1             if                  wTx+b <= - 1 
 
Undefined                  if                 -1 <wTx+b < 1 

Is the linear separation 
assumption realistic?  
 

We will deal with this shortly, 
but lets assume it for now 

10/13/16	 52	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	



Today	

q 	Supervised	ClassificaFon		
q 	Support	Vector	Machine	(SVM)	

ü 	History	of	SVM		
ü 	Large	Margin	Linear	Classifier		
ü 	Define	Margin	(M)	in	terms	of	model	parameter	
ü 	OpFmizaFon	to	learn	model	parameters	(w,	b)		
ü 	Linearly	Non-separable	case	
ü 	OpFmizaFon	with	dual	form		
ü 	Nonlinear	decision	boundary		
ü 		MulFclass	SVM			
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Maximizing the margin 

Predict class +1 

Predict class -1 
wTx+b=+1 

wTx+b=0 

wTx+b=-1 

Classify as +1   if   wTx+b >= 1 
Classify as -1    if   wTx+b <= - 1 
Undefined         if   -1 <wTx+b < 1 M 

•  Lets define the width of the margin by M 

•  How can we encode our goal of maximizing M in terms of 
our parameters (w and b)? 

•  Lets start with a few obsevrations 
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Margin	M	

10/13/16	
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è	Review	:Vector	SubtracFon	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	
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Maximizing the margin: 
observation-1 

Predict class +1 

Predict class -1 
wTx+b=+1 

wTx+b=0 

wTx+b=-1 

Classify as +1   if   wTx+b >= 1 
Classify as -1    if   wTx+b <= - 1 
Undefined         if   -1 <wTx+b < 1 

M 

•  Observation 1: the vector w is orthogonal to the +1 plane 

•  Why? 

Let u and v be two points on the +1 plane, 
then for the vector defined by u and v we have 
wT(u-v) = 0  

Corollary: the vector w is orthogonal to the -1 plane  10/13/16	 57	
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The	gradient	points	in	the	direc9on	of	the	greatest	
rate	of	increase	of	the	func9on	and	its	magnitude	is	
the	slope	of	the	graph	in	that	direc9on	



ObservaFon	1		
è	Review	:	Orthogonal	

10/13/16	 59	
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Maximizing the margin: 
observation-1	

•  	ObservaDon	1:	the	vector	w	is	orthogonal	to	the	+1	plane	

Class 1 

Class 2 

M 

10/13/16	
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Maximizing the margin: 
observation-2 

Predict class +1 

Predict class -1 
wTx+b=+1 

wTx+b=0 

wTx+b=-1 

Classify as +1   if   wTx+b >= 1 
Classify as -1    if   wTx+b <= - 1 
Undefined         if   -1 <wTx+b < 1 

M 

•  Observation 1: the vector w is orthogonal to the +1 and -1 planes 

•  Observation 2: if x+ is a point on the +1 plane and x- is the closest point 
to x+ on the -1 plane then  

                                        x+ = λ w + x- 

x+  

x-  

Since w is orthogonal to both planes 
we need to ‘travel’ some distance 
along w to get from x+  to x-  

10/13/16	 61	
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Putting it together 

Predict class +1 

Predict class -1 
wTx+b=+1 

wTx+b=0 

wTx+b=-1 

M 

•  wT x+ + b = +1 

•  wT x- + b = -1 

•  x+ = λ w + x-  

•  | x+ - x- | = M 

x+  

x-  

We can now define M in 
terms of w and b 
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Putting it together 

Predict class +1 

Predict class -1 
wTx+b=+1 

wTx+b=0 

wTx+b=-1 

M 

•  wT x+ + b = +1 

•  wT x- + b = -1 

•  x+ = λw + x-  

•  | x+ - x- | = M 

x+  

x-  

We can now define M in 
terms of w and b 

wT x+ + b = +1 

 => 

wT (λw + x-) + b = +1 
=> 

wTx- + b  + λwTw = +1 

 => 

-1  + λwTw = +1 

=> 

λ = 2/wTw 
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Putting it together 

Predict class +1 

Predict class -1 
wTx+b=+1 

wTx+b=0 

wTx+b=-1 

M 

•  wT x+ + b = +1 

•  wT x- + b = -1 

•  x+ = λ w + x-  

•  | x+ - x- | = M 

•  λ = 2/wTw 

x+  

x-  

We can now define M in 
terms of w and b 

M = |x+ - x-| 

 => 

=> 

M =| λw |= λ | w |= λ wTw

€ 

M = 2 wTw
wTw

=
2
wTw
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Finding the optimal parameters 

Predict class +1 

Predict class -1 
wTx+b=+1 

wTx+b=0 

wTx+b=-1 

M x+  

x-  

€ 

M =
2
wTw

We can now search for the optimal parameters by finding a 
solution that: 

1.  Correctly classifies all points 

2.  Maximizes the margin (or equivalently minimizes wTw) 

Several optimization methods can be used: 
Gradient descent, simulated annealing, EM etc. 
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Optimization Step  
i.e. learning optimal parameter for SVM 

Predict class +1 

Predict class -1 
wTx+b=+1 

wTx+b=0 

wTx+b=-1 

M x+  

x-  
€ 

M =
2
wTw

Min (wTw)/2  
subject to the following constraints: 

For all  x in class + 1 

wTx+b >= 1 

For all  x in class - 1 

wTx+b <= -1 

} A total of n 
constraints if 
we have n 
input samples 
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Support Vector Machine 

classification 

Kernel Func K(xi, xj) 

Margin + Hinge 
Loss (optional)  

QP with Dual form 

Dual Weights 

Task  

Representation  

Score Function  

Search/Optimization  

Models, 
Parameters 

€ 

w = α ixiyi
i
∑

argmin
w,b

wi
2

i=1
p∑ +C εi

i=1

n

∑

subject to  ∀xi ∈ Dtrain : yi xi ⋅w+b( ) ≥1−εi

K(x, z) :=Φ(x)TΦ(z)
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!!

