UVA CS 6316/4501 – Fall 2016 Machine Learning

Lecture 15: K-nearest-neighbor Classifier / Bias-Variance Tradeoff

Dr. Yanjun Qi

University of Virginia

Department of Computer Science

Rough Plan

- HW5 is due on Sat
- HW6 will have two coding Q (image + audio)
- HW7 will be sample final questions
 Final will be most contents after midterm
- Midterm grade will be released this evening
 Mean 78 / Median 79 / Max 95
- Final will be in-class / close note / @ Dec5th

Where are we ? Five major sections of this course

- Regression (supervised)
- Classification (supervised)
- Unsupervised models
- Learning theory
 - Graphical models

Where are we ? →

Three major sections for classification

- We can divide the large variety of classification approaches into roughly three major types
 - 1. Discriminative
 - directly estimate a decision rule/boundary
 - e.g., logistic regression, support vector machine, decisionTree
- 2. Generative:
 - build a generative statistical model
 - e.g., naïve bayes classifier, Bayesian networks
- 3. Instance based classifiers
 - Use observation directly (no models)
 - e.g. K nearest neighbors

Dr. Yanjun Qi / UVA CS 6316 / f16

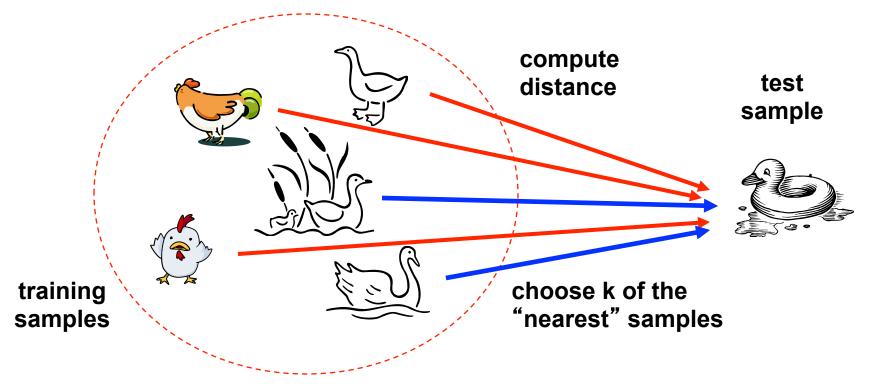
✓ K-nearest neighbor

✓ Model Selection / Bias Variance Tradeoff

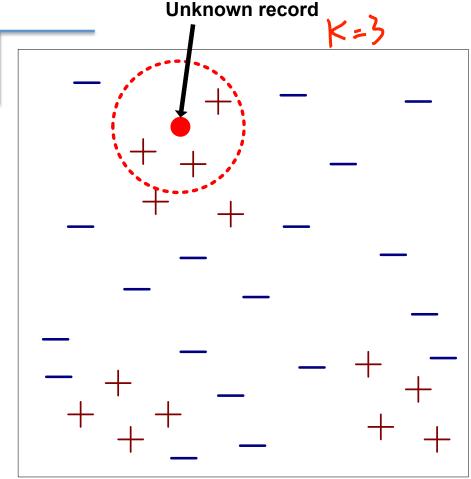
Nearest neighbor classifiers

Basic idea:

 If it walks like a duck, quacks like a duck, then it's probably a duck



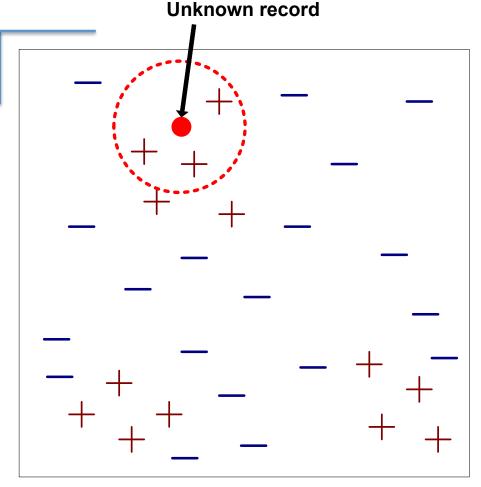
Nearest neighbor classifiers



Requires three inputs:

- The set of stored training samples
- Distance metric to compute distance between samples
- The value of k, i.e., the number of nearest neighbors to retrieve

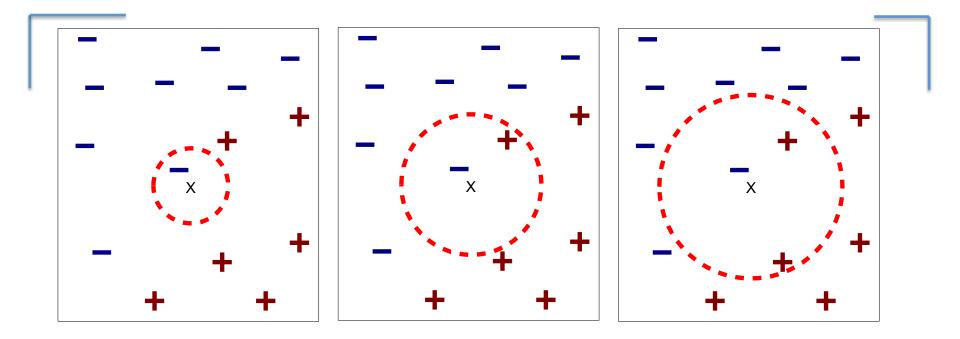
Nearest neighbor classifiers



To classify unknown sample:

