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Where	are	we	?	è		
Five	major	secLons	of	this	course	

q 	Regression	(supervised)	
q 	ClassificaLon	(supervised)	
q 	Unsupervised	models		
q 	Learning	theory		
q 	Graphical	models		
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hSp://scikit-learn.org/stable/tutorial/machine_learning_map/		
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Choosing	the	right	esLmator	
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Scikit-learn	:	Regression	

Linear	model	
fiSed	by	
minimizing	a	
regularized	
empirical	loss	
with	SGD	
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Scikit-learn	:	ClassificaLon	
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Linear	classifiers	
(SVM,	logisLc	
regression…)	with	
SGD	training.	

approximate	the		
explicit	feature	
mappings	that	
correspond	to	
certain	kernels	To	combine	the	

predicLons	of	
several	base	
esLmators	built	
with	a	given	
learning	algorithm	
in	order	to	improve	
generalizability	/	
robustness	over	a	
single	esLmator.	(1)	
averaging	/	bagging	
(2)	boosLng		
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Basic	
PCA	

Bayes-Net	
HMM			

Kmeans	+	
GMM		

next	aeer	classificaLon	?		
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Today	

Ø 	Decision	Tree	(DT):		
Ø Tree	representaLon	

Ø Brief	informaLon	theory	
Ø Learning	decision	trees	
Ø Bagging		
Ø Random	forests:	Ensemble	of	DT	
Ø More	about	ensemble		
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A study comparing Classifiers	
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Proceedings	of	the	23rd	InternaLonal	
Conference	on	Machine	Learning	(ICML	`06).		



A study comparing Classifiers  
è 11	binary	classificaLon	problems	/	8	metrics		
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Top	8		
Models	



Where	are	we	?	è		
Three	major	secLons	for	classificaLon 

•  We can divide the large variety of classification 
approaches into roughly three major types  

      
 1. Discriminative 
              - directly estimate a decision rule/boundary 
              - e.g., logistic regression, support vector machine, decisionTree 
  
 2. Generative: 
              - build a generative statistical model 
              - e.g., naïve bayes classifier,  Bayesian networks 
       
  3. Instance based classifiers 
          - Use observation directly (no models) 
          - e.g. K nearest neighbors 
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A	Dataset	for		
classificaLon		

•  Data/points/instances/examples/samples/records:	[	rows	]	
•  Features/a0ributes/dimensions/independent	variables/covariates/predictors/regressors:	[	columns,	except	the	last]		
•  Target/outcome/response/label/dependent	variable:	special	column	to	be	predicted	[	last	column	]		
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Output as Discrete 
Class Label  

C1, C2, …, CL 

C	

C	
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Example  

      

•  Example: Play Tennis 

C	
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Anatomy	of	a	decision	tree	

overcast	

high	 normal	 false	true	

sunny	 rain	

No	 No	Yes	 Yes	

Yes	

Outlook	

Humidity	
Windy	

Each	node	is	a	test	on		
one	feature/aJribute	

Possible	aSribute	values		
of	the	node	

Leaves	are	the	
decisions	
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Anatomy	of	a	decision	tree	

overcast	

high	 normal	 false	true	

sunny	 rain	

No	 No	Yes	 Yes	

Yes	

Outlook	

Humidity	
Windy	

Each	node	is	a	test	on		
one	aJribute	

Possible	aSribute	values		
of	the	node	

Leaves	are	the	
decisions	

Sample	size		

Your	data		
gets	smaller	
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Apply	Model	to	Test	Data:		
To	‘play	tennis’	or	not.		

overcast 

high normal false true 

sunny rain 

No No Yes Yes 

Yes 

Outlook 

Humidity 
Windy 

A	new	test	example:	
(Outlook==rain)	and	
(Windy==false)	
	
Pass	it	on	the	tree	
->	Decision	is	yes.	

11/9/16	 15	
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Apply	Model	to	Test	Data:		
To	‘play	tennis’	or	not.		

overcast 

high normal false true 

sunny rain 

No No Yes Yes 

Yes 

Outlook 

Humidity 
Windy 

(Outlook	==overcast)		->	yes	
(Outlook==rain)	and	(Windy==false)	->yes	
(Outlook==sunny)	and	(Humidity=normal)	->yes	
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Three	cases	of	
“YES”	



Decision	trees	
•  Decision	trees	represent	a	disjuncLon	of	
conjuncLons	of	constraints	on	the	aSribute	
values	of	instances.	

•  (Outlook ==overcast)   
•   OR 
•  ((Outlook==rain) and (Windy==false)) 
•   OR 
•  ((Outlook==sunny) and (Humidity=normal)) 
•   => yes play tennis 
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RepresentaLon	

0 A 1 

C B 
0 1 1 0 

false true false 

Y=((A	and	B)	or	((not	A)	and	C))	

true 
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Same	concept	/	different	representaLon	

0 A 1 

C B 
0 1 1 0 

false true false 

Y=((A	and	B)	or	((not	A)	and	C))	

true 
0 C 1 

B A 
0 1 0 1 

false true false A 
0 1 

true false 11/9/16	 19	
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Which	aJribute	to	select	for	spli\ng?	