maxα α i −
i
∑ 1

2 α iα jyi y j
i,j
∑ xi

Txj

α iyi =0
i
∑ , α i ≥0 ∀i



Optimization Step  
i.e. learning optimal parameter for SVM 

Predict class +1 

Predict class -1 
wTx+b=+1 

wTx+b=0 

wTx+b=-1 

M x+  

x-  
€ 

M =
2
wTw

Min (wTw)/2  
subject to the following constraints: 

For all  x in class + 1 

wTx+b >= 1 

For all  x in class - 1 

wTx+b <= -1 

} A total of n 
constraints if 
we have n 
input samples 

10/13/16	 70	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	



Optimization Step  
i.e. learning optimal parameter for SVM 

Predict class +1 

Predict class -1 
wTx+b=+1 

wTx+b=0 

wTx+b=-1 

M x+  

x-  
€ 

M =
2
wTw

Min (wTw)/2  
subject to the following constraints: 

For all  x in class + 1 

wTx+b >= 1 

For all  x in class - 1 

wTx+b <= -1 

} A total of n 
constraints if 
we have n 
input samples 
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argmin
w,b

wi
2

i=1
p∑

subject to  ∀x i ∈Dtrain : yi x i ⋅w + b( ) ≥1



Optimization Review:  
Ingredients	

•  ObjecFve	funcFon	
•  Variables	
•  Constraints	

Find	values	of	the	variables	
that	minimize	or	maximize	the	objecFve	funcFon	
while	saFsfying	the	constraints	

72	10/13/16	
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Optimization with Quadratic 
programming (QP) 

 Quadratic programming solves optimization problems of the following form: 

€ 

minU
uTRu
2

+ dTu + c

 subject to n inequality constraints: 

  

€ 

a11u1 + a12u2 + ...≤ b1
! ! !

an1u1 + an2u2 + ...≤ bn

 and k equivalency constraints: 

  

€ 

an+1,1u1 + an+1,2u2 + ...= bn+1

! ! !

an+k,1u1 + an+k,2u2 + ...= bn+k

Quadratic term 

When a problem can be 
specified as a QP problem we 
can use solvers that are better 
than gradient descent or 
simulated annealing 
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SVM as a QP problem 

€ 

minU
uTRu
2

+ dTu + c

 subject to n inequality constraints: 

  

€ 

a11u1 + a12u2 + ...≤ b1
! ! !

an1u1 + an2u2 + ...≤ bn

 and k equivalency constraints: 

  

€ 

an+1,1u1 + an+1,2u2 + ...= bn+1

! ! !

an+k,1u1 + an+k,2u2 + ...= bn+k

Predict class +1 

Predict class -1 
wTx+b=+1 

wTx+b=0 

wTx+b=-1 

M x+  

x-  
€ 

M =
2
wTw

Min (wTw)/2  
subject to the following inequality 
constraints: 
For all  x in class + 1 

wTx+b >= 1 

For all  x in class - 1 

wTx+b <= -1 } A total of n 
constraints if 
we have n 
input samples 

10/13/16	 74	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	

R as I matrix, d as zero 
vector, c as 0 value 
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Linearly Non separable case 
•  So far we assumed that a linear plane can perfectly  
separate the points 

•  But this is not usally the case 

 - noise, outliers 
How can we convert this to a 
QP problem? 

-  Minimize training errors? 

      min wTw 

      min  #errors 

Hard to solve (two 
minimization problems) 
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Linearly Non separable case 
•  So far we assumed that a linear plane can perfectly  
separate the points 

•  But this is not usally the case 

 - noise, outliers 
How can we convert this to a 
QP problem? 

-  Minimize training errors? 

      min wTw 

      min  #errors 

-  Penalize training errors: 

 min wTw+C*(#errors) 

Hard to solve (two 
minimization problems) 

Hard to encode in a QP 
problem 
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Linearly Non separable case 
•  Instead of minimizing the number of misclassified points we can 
minimize the distance between these points and their correct plane 

-1 plane 

+1 plane 

j k 

The new optimization problem is: 

!!
minw

wTw
2 + Cε i

i=1

n

∑
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Linearly Non separable case 
•  Instead of minimizing the number of misclassified points we can 
minimize the distance between these points and their correct plane 

-1 plane 

+1 plane 

j k 

The new optimization problem is: 

subject to the following inequality 
constraints: 
For all  xi in class + 1 

wTxi+b >= 1-   i 
For all  xi in class - 1 

wTxi+b <= -1+   i 

!!
minw

wTw
2 + Cε i

i=1

n

∑

Wait. Are we missing 
something? 
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Final optimization for linearly  
non-separable case 

The new optimization problem is: 

subject to the following inequality 
constraints: 

€ 

minw
wTw
2

+ Cεi
i=1

n

∑

For all i 

} A total of n 
constraints 

} Another n 
constraints 
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Final optimization for linearly  
non-separable case 

The new optimization problem is: 

subject to the following inequality 
constraints: 

€ 

minw
wTw
2

+ Cεi
i=1

n

∑

For all i 

} A total of n 
constraints 

} Another n 
constraints 
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Where are we ? 
Two optimization problems: For the separable and non separable cases 

For all  x in class + 1 

wTx+b >= 1 

For all  x in class - 1 

wTx+b <=-1 

€ 

minw
wTw
2

+ Cεi
i=1

n

∑

For all i 

€ 

minw
wTw
2
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Model	SelecFon,	find	right	C		

Select	the	
right	

penalty	
parameter	

C		
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Where are we ? 
Two optimization problems: For the separable and non separable cases 

Min (wTw)/2  

€ 

minw
wTw
2

+ Cεi
i=1

n

∑

For all i 

•  Instead of solving these QPs directly we will solve  a dual 
formulation of the SVM optimization problem 

•  The main reason for switching to this type of representation 
is that it would allow us to use a neat trick that will make our 
lives easier (and the run time faster) 
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Optimization Review:  
Constrained	OpFmizaFon	
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minu	u2	

s.t.	u	>=	b	

b Global min 

Allowed min 

b Global min 

Allowed min 

Case	1:		

Case	2:		



Optimization Review:  
Constrained	OpFmizaFon	
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minu	u2	

s.t.	u	>=	b	

b Global min 

Allowed min 

b Global min 

Allowed min 

Case	1:		

Case	2:		



Optimization Review:  
Constrained	OpFmizaFon	with	Lagrange			

•  When	with	equal	constraints		
•  è	opFmize	f(x),	subject	to	gi(x)<=0	

•  We	can	solve	the	above	using	the	“Method	of	
Lagrange	mulFpliers”		
–  convert	to	a	higher-dimensional	problem	
–  i.e.,	to	Minimize	

																									w.r.t.	