- Compute distance to other training records
- 2. Identify *k* nearest neighbors
- 3. Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Definition of nearest neighbor



(a) 1-nearest neighbor

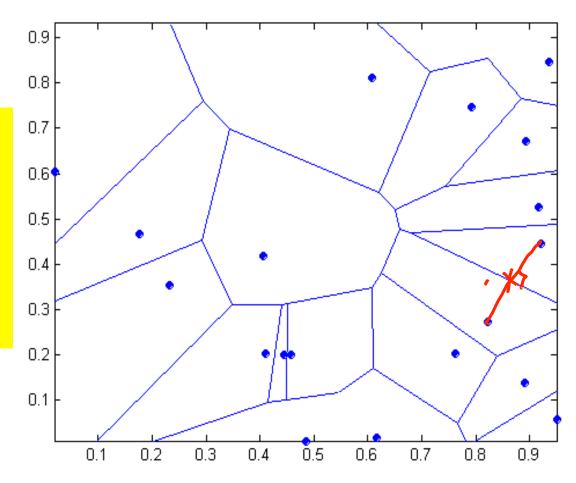
(b) 2-nearest neighbor

(c) 3-nearest neighbor

k-nearest neighbors of a sample x are datapoints that have the *k* smallest distances to x

1-nearest neighbor

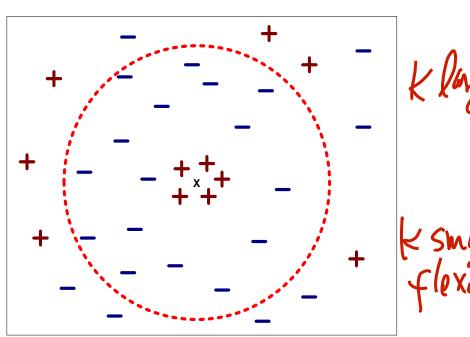
Voronoi diagram: partitioning of a plane into regions based on distance to points in a specific subset of the plane.



- Compute distance between two points: – For instance, Euclidean distance L.J. Cosine distance $d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i} (x_i - y_i)^2}$
- Options for determining the class from nearest neighbor list
 - Take majority vote of class labels among the k-nearest neighbors
 - Weight the votes according to distance
 - example: weight factor $w = 1 / d^2$

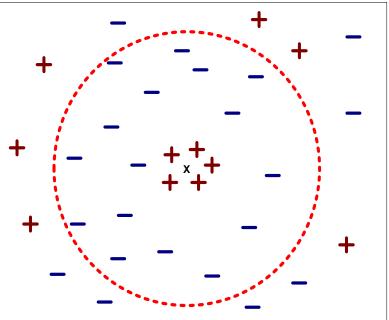
- Choosing the value of *k*:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

Small



- Choosing the value of *k*:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

KU flexible varies a lot KT Smooth / varies little

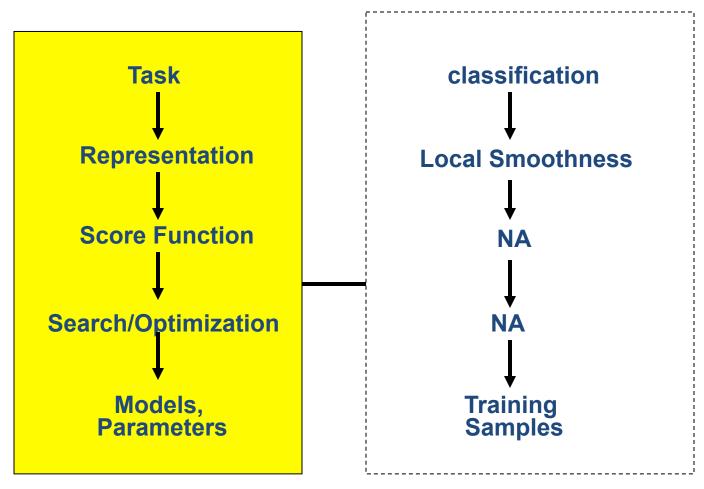


- Scaling issues
 - Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
 - Example:
 - height of a person may vary from 1.5 m to 1.8 m
 - weight of a person may vary from 90 lb to 300 lb
 - income of a person may vary from \$10K to \$1M