	
16	+	
16	-	
		

8	+	
8	-	
	

	
8	+	
8	-	
	

	
4	+	
4	-	
	

	
4	+	
4	-	
	

	
4	+	
4	-	
	

	
4	+	
4	-	
	

	
2	+	
2	-	
	

	
2	+	
2	-	
	

This	is	bad	spliqng…	

the	distribuLon	of		
each	class	(not	aSribute)	
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How	do	we	choose	which	
aJribute	to	split	?	

Which	aSribute	should	be	used	first	to	test?	
	
IntuiLvely,	you	would	prefer	the		
one	that	separates		the	training	
examples	as	much	as	possible.	
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Today	

Ø 	Decision	Tree	(DT):		
Ø Tree	representaLon	

Ø Brief	informaLon	theory	
Ø Learning	decision	trees	
Ø Bagging		
Ø Random	forests:	Ensemble	of	DT	
Ø More	about	ensemble		
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InformaLon	gain	is	one	criteria	to	
decide	on	which	aSribute	for	spliqng	

•  Imagine:	
–  1.	Someone	is	about	to	tell	you	your	own	name	
–  2.	You	are	about	to	observe	the	outcome	of	a	dice	roll	
–  2.	You	are	about	to	observe	the	outcome	of	a	coin	flip	
–  3.	You	are	about	to	observe	the	outcome	of	a	biased	coin	flip	

•  Each	situaLon	have	a	different	amount	of	
uncertainty	as	to	what	outcome	you	will	observe.	
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InformaLon	
•  InformaLon:	
è	ReducLon	in	uncertainty	(amount	of	
surprise	in	the	outcome)	

2 2
1( ) log log ( )
( )

I E p x
p x

= = −

	
Ø  Observing	the	outcome	of	a	coin	flip		
					is	head	

Ø  Observe	the	outcome	of	a	dice	is		6	
	

2log 1/ 2 1I = − =

2log 1/ 6 2.58I = − =

If	the	probability	of	this	event	happening	is	small	and	it	happens,			
the	informaLon	is	large.	
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Entropy	
•  					The	expected	amount	of	informa9on	when	observing	the	

output	of	a	random	variable	X	

2( ) ( ( )) ( ) ( ) ( ) log ( )i i i i
i i

H X E I X p x I x p x p x= = = −∑ ∑

If	the	X	can	have	8	outcomes	and	all	are	equally	likely	

2( ) 1/8log 1/8 3
i

H X == − =∑
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Entropy	
•  If		there	are	k	possible	

outcomes	

•  Equality	holds	when	all	
outcomes	are	equally	likely		

•  The	more	the	probability	
distribuLon	that	deviates	
from	uniformity,		the	lower	
the	entropy	

2( ) logH X k≤

e.g.	for	a	random	
binary	variable		11/9/16	 26	
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Entropy	Lower	è	beJer	purity	

•  Entropy	measures	the	purity		

	
4	+	
4	-	
	

	
8	+	
0	-	
	

The	distribuLon	is	less	uniform	
Entropy		is	lower	
The	node	is	purer		
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Informa_on	gain	

•  IG(X,Y)=H(Y)-H(Y|X)	
ReducLon	in	uncertainty	of	Y	by	knowing	a	feature	
variable	X	

InformaLon	gain:		
=	(informaLon	before	split)	–	(informaLon	aeer	split)	
=	entropy(parent)	–	[average	entropy(children)]	
	
	

Fixed		 the	lower,	the	
beSer	(children	
nodes	are	purer)	

–		 For	IG,	the	
higher,	the	
beSer		=		

11/9/16	 28	
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Condi_onal	entropy	

H (Y ) = − p(yi )log2 p(yi )
i
∑

  
H (Y | X ) = p(x j )

j
∑ H (Y | X = x j )

  
= − p(x j )

j
∑ p( yi | x j ) log2 p( yi | x j )

i
∑
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H (Y | X = x j ) = − p( yi | x j ) log2 p( yi | x j )

i
∑



Example	
X1 X2 Y Count 
T T + 2 
T F + 2 
F T - 5 
F F + 1 

ASributes	 	Labels	

IG(X1,Y) =  H(Y) – H(Y|X1) 
 
H(Y)       = - (5/10) log(5/10) -5/10log(5/10) = 1 
H(Y|X1) =  P(X1=T)H(Y|X1=T) + P(X1=F) H(Y|X1=F)  
               =  4/10 (1log 1 + 0 log 0) +6/10 (5/6log 5/6 +1/6log1/6) 