∑+ )()( xgxf iiλ

);( 11 knxx λλ ……

88	
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Optimization Review:  
Constrained	OpFmizaFon	with	Lagrange			

•  When	with	equal	constraints		
•  è	opFmize	f(x),	subject	to	gi(x)<=0	

•  We	can	solve	the	above	using	the	“Method	of	
Lagrange	mulFpliers”		
–  convert	to	a	higher-dimensional	problem	
–  i.e.,	to	Minimize	

																									w.r.t.	
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minu	u2	

s.t.	u	>=	b	
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minu	u2	

s.t.	u	>=	b	
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minu	u2	

s.t.	u	>=	b	
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minu	u2	

s.t.	u	>=	b	
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minu	u2	

s.t.	u	>=	b	

Dual	

Primal	



10/13/16	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	

95	

minu	u2	

s.t.	u	>=	b	

Dual	

Primal	



10/13/16	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	

96	

minu	u2	

s.t.	u	>=	b	

Dual	

Primal	
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minu	u2	

s.t.	u	>=	b	

Dual	

Primal	
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Optimization Review:  
Lagrangian	Duality	

•  The	Primal	Problem	
	
Primal:	
	
	
The	generalized	Lagrangian:	
	
	

		

		
the	a's	(ai≥0)	are	called	the	Lagarangian	mulFpliers		
	

Lemma:		
	
	
A	re-wri[en	Primal:	

		 

minw
s.t.

f0(w)
fi(w)≤0,			i =1,…,k

		 
L(w ,α )= f0(w)+ α i fi(w)

i=1

k

∑

		 
maxα ,α i≥0	L(w ,α )=

f0(w) if	w 	satisfies	primal	constraints
∞ o/w

⎧
⎨
⎪

⎩⎪

		 minwmaxα ,α i≥0	L(w ,α )
	
	
	

©	Eric	Xing	@	CMU,	2006-2008	10/13/16	
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Optimization Review:  
Lagrangian	Duality,	cont.	

•  Recall	the	Primal	Problem:	

•  The	Dual	Problem:	
	
	

•  Theorem	(weak	duality):		

•  Theorem	(strong	duality):	
	Iff	there	exist	a	saddle	point	of		

																		we	have		

		 minwmaxα ,α i≥0	L(w ,α )

		 maxα ,α i≥0minwL(w ,α )

		 d
* =maxα ,α i≥0minwL(w ,α )			 ≤ 			minwmaxα ,α i≥0	L(w ,α )= p

*

** pd =
		 L(w ,α )

10/13/16	



An alternative representation of the 
SVM QP 

•  We will start with the linearly separable case 

•  Instead of encoding the correct classification rule 
and constraint we will use Lagrange multiplies to 
encode it as part of the our minimization problem 

Min (wTw)/2 

s.t.  

(wTxi+b)yi >= 1 
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Recall that Lagrange multipliers can be 
applied to turn the following problem: 

!!!
Lprimal =

1
2 w

2
− α i yi(w ⋅x i +b)−1( )

i=1

N

∑



An alternative representation of the 
SVM QP 

•  We will start with the linearly separable case 

•  Instead of encoding the correct classification rule 
and constraint we will use Lagrange multiplies to 
encode it as part of the our minimization problem 

Min (wTw)/2 

s.t.  

(wTxi+b)yi >= 1 
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Recall that Lagrange multipliers can be 
applied to turn the following problem: 

!!!
Lprimal =

1
2 w

2
− α i yi(w ⋅x i +b)−1( )

i=1

N

∑
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!!

minw ,bmaxα
wTw
2 − α i[(wTxi +b)yi −1]

i
∑

α i ≥0 ∀i



10/13/16	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	

106	

!!

minw ,bmaxα
wTw
2 − α i[(wTxi +b)yi −1]

i
∑

α i ≥0 ∀i
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***	(										)	

The	Dual	Problem	

•  We	minimize	L		with	respect	to	w	and	b	first:	

	
	
	
Note	that	(*)	implies:					
	
	

•  Plus	(***)	back	to	L		,	and	using	(**),	we	have:	

),,(minmax , αα bwbwi
L0≥

!! 
∇wL(w ,b,α )! =w− α i yixi =0

i=1

train

∑ ,

!! 
∇bL(w ,b,α )! = α i yi =0

i=1

train

∑ ,

!!
w = α i yixi

i=1

train

∑

*	(			)	

!!! 
L(w ,b,α )= α i

i=1
∑ − 12 α iα j yi y j(x iTx j )

i , j=1
∑

**	(							)	

10/13/16	
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!!!
Lprimal =

1
2 w

2
− α i yi(w ⋅x i +b)−1( )

i=1

N

∑



Solving	for	w	that	gives	maximum	margin:	
1.  Combine	objecFve	funcFon	and	constraints	into	new	

objecFve	funcFon,	using	Lagrange	mulFpliers		\alphai	

2.  To	minimize	this	Lagrangian,	we	take	derivaFves	of	w	and	b	
and	set	them	to	0:	

	

Summary:	Dual	for	SVM	

!!!
Lprimal =

1
2 w

2
− α i yi(w ⋅x i +b)−1( )

i=1

N

∑
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3.  SubsFtuFng	and	rearranging	gives	the	dual	of	the	Lagrangian:	

	which	we	try	to	maximize	(not	minimize).	