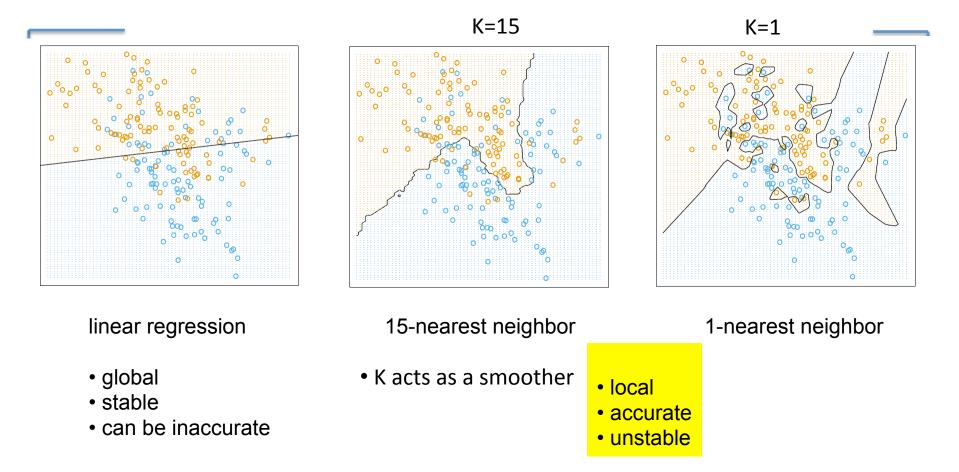
- k-Nearest neighbor classifier is a lazy learner
 - Does not build model explicitly.
 - Classifying unknown samples is relatively expensive. $X_{test} \rightarrow O(n) + O(S_{test} - k)$
- k-Nearest neighbor classifier is a local model, vs. global model of linear classifiers.

- k-Nearest neighbor classifier is a lazy learner K (Xts X
 - Does not build mode explicitly.
 - Classifying unknown samples is relatively expensive. (KNN: Num_train/all train samples testing SVM: hum_support vectors points
- k-Nearest neighbor classifier is a local model, vs. global model of linear classifiers.

K-Nearest Neighbor



Decision boundaries in global vs. local models



What ultimately matters: **GENERALIZATION**

VS. KNN for legession (mean of KNN) Vs. Locally weighted regression

• *aka* locally weighted regression, locally linear regression, LOESS, ...

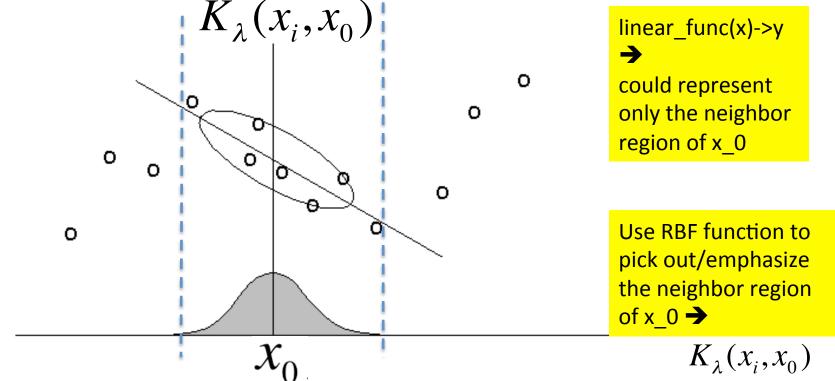


Figure 2: In locally weighted regression, points are weighted by proximity to the current x in question using a kernel. A regression is then computed using the weighted points.

Vs. Locally weighted regression

Separate weighted least squares at each target point x₀:

		?
\boldsymbol{x}_0		

$$\min_{\alpha(x_0),\beta(x_0)} \sum_{i=1}^{N} K_{\lambda}(x_i, x_0) [y_i - \alpha(x_0) - \beta(x_0) x_i]^2$$

$$\hat{f}(x_0) = \hat{\alpha}(x_0) + \hat{\beta}(x_0)x_0$$

$$K_{\tau}(\mathbf{x}_i, \mathbf{x}0) = \exp\left(-\frac{(\mathbf{x}_i - \mathbf{x}0)^2}{2\tau^2}\right)$$

✓ K-nearest neighbor

✓ Model Selection / Bias Variance Tradeoff

✓ EPE

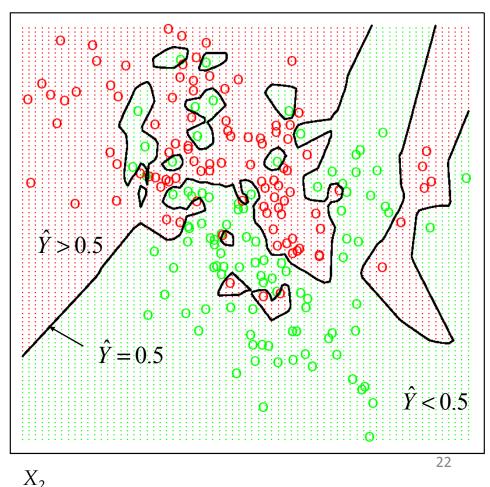
- ✓ Decomposition of MSE
- ✓ Bias-Variance tradeoff
- ✓ High bias ? High variance ? How to respond ?

e.g. Training Error from KNN, Lesson Learned

 X_1

- When k = 1,
- No misclassifications (on training): Overtraining

 Minimizing training error is not always good (e.g., 1-NN) 1-nearest neighbor averaging



Statistical Decision Theory

- Random input vector: X
- Random output variable: Y
- Joint distribution: (Pr(X, Y))
- Loss function L(Y, f(X))
- Expected prediction error (EPE):

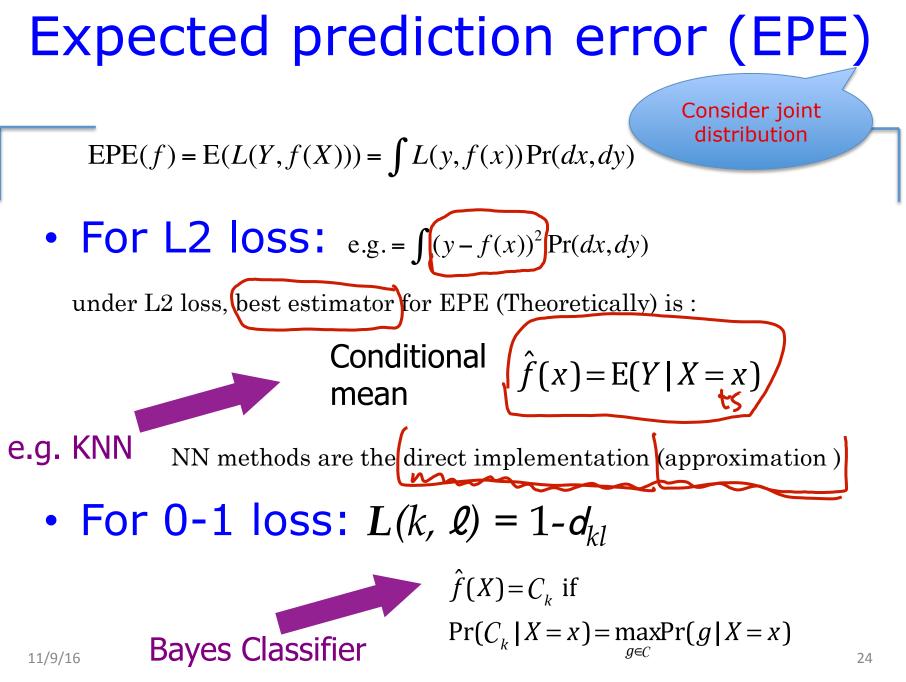
$$EPE(f) = E(L(Y, f(X))) = \int L(y, f(x)) Pr(dx, dy)$$

e.g. = $\int (y - f(x))^2 Pr(dx, dy)$

Consider population distribution

11/9/16

e.g. Squared error loss (also called L2 loss)



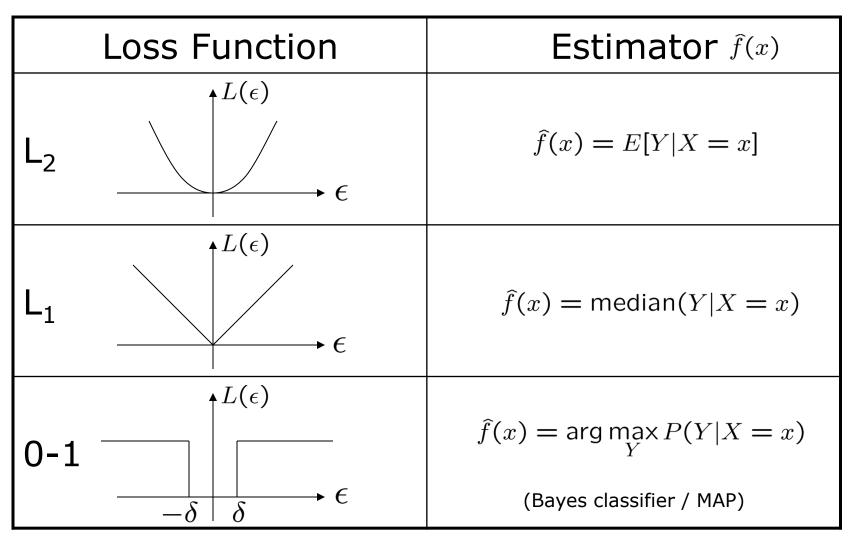
KNN FOR MINIMIZING EPE

• We know under L2 loss, best estimator for EPE (Theoretically) is :

Conditional mean f(x) = E(Y | X = x)

Nearest neighbors assumes that *f*(*x*) is well approximated by a locally constant function.