4.  Once	we	have	the	\alphai,	we	can	subsFtute	into	previous	
equaFons	to	get	w	and	b.	

5.  This	defines	w	and	b	as	linear	combinaFons	of	the	training	
data.	

	

Summary:	Dual	for	SVM	

			
Ldual = α i

i=1

N

∑ − 12 i
∑ α iα j yi y jx i ⋅x j

j
∑
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!!
w = α i yixi

i=1

train

∑



Summary: Dual SVM for linearly 
separable case  

Dual formulation  

Substituting w into our target 
function and using the 
additional constraint we get: 

maxα αi −
i
∑ 1

2
αiα jyiyj

i,j
∑ xi

Txj

αiyi = 0
i
∑

αi ≥ 0 ∀i
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Easier	than	original	QP,	more	efficient	algorithms	exist	to	find	ai		



Optimization Review: Dual	Problem	

•  Solving	dual	problem	if	the	dual	
form	is	easier	than	primal	form	

	
•  Need	to	change	primal	

minimizaFon	to	dual	
maximizaFon		(OR	è	Need	to	
change	primal	maximizaFon	to	
dual	minimizaFon)	

•  Only	valid	when	the	original	
opFmizaFon	problem	is	convex/
concave	(strong	duality)	

Dual	Problem,		

Primal	Problem	
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Strong	
duality	



EXTRA	
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OpFmizaFon	Review:	Lagrangian	(even	
more	general	standard	form)	
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From	Stanford	“Convex	OpFmizaFon	—	Boyd	&	Vandenberghe		
	



OpFmizaFon	Review:	Lagrange	dual	funcFon		
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Inf(.):	greatest	
lower	bound		



10/13/16	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	

116	

OpFmizaFon	Review:		

inf	(.):	greatest	lower	bound		
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OpFmizaFon	Review:		

Key	for	SVM	Dual		



NOT	EXTRA	
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KKT	CondiFon	for	Strong	Duality	
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Dual	Problem,		

Primal	Problem	

Strong	
duality	
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KKT	=>	Support	vectors	

•  Note	the	KKT	condiFon	---	only	a	few	ai's	can	
be	nonzero!!	

!!! α i yi(w ⋅x i +b)−1( ) =0,!!!!i =1,…,n

a6=1.4 

Class 1 

Class 2 

a1=0.8 

a2=0 

a3=0 

a4=0 

a5=0 
a7=0 

a8=0.6 

a9=0 

a10=0 

Call	the	training	data	points	
whose	ai's	are	nonzero	the	
support	vectors	(SV)		

10/13/16	
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a6=1.4 

Class 1 

Class 2 

a1=0.8 

a2=0 

a3=0 

a4=0 

a5=0 

a7=0 

a8=0.6 

a9=0 

a10=0 

!!! α i yi(w ⋅x i +b)−1( ) =0,!!!!i =1,…,n



Dual SVM for linearly 
separable case – 

Training   
Our dual target function: maxα αi −

i
∑ 1

2
αiα jyiyj

i,j
∑ xi

Txj

αiyi = 0
i
∑

αi ≥ 0 ∀i

Dot product for all 
training samples  

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	



Dual SVM for linearly 
separable case – 

Testing  
To evaluate a new sample xts 
we need to compute: 

!!
wTxts +b= α iyi

i
∑ xi

Txts +b

Dot product with (“all” ??)  
training samples  
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yts
! = sign α i yi x i

Txts( )
i∈SupportVectors

∑ +b
⎛

⎝⎜
⎞

⎠⎟



Dual SVM - interpretation 

€ 

w = α ixiyi
i
∑

For     i that are 0, 
no influence 
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Dual formulation for linearly  
non-separable case 

Dual target function: 

!!

maxα α i −
i
∑ 1

2 α iα jyi y j
i,j
∑ xi

Txj

α iyi =0
i
∑
C >α i ≥0,∀i

The only difference is 
that the \alpha are now 
bounded  
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Hyperparameter	C	
should	be	tuned	
through	k-folds	CV	 	

This	is	very	similar	to	the	
opFmizaFon	problem	in	the	linear	
separable	case,	except	that	there	is	
an	upper	bound	C	on	ai	now	
	
Once	again,	efficient	algorithm	exist	
to	find	ai		

	



Dual formulation for linearly  
non-separable case 

Dual target function: 

!!

maxα α i −
i
∑ 1

2 α iα jyi y j
i,j
∑ xi

Txj

α iyi =0
i
∑
C >α i ≥0,∀i

To evaluate a new sample xj 
we need to compute: 

wTx j + b = αiyi
i
∑ xi

Txj + b

The only difference is 
that the \alpha are now 
bounded  
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Hyperparameter	C	
should	be	tuned	
through	k-folds	CV	 	

This	is	very	similar	to	the	
opFmizaFon	problem	in	the	linear	
separable	case,	except	that	there	is	
an	upper	bound	C	on	ai	now	
	
Once	again,	efficient	algorithm	exist	
to	find	ai		

	



EXTRA	
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Dual formulation for linearly non 
separable case	

10/13/16	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	

128	



Fast	SVM	ImplementaFons	

•  SMO:	SequenFal	Minimal	OpFmizaFon	
•  SVM-Light	
•  LibSVM	
•  BSVM	
•  ……	
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SMO:	SequenFal	Minimal	OpFmizaFon	

•  Key	idea	
–  Divide	the	large	QP	problem	of	SVM	into	a	series	of	
smallest	possible	QP	problems,	which	can	be	solved	
analyFcally	and	thus	avoids	using	a	Fme-consuming	
numerical	QP	in	the	loop	(a	kind	of	SQP	method).	

–  Space	complexity:	O(n).	
–  Since	QP	is	greatly	simplified,	most	Fme-consuming	part	of	
SMO	is	the	evaluaFon	of	decision	funcFon,	therefore	it	is	
very	fast	for	linear	SVM	and	sparse	data.	
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SMO	

•  At	each	step,	SMO	chooses	2	Lagrange	mulFpliers	to	
jointly	opFmize,	find	the	opFmal	values	for	these	
mulFpliers	and	updates	the	SVM	to	reflect	the	new	
opFmal	values.	