Review : WHEN EPE USES DIFFERENT LOSS



Dr. Yanjun Qi / UVA CS 6316 / f16

✓ K-nearest neighbor

- ✓ Model Selection / Bias Variance Tradeoff
 ✓ EPE
 - ✓ Decomposition of MSE
 - ✓ Bias-Variance tradeoff
 - ✓ High bias ? High variance ? How to respond ?

Decomposition of EPE

- When additive error model:
- Notations

$$Y = f(X) + \epsilon, \ \epsilon \sim (0, \sigma^2)$$

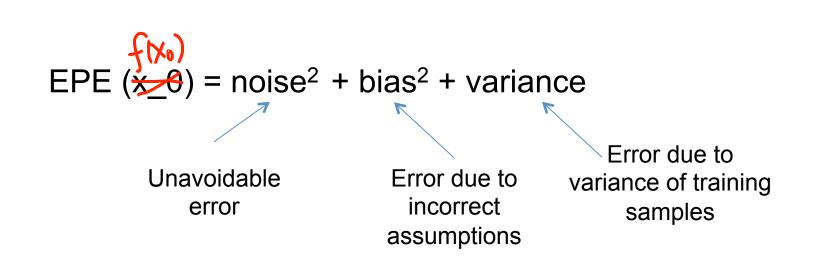
- Output random variable:
- Prediction function:
- Prediction estimator:

$$EPE(\mathbf{x}) = E[(Y - \hat{f})^2 | X = x_0]$$

= $E[((Y - f) + (f - \hat{f}))^2 | X = x_0]$
= $E[\underbrace{(Y - f)}_{\epsilon}^2 | X = x_0] + \underbrace{E[(f - \hat{f})^2 | X = x_0]}_{MSE}$
= $\sigma^2 + Var(\hat{f}) + Bias^2(\hat{f})$
MSE component of f-
hat in estimating f

11/9/16

Bias-Variance Trade-off for EPE:

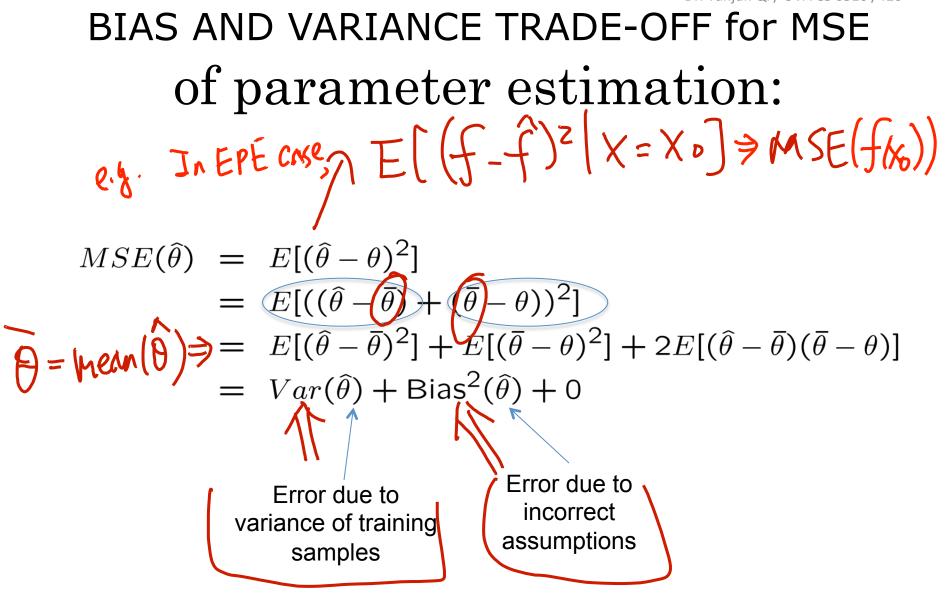


BIAS AND VARIANCE TRADE-OFF for MSE (more general setting !!!): more general 1 MSF.

- θ : true value (normally unknown)
- $\hat{\theta}$: estimator
- $\overline{\theta}$:= $E[\widehat{\theta}]$ (mean, i.e. expectation of the estimator)

• Bias
$$E[(\bar{\theta} - \theta)^2]$$

- measures accuracy or quality of the estimator
- low bias implies on average we will accurately estimate true parameter or func from training data
- o could be f • Variance $E[(\hat{\theta}-\bar{\theta})^2]$
 - Measures precision or specificity of the estimator
 - Low variance implies the estimator does not change much as the training set varies



 $MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2] = Bias^2(\hat{\theta}) + Var(\hat{\theta})$

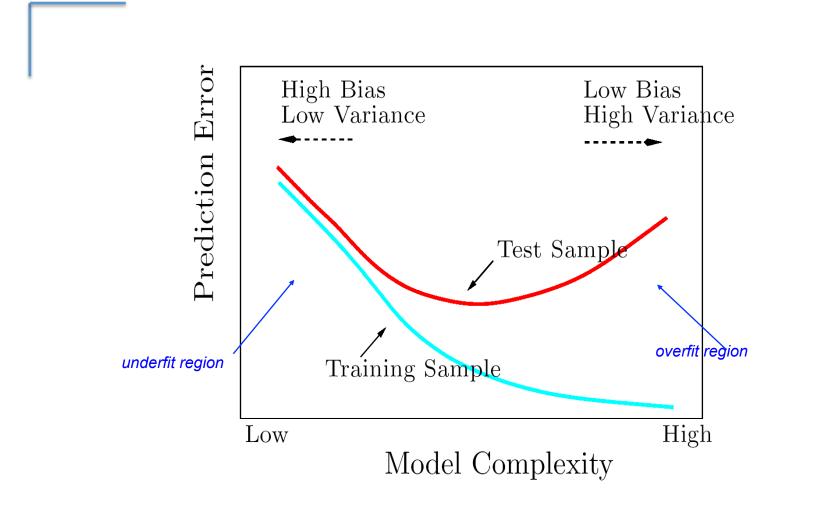
11/9/16

✓ K-nearest neighbor

- ✓ Model Selection / Bias Variance Tradeoff
 ✓ EPE
 - ✓ Decomposition of MSE
 - ✓ Bias-Variance tradeoff
 - ✓ High bias ? High variance ? How to respond ?