•  Three	components	
–  An	analyFc	method	to	solve	for	the	two	Lagrange	mulFpliers	
–  A	heurisFc	for	choosing	which	(next)	two	mulFpliers	to	opFmize	
–  A	method	for	compuFng	b	at	each	step,	so	that	the	KTT	
condiFons	are	fulfilled	for	both	the	two	examples	
(corresponding	to	the	two	mulFpliers	)	
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Choosing	Which	MulFpliers	to	OpFmize	

•  First	mulFplier	
–  Iterate	over	the	enFre	training	set,	and	find	an	example	
that	violates	the	KTT	condiFon.		

•  Second	mulFplier	
– Maximize	the	size	of	step	taken	during	joint	opFmizaFon.	
–  |E1-E2|,	where	Ei	is	the	error	on	the	i-th	example.	
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NOT	EXTRA	
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Today	

q 	Support	Vector	Machine	(SVM)	
ü 	History	of	SVM		
ü 	Large	Margin	Linear	Classifier		
ü 	Define	Margin	(M)	in	terms	of	model	parameter	
ü 	OpFmizaFon	to	learn	model	parameters	(w,	b)		
ü 	Non	linearly	separable	case	
ü 	OpFmizaFon	with	dual	form		
ü 	Nonlinear	decision	boundary		
ü 		PracFcal	Guide	
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Dual SVM for linearly separable 
case – Training  / Testing 

Our dual target function: maxα αi −
i
∑ 1

2
αiα jyiyj

i,j
∑ xi

Txj

αiyi = 0
i
∑

αi ≥ 0 ∀i

Dot product for all 
training samples  

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	

To evaluate a new sample xts 
we need to compute: 

!!
wTxts +b= α iyi

i
∑ xi

Txts +b

Dot product with (“all” ??)  
training samples  

			 
yts
! = sign α i yi x i

Txts( )
i∈SupportVectors

∑ +b
⎛

⎝⎜
⎞

⎠⎟
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maxα α i −
i
∑ α iα jyi y j

i,j
∑ Φ(xi )

TΦ(xj)

α iyi =0
i
∑
C >α i ≥0,∀i		

maxα α i −
i
∑ 1

2 α iα jyi y j
i,j
∑ xi

Txj

α iyi =0
i
∑
C >α i ≥0,∀i



10/13/16	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	

137	

!!
wTxts +b= α iyi

i
∑ xi

Txts +b

			 
yts
! = sign α i yi x i

Txts( )
i∈SupportVectors

∑ +b
⎛

⎝⎜
⎞

⎠⎟



Classifying in 1-d 

Can an SVM correctly 
classify this data? 

What about this? 

X X 
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Classifying in 1-d 

Can an SVM correctly 
classify this data? 

And now? (extend with polynomial basis ) 

X X 

X2 
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RECAP:	Polynomial	regression	

•  Introduce	basis	funcFons		

10/13/16	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	

140	
Dr.	Nando	de	Freitas’s	tutorial	slide	



Non-linear	SVMs:		2D	

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt  

Φ:  x → φ(x) 

x1
2 

x2
2 

   2 x1x2 

x=(x1,x2) 

•  The	original	input	space	(x)	can	be	mapped	to	some	higher-dimensional	
feature	space	(φ(x)	)where	the	training	set	is	separable:	

φ(x) =(x1
2,x2

2,   2 x1x2)  
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Non-linear	SVMs:		2D	

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt  

Φ:  x → φ(x) 

x1
2 

x2
2 

  2x1x2 

x=(x1,x2) 

•  The	original	input	space	(x)	can	be	mapped	to	some	higher-dimensional	
feature	space	(φ(x)	)where	the	training	set	is	separable:	

φ(x) =(x1
2,x2

2,  2x1x2)  

If data is mapped into sufficiently high dimension, then 
samples will in general  be linearly separable;  

N data points are in general separable in a space of N-1 
dimensions or more!!! 

10/13/16	 142	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	



A little bit theory:  
Vapnik-Chervonenkis (VC) dimension 

 

•  VC	dimension	of	the	set	of	oriented	lines	in	R2	is	3	
–  It	can	be	shown	that	the	VC	dimension	of	the	family	of	
oriented	separaFng	hyperplanes	in	RN	is	at	least	N+1	
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If data is mapped into sufficiently high dimension, then samples 
will in general  be linearly separable;  
N data points are in general separable in a space of N-1 
dimensions or more!!! 



Transformation of Inputs 
•  Possible problems 
    - High computation burden due to high-dimensionality  
     -  Many more parameters 
•  SVM solves these two issues simultaneously 

– “Kernel tricks” for efficient computation  
– Dual formulation only assigns parameters to samples, not 

features 

Φ(  ) 

Φ(  ) 

Φ(  ) 
Φ(  ) Φ(  ) 

Φ(  ) 

Φ(  ) Φ(  ) 

Φ(.) Φ(  ) 

Φ(  ) 

Φ(  ) 
Φ (  ) 
Φ(  ) 

Φ(  ) 

Φ(  ) 

Φ(  ) 
Φ(  ) Φ(  ) 

Feature space Input space 10/13/16	 144	
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Is this too much computational work? 

If data is mapped into sufficiently high dimension, then 
samples will in general  be linearly separable;  

N data points are in general separable in a space of N-1 
dimensions or more!!! 



Transformation of Inputs 
•  Possible problems 
    - High computation burden due to high-dimensionality  
     -  Many more parameters 
•  SVM solves these two issues simultaneously 

– “Kernel tricks” for efficient computation  
– Dual formulation only assigns parameters to samples, not 

features 

Φ(  ) 

Φ(  ) 

Φ(  ) 
Φ(  ) Φ(  ) 

Φ(  ) 

Φ(  ) Φ(  ) 

Φ(.) Φ(  ) 

Φ(  ) 

Φ(  ) 
Φ (  ) 
Φ(  ) 

Φ(  ) 

Φ(  ) 

Φ(  ) 
Φ(  ) Φ(  ) 

Feature space Input space 10/13/16	 145	
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Is this too much computational work? 



(1). “Kernel tricks” for efficient computation  

•  SVM solves these two issues simultaneously 
– “Kernel tricks” for efficient computation  
– Dual formulation only assigns parameters to samples, not features 

10/13/16	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	

146	

Never	represent	features	explicitly	
¨ Compute	dot	products	in	closed	form	
Very	interesFng	theory	–	Reproducing	Kernel	Hilbert	Spaces		
¨ Not	covered	in	detail	here		
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•  Linear	kernel	(we've	seen	it)	

•  Polynomial	kernel	(we	just	saw	an	example)	

	where	p	=	2,	3,	…	To	get	the	feature	vectors	we	concatenate	all	pth	order	
polynomial	terms	of	the	components	of	x	(weighted	appropriately)	

•  Radial	basis	kernel	

	In	this	case.,	r	is	hyperpara.	The	feature	space	of	the	RBF	kernel	has	an	infinite	
number	of	dimensions	

	

			K(x ,z)= x
Tz

			K(x ,z)= 1+ xTz( )d

			
K(x ,z)= exp −r x− z

2⎛
⎝

⎞
⎠

Never	represent	features	explicitly	
¨ Compute	dot	products	in	closed	form	
Very	interesFng	theory	–	Reproducing	Kernel	Hilbert	Spaces		
¨ Not	covered	in	detail	here		10/13/16	



Kernel Trick: Quadratic kernels 
maxα αi −

i
∑ αiα jyiyj

i,j
∑ Φ(xi )

TΦ(x j)

αiyi = 0
i
∑

αi ≥ 0 ∀i

•  While working in higher dimensions is 
beneficial, it also increases our running time 
because of the dot product computation 

•  However, there is a neat trick we can use 

•  consider all quadratic terms for x1, x2 … xm m is the 
number of 
features in 
each vector 

  

€ 

Φ(x) =

1
2x1
!
2xm

x1
2

!
xm
2

2x1x2
!

2xm−1xm

m+1 linear terms 

m quadratic terms 

m(m-1)/2 pairwise terms 

weights on 
quadratic 
terms will 
become 
clear in the 
next slide 
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K(x, z) :=Φ(x)TΦ(z)



Dot product for quadratic kernels 

Φ(x)TΦ(z) =

1
2x1
!

2xm

x1
2

!

xm
2

2x1x2
!

2xm−1xm

1
2z1
!

2zm

z1
2

!

zm
2

2z1z2
!

2zm−1zm

How many operations do we need for the dot product? 

€ 

= 2xizi
i
∑ + xi

2

i
∑ zi

2 + 2xix jziz j
j= i+1
∑

i
∑ +1

m m m(m-1)/2 =~ m2 
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.	
K(x, z) :=Φ(x)TΦ(z)



10/13/16	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	

150	

			K(x ,z)= 1+ xTz( )d



The kernel trick 
How many operations do we need for the dot product? 

€ 

= 2xizi
i
∑ + xi

2

i
∑ zi

2 + 2xix jziz j
j= i+1
∑

i
∑ +1

m m m(m-1)/2 =~ m2 

However, we can obtain dramatic savings by noting that 

(xT z+1)2 = (x.z+1)2 = (x.z)2 + 2(x.z)+1

= ( xizi )
2 + 2xizi

i
∑ +1

i
∑

= 2xizi
i
∑ + xi

2

i
∑ zi

2 + 2xix jziz j
j=i+1
∑

i
∑ +1

We only need m 
operations! 
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Φ(x)TΦ(z)

Φ(x)TΦ(z) =

So,	if	we	define	the	kernel	funcDon	as	follows,	there	is	
no	need	to	carry	out	basis	funcFon								explicitly	

K(x, z) = (xT z+1)2



Kernel Trick  
Our dual target function: 

maxα αi −
i
∑ 1

2
αiα jyiyj

i,j
∑ Φ(xi )

TΦ(x j)

αiyi = 0
i
∑

αi ≥ 0 ∀i

mn2 operations at each 
iteration 

To evaluate a new sample xk 
we need to compute: 

wTΦ(x j)+ b = αiyi
i
∑ Φ(xi )

TΦ(x j)+ b

mr operations where r are 
the number of support 
vectors (whose \alphai>0)  
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K(x, z) = (xT z+1)2



Summary:		
ModificaFon	Due	to	Kernel	Trick	

•  Change	all	inner	products	to	kernel	funcFons	
•  For	training,	

Original  
Linear 

With kernel 
function - 
nonlinear 

!!

maxα α i −
i
∑ 1

2 α iα jyi y j
i,j
∑ xi

Txj

α iyi =0
i
∑
C >α i ≥0,∀i∈train

!!

maxα α i −
i
∑ 1

2 α iα jyi y j
i,j
∑ K(xi ,xj)

α iyi =0
i
∑
C >α i ≥0,∀i∈train10/13/16	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	

153	



Summary:		
ModificaFon	Due	to	Kernel	FuncFon	

•  For	tesFng,	the	new	data	x_ts		

!! 
yts
! = sign α iyi

i∈train
∑ K (xi ,xts )+b

⎛
⎝⎜

⎞
⎠⎟

Original  
Linear 

With kernel 
function - 
nonlinear 

!! 
yts
! = sign α iyi

i∈train
∑ xi

Txts +b
⎛
⎝⎜

⎞
⎠⎟
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An	example:	Support	vector	machines	with	
polynomial	kernel	
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•  For	some	kernels	(e.g.	RBF	)	the	implicit	
transform	basis	form	\phi(	x	)	is	infinite-
dimensional!	
–  But	calculaFons	with	kernel	are	done	in	original	space,	so	
computaFonal	burden	and	curse	of	dimensionality	aren’t	a	
problem.	

Kernel	Trick:	Implicit	Basis	
RepresentaFon		
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K(x ,z)= exp −r x− z

2⎛
⎝

⎞
⎠

è	Gaussian	RBF	Kernel	corresponds	to	an	
infinite-dimensional	vector	space.		
	