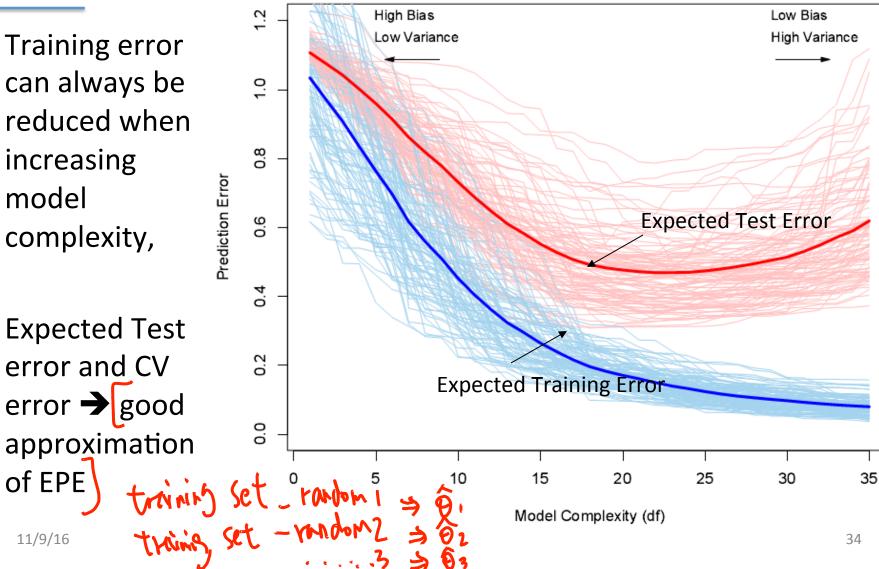
Dr. Yanjun Qi / UVA CS 6316 / f16

Bias-Variance Tradeoff / Model Selection



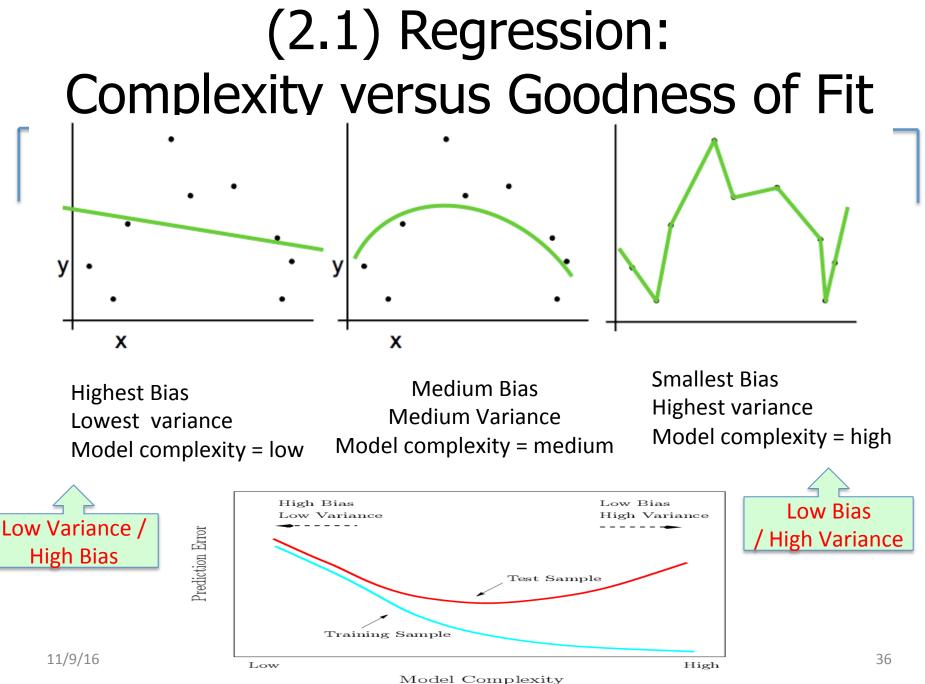
(1) Training vs Test Error

Training error can always be reduced when increasing model complexity,

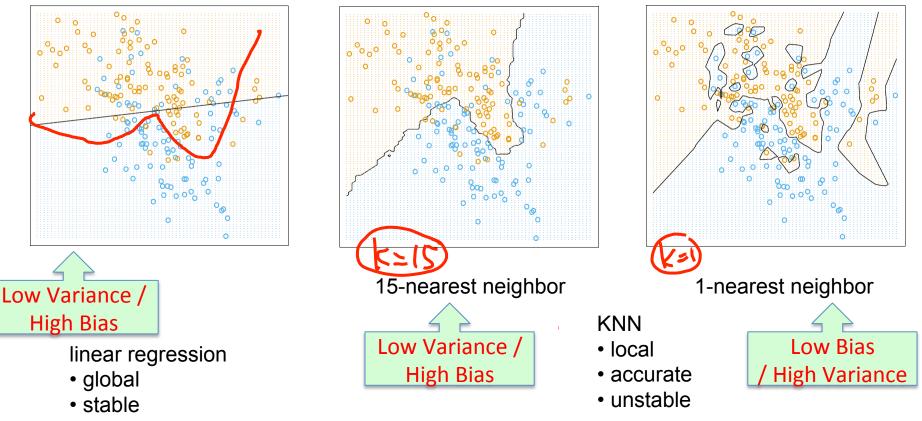


(2) Bias-Variance Trade-off

- Models with too few parameters are inaccurate because of a large bias (not enough flexibility).
 The regression: cl small
 LENN: K large
- Models with too many parameters are inaccurate because of a large variance (too much sensitivity to the sample randomness).



(2.2) Classification, Decision boundaries in global vs. local models

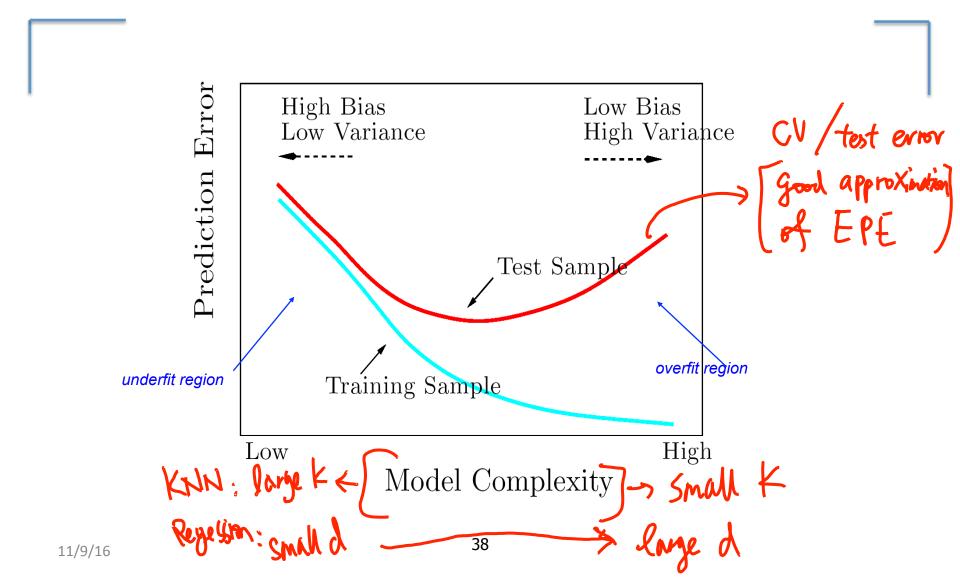


can be inaccurate

What ultimately matters: **GENERALIZATION**

Dr. Yanjun Qi / UVA CS 6316 / f16

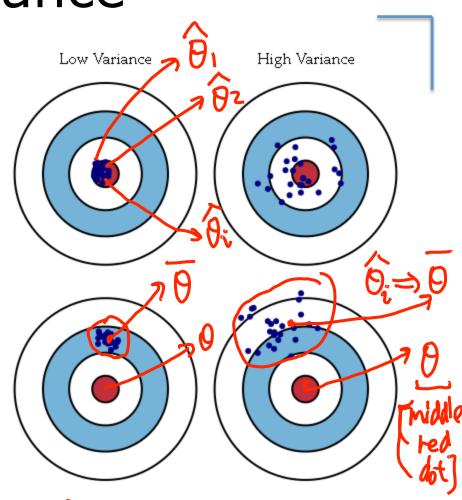
Bias-Variance Tradeoff / Model Selection



Model "bias" & Model "variance"