YouTube	video	of	Caltech:	Abu-Mostafa	
explaining	this	in	more	detail
hkps://www.youtube.com/watch?
v=XUj5JbQihlU&t=25m53s	



Kernel	FuncFons	
•  In	pracFcal	use	of	SVM,	only	the	kernel	funcFon	(and	not	        )	is	

specified	

•  Kernel	funcFon	can	be	thought	of	as	a	similarity	measure	
between	the	input	objects	

•  Not	all	similarity	measure	can	be	used	as	kernel	funcFon,	
however	Mercer's	condiFon	states	that	any	posiFve	semi-
definite	kernel	K(x,	y),	i.e.	
	
																														
can	be	expressed	as	a	dot	product	in	a	high	dimensional	space.		
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Choosing	the	Kernel	FuncFon	

•  Probably	the	most	tricky	part	of	using	SVM.	

•  The	kernel	funcFon	is	important	because	it	creates	the	kernel	
matrix,	which	summarize	all	the	data	

•  Many	principles	have	been	proposed	(diffusion	kernel,	Fisher	
kernel,	string	kernel,	tree	kernel,	graph	kernel,	…)	
–  Kernel	trick	has	helped	Non-tradiFonal	data	like	strings	and	trees	able	

to	be	used	as	input	to	SVM,	instead	of	feature	vectors	

•  In	pracFce,	a	low	degree	polynomial	kernel	or	RBF	kernel	with	
a	reasonable	width	is	a	good	iniFal	try	for	most	applicaFons.	
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Kernel	Matrix	

•  The	kernel	funcFon	is	important	because	it	
creates	the	kernel	matrix,	which	summarize	all	
the	data	
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Original Space Feature Space 

Vector	vs.	RelaFonal	data	

e.g.	Graphs,	
Sequences,	
3D	structures,	

10/13/16	
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Kernel	trick	has	helped	Non-
tradiFonal	data	like	strings	and	trees	
able	to	be	used	as	input	to	SVM,	
instead	of	feature	vectors	



Mercer	Kernel	vs.	Smoothing	Kernel		

•  The	Kernels	used	in	Support	Vector	Machines	
are	different	from	the	Kernels	used	in	
LocalWeighted	/Kernel	Regression.		

•  We	can	think		
– Support	Vector	Machines’	kernels	as	Mercer	
Kernels			

– Local	Weighted	/	Kernel	Regression’s	kernels	as	
Smoothing	Kernels		
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Why do SVMs work? 

q  If we are using huge features spaces (e.g., with 
kernels), how come we are not overfitting the data? 

 ü      Number of parameters remains the same (and most 
are set to 0) 

ü      While we have a lot of input values, at the end we 
only care about the support vectors and these are 
usually a small group of samples 

ü      The minimization (or the maximizing of the margin) 
function acts as a sort of regularization term leading to 
reduced overfitting 
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Why	SVM	Works?	

•  Vapnik	argues	that	the	fundamental	problem	is	not	the	number	of	parameters	
to	be	esFmated.	Rather,	the	problem	is	about	the	flexibility	of	a	classifier	

•  Vapnik	argues	that	the	flexibility	of	a	classifier	should	not	be	characterized	by	
the	number	of	parameters,	but	by	the	capacity	of	a	classifier	
–  This	is	formalized	by	the	“VC-dimension” of	a	classifier	

	
•  The	SVM	objecFve	can	also	be	jusFfied	by	structural	risk	minimizaFon:	the	

empirical	risk	(training	error),	plus	a	term	related	to	the	generalizaFon	ability	
of	the	classifier,	is	minimized	

•  Another	view:	the	SVM	loss	funcFon	is	analogous	to	ridge	regression.	The	
term	½||w||2	“shrinks”	the	parameters	towards	zero	to	avoid	overfi{ng	
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Today	

q 	Support	Vector	Machine	(SVM)	
ü 	History	of	SVM		
ü 	Large	Margin	Linear	Classifier		
ü 	Define	Margin	(M)	in	terms	of	model	parameter	
ü 	OpFmizaFon	to	learn	model	parameters	(w,	b)		
ü 	Non	linearly	separable	case	
ü 	OpFmizaFon	with	dual	form		
ü 	Nonlinear	decision	boundary		
ü 		PracFcal	Guide	
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Software 
•  A list of SVM implementation can be found at  

–  http://www.kernel-machines.org/software.html 

•  Some implementation (such as LIBSVM) can handle 
multi-class classification 

•  SVMLight is among one of the earliest implementation 
of SVM 

•  Several Matlab toolboxes for SVM are also available 
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Summary:	Steps	for	Using	SVM	in	HW		

•  Prepare	the	feature-data	matrix		
•  Select	the	kernel	funcFon	to	use	
•  Select	the	parameter	of	the	kernel	funcFon	and	the	
value	of	C	
–  You	can	use	the	values	suggested	by	the	SVM	sonware,	or	you	
can	set	apart	a	validaFon	set	to	determine	the	values	of	the	
parameter	

•  Execute	the	training	algorithm	and	obtain	the	\alphai	
•  Unseen	data	can	be	classified	using	the	\alphai	and	the	
support	vectors	
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Practical Guide to SVM  

•  From	authors	of	as LIBSVM:  
– A	PracFcal	Guide	to	Support	Vector	ClassificaFon	
Chih-Wei	Hsu,	Chih-Chung	Chang,	and	Chih-Jen	
Lin,	2003-2010		

– hkp://www.csie.ntu.edu.tw/~cjlin/papers/guide/
guide.pdf			
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LIBSVM 

•  hkp://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
ü Developed	by	Chih-Jen	Lin	etc.	
ü Tools	for	Support	Vector	classificaFon		
ü Also	support	mulF-class	classificaFon			
ü C++/Java/Python/Matlab/Perl	wrappers	
ü Linux/UNIX/Windows	
ü SMO	implementaFon,	fast!!!			

 
 A	PracFcal	Guide	to	Support	Vector	

ClassificaFon		10/13/16	
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(a) Data file formats for LIBSVM 

•  Training.dat	
+1	1:0.708333	2:1	3:1	4:-0.320755	
-1	1:0.583333	2:-1		4:-0.603774	5:1	
+1	1:0.166667	2:1	3:-0.333333	4:-0.433962	
-1	1:0.458333	2:1	3:1	4:-0.358491	5:0.374429	
…	
•  TesFng.dat	
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(b)	Feature	Preprocessing		

•  (1)	Categorical	Feature		
– Recommend	using	m	numbers	to	represent	an	m-
category	akribute.		

– Only	one	of	the	m	numbers	is	one,	and	others	are	zero.	

– For	example,	a	three-category	akribute	such	as	{red,	
green,	blue}	can	be	represented	as	(0,0,1),	(0,1,0),	and	
(1,0,0)		

		

10/13/16	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	

170	
A	PracFcal	Guide	to	Support	Vector	
ClassificaFon		



Feature	Preprocessing		

•  (2)	Scaling	before	applying	SVM	is	very	
important		
–  to	avoid	akributes	in	greater	numeric	ranges	
dominaFng	those	in	smaller	numeric	ranges.		

–  to	avoid	numerical	difficulFes	during	the	calculaFon		
– Recommend	linearly	scaling	each	akribute	to	the	
range	[1,	+1]	or	[0,	1].		
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Feature	Preprocessing		
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Feature	Preprocessing		

•  (3)	missing	value	
– Very	very	tricky	!		
– Easy	way:	to	subsFtute	the	missing	values	by	the	
mean	value	of	the	variable	

– A	likle	bit	harder	way:	imputaFon	using	nearest	
neighbors	

– Even	more	complex:	e.g.	EM	based	(beyond	the	
scope)		
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(c)	Model	SelecFon		



10/13/16	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	

176	

(c)	Model	SelecFon	(e.g.	for	linear	kernel)	

Select	the	
right	

penalty	
parameter	

C		



(c)	Model	SelecFon	
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Three	parameters	for	a	polynomial	kernel		

A	PracFcal	Guide	to	Support	Vector	
ClassificaFon		



(d)	Pipeline	Procedures			

•  (1)	train	/	test		
•  (2)	k-folds	cross	validaFon		
•  (3)	k-CV	on	train	to	choose	
hyperparameter	/		then	test		
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Evaluation Choice-I:  
Train and Test	

10/13/16	 179	
f(x?)	

Training	dataset	
consists	of	input-
output	pairs	

Evaluation 

Measure Loss on pair 
è ( f(x?),  y? )	
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Evaluation Choice-II:   
Cross	ValidaFon	

• 	Problem:	don’t	have	enough	data	to	set	aside	a	
test	set	
• 	SoluFon:	Each	data	point	is	used	both	as	train	
and	test	
• 	Common	types:	
							-K-fold	cross-validaFon	(e.g.	K=5,	K=10)	
							-2-fold	cross-validaFon	
			-Leave-one-out	cross-validaFon	(LOOCV)	
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A	good	pracFce	is	:	to	random	shuffle	all	
training	sample	before	spli{ng		



Dr. Yanjun Qi / UVA CS 6316 / 
f16 

Why Maximum Margin for SVM ? 

denotes +1 

denotes -1 

f(x,w,b) = sign(w. x - b) 

The maximum 
margin linear 
classifier is the 
linear classifier with 
the, um, maximum 
margin. 

This is the simplest 
kind of SVM 
(Called an LSVM) 

Support Vectors 
are those 
datapoints that the 
margin pushes up 
against 

1.  Intuitively this feels safest.  

2.  If we’ve made a small error in the 
location of the boundary (it’s been jolted 
in its perpendicular direction) this gives us 
least chance of causing a 
misclassification. 

3.  LOOCV is easy since the model is 
immune to removal of any non-support-
vector datapoints. 

4.  There’s some theory (using VC 
dimension) that is related to (but not the 
same as) the proposition that this is a good 
thing. 

5.  Empirically it works very very well. 
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For	HW2-Q2	

Evaluation Choice-III: 	
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Today:	Review	&	PracDcal	Guide		
q 	Support	Vector	Machine	(SVM)	

ü 	History	of	SVM		
ü 	Large	Margin	Linear	Classifier		
ü 	Define	Margin	(M)	in	terms	of	model	parameter	
ü 	OpFmizaFon	to	learn	model	parameters	(w,	b)		
ü 	Non	linearly	separable	case	
ü 	OpFmizaFon	with	dual	form		
ü 	Nonlinear	decision	boundary		
ü 	PracFcal	Guide	

ü 	File	format	/	LIBSVM	
ü 	Feature	preprocsssing	
ü 	Model	selecFon		
ü 	Pipeline	procedure		
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Support Vector Machine 

classification 

Kernel Tric- Func K(xi, xj) 

Margin + Hinge 
Loss (optional)  

QP with Dual form 

Dual Weights 

Task  

Representation  

Score Function  

Search/Optimization  

Models, 
Parameters 

€ 

w = α ixiyi
i
∑

argmin
w,b

wi
2

i=1
p∑ +C εi

i=1

n

∑

subject to  ∀xi ∈ Dtrain : yi xi ⋅w+b( ) ≥1−εi

K(x, z) :=Φ(x)TΦ(z)
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maxα α i −
i
∑ 1

2 α iα jyi y j
i,j
∑ xi

Txj

α iyi =0
i
∑ , α i ≥0 ∀i



References	
•  Big	thanks	to	Prof.	Ziv	Bar-Joseph	and	Prof.	Eric	Xing	
@	CMU	for	allowing	me	to	reuse	some	of	his	slides	

•  Elements	of	StaFsFcal	Learning,	by	HasFe,	
Tibshirani	and	Friedman	

•  Prof.	Andrew	Moore	@	CMU’s	slides	
•  Tutorial	slides	from	Dr.	Tie-Yan	Liu,	MSR	Asia	
•  A	PracFcal	Guide	to	Support	Vector	ClassificaFon	
Chih-Wei	Hsu,	Chih-Chung	Chang,	and	Chih-Jen	Lin,	
2003-2010		

•  Tutorial	slides	from	Stanford	“Convex	OpFmizaFon	I	—	
Boyd	&	Vandenberghe		

	
	

10/13/16	 186	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	