Low Bias

- Middle RED:
 - TRUE function ()
- Error due to bias:
 - How far off in general from the middle red
 - Ce: High Bias
- Error due to variance:
 - How wildly the blue points spread



need to make assumptions that are able to generalize

- Components of generalization error
 - Bias: how much the average model over all training sets differ from the true model?
 - Error due to inaccurate assumptions/simplifications made by the model
 - Variance: how much models estimated from different training sets differ from each other
- **Underfitting:** model is too "simple" to represent all the relevant class characteristics
 - High bias and low variance
 - High training error and high test error
- **Overfitting:** model is too "complex" and fits irrelevant characteristics (noise) in the data
 - Low bias and high variance
- $_{11/9/16}$ Low training error and high test error

✓ K-nearest neighbor

- ✓ Model Selection / Bias Variance Tradeoff
 ✓ EPE
 - ✓ Decomposition of MSE
 - ✓ Bias-Variance tradeoff
 - ✓ High bias ? High variance ? How to respond ?

(1) High variance

Typical learning curve for high variance:

11/9/16



- Test error still decreasing as m increases. Suggests larger training set will help.
- Large gap between training and test error.
- Low training error and high test error

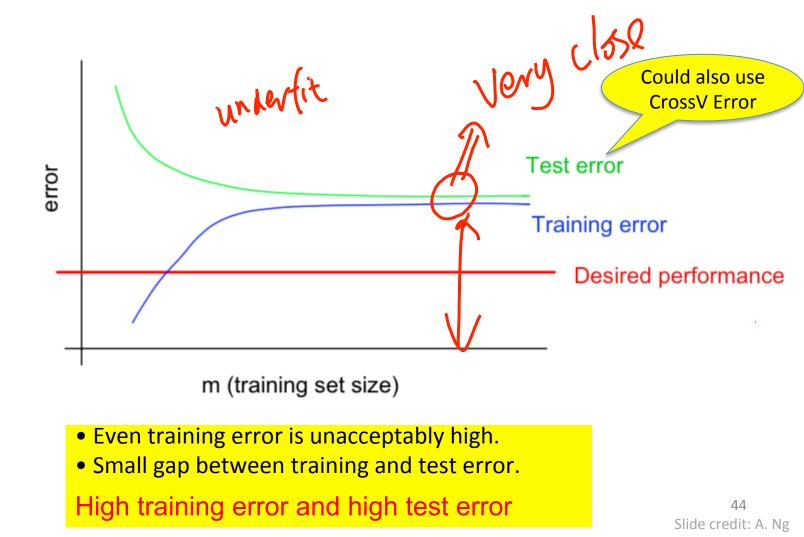
How to reduce variance?

- Choose a simpler classifier
- Regularize the parameters
- Get more training data
- Try smaller set of features

(2) High bias

Typical learning curve for high bias:

11/9/16



How to reduce Bias ?

- E.g.
- Get additional features
- Try adding basis expansions, e.g. polynomial
- Try more complex learner

(3) For instance, if trying to solve "spam detection" using (Extra)

L2 - logistic regression, implemented with gradient descent.

Fixes to try: If performance is not as desired

- Try getting more training examples.
- Try a smaller set of features.
- Try a larger set of features.
- Try email header features.
- Run gradient descent for more iterations.
- Try Newton's method.
- Use a different value for λ .
- Try using an SVM.

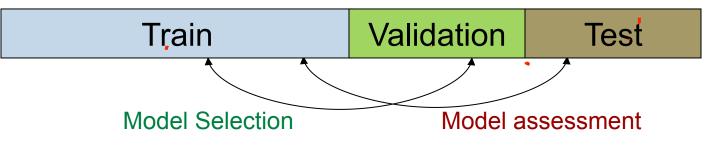
Fixes high variance.
Fixes high variance.
Fixes high bias.
Fixes high bias.
Fixes optimization algorithm.
Fixes optimization algorithm.
Fixes optimization objective.
Fixes optimization objective.

(4) Model Selection and Assessment

- Model Selection
 - Estimating performances of different models to choose the best one
- Model Assessment
 - Having chosen a model, estimating the <u>prediction error</u> on new data

Model Selection and Assessment (Extra)

• Data Rich Scenario: Split the dataset



- Insufficient data to split into 3 parts
 - Approximate validation step analytically
 - AIC, BIC, MDL, SRM
 - Efficient reuse of samples
 - Cross validation, bootstrap

Today Recap:

✓ K-nearest neighbor

- ✓ Model Selection / Bias Variance Tradeoff
 ✓ EPE
 - ✓ Decomposition of MSE
 - ✓ Bias-Variance tradeoff
 - ✓ High bias ? High variance ? How to respond ?

References

- Prof. Tan, Steinbach, Kumar's "Introduction to Data Mining" slide
- Prof. Andrew Moore's slides
- Prof. Eric Xing's slides
- Hastie, Trevor, et al. The elements of statistical learning. Vol. 2. No. 1. New York: Springer, 2009.