  = 0.39 

InformaLon	gain	(X1,Y)=	1-0.39=0.61	

Which	one	do	we	choose		
	
X1	or	X2?	
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Example	
X1 X2 Y Count 
T T + 2 
T F + 2 
F T - 5 
F F + 1 

ASributes	 	Labels	

IG(X1,Y) =  H(Y) – H(Y|X1) 
 
H(Y)       = - (5/10) log(5/10) -5/10log(5/10) = 1 
H(Y|X1) =  P(X1=T)H(Y|X1=T) + P(X1=F) H(Y|X1=F)  
               =  4/10 (1log 1 + 0 log 0) +6/10 (5/6log 5/6 +1/6log1/6) 

  = 0.39 

InformaLon	gain	(X1,Y)=	1-0.39=0.61	

Which	one	do	we	choose		
	
X1	or	X2?	
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Which	one	do	we	choose?	

X1 X2 Y Count 
T T + 2 
T F + 2 
F T - 5 
F F + 1 

Information gain (X1,Y)= 0.61 
Information gain (X2,Y)= 0.12 

Pick	X1	
Pick  the  variable which provides  
the most  information gain about Y 

è	Then	recursively	choose	next	Xi	on	branches	

X1 X2 Y Count 
T T + 2 
T F + 2 
F T - 5 
F F + 1 

One	branch	

The	other	branch	
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Decision	Trees	
•  Caveats:		The	number	of	possible	values	influences	the	

informaLon	gain.	
•  The	more	possible	values,	the	higher	the	gain	(the	more	likely	it	is	to	

form	small,	but	pure	parLLons)	

•  Other	Purity	(diversity)	measures	
–  InformaLon	Gain	
–  Gini	(populaLon	diversity)	

•  where	pmk	is	proporLon	of	class	k	at	node	m	
	

–  Chi-square	Test	
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Overfi\ng	

•  You	can	perfectly	fit	DT	to	any	training	data	

•  Instability	of	Trees	
○  High	variance	(small	changes	in	training	set	will	

result	in	changes	of	tree	model)	
○  Hierarchical	structure	è	Error	in	top	split	

propagates	down	

•  Two	approaches:	
–  1.	Stop	growing	the	tree	when	further	spliqng	the	data	does	not	

yield	an	improvement	
–  2.	Grow	a	full	tree,	then	prune	the	tree,	by	eliminaLng	nodes.		

11/9/16	 35	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	



From	ESL	book	Ch9	:		
	
ClassificaLon	and	
Regression	Trees	(CART)	
	
●  Par__on	feature	

space	into	set	of	
rectangles	

	
●  Fit	simple	model	in	

each	parLLon	
	



Summary:	Decision	trees	

•  Non-linear	classifier	
•  Easy	to	use		
•  Easy	to	interpret	
•  SuscepLble	to	overfiqng	but	can	be	avoided.		
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Decision Tree / Random Forest 

Greedy to find partitions 

Split Purity measure / e.g. 
IG / cross-entropy / Gini /  

Tree Model (s), i.e. 
space partition  

Task  

Representation  

Score Function  

Search/Optimization  

Models, 
Parameters 
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Classification 

Partition feature space 
into set of rectangles, 
local smoothness 
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Today	

Ø 	Decision	Tree	(DT):		
Ø Tree	representaLon	

Ø Brief	informaLon	theory	
Ø Learning	decision	trees	
Ø Bagging		
Ø Random	forests:	Ensemble	of	DT	
Ø More	about	ensemble		
	
	11/9/16	 39	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	



Bagging	

•  Bagging	or	bootstrap	aggrega9on		
•  a	technique	for	reducing	the	variance	of	an	
esLmated	predicLon	funcLon.		

•  For	instance,	for	classificaLon,	a	commi0ee	
of	trees		
•  Each	tree	casts	a	vote	for	the	predicted	class.	

11/9/16	 40	
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Bootstrap	
The	basic	idea:	
	
randomly	draw	datasets	with	replacement	(i.e.	allows	duplicates)	
from	the		training	data,	each	sample	the	same	size	as	the	original	
training	set	
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With	vs	Without	Replacement 

•  Bootstrap	with	replacement	can	keep	the	
sampling	size	the	same	as	the	original	size	for	
every	repeated	sampling.	The	sampled	data	
groups	are	independent	on	each	other.		

•  Bootstrap	without	replacement	cannot	keep	the	
sampling	size	the	same	as	the	original	size	for	
every	repeated	sampling.	The	sampled	data	
groups	are	dependent	on	each	other.	 

11/9/16	 42	
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Bagging	
N
	e
xa
m
pl
es
	

Create	bootstrap	samples	
from	the	training	data		

...
.…
	

M	features	
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Bagging	of	DT	Classifiers	
N
	e
xa
m
pl
es
	

...
.…
	

...
.…
	

Take	the	
majority	
vote	

M	features	

e.g.	

i.e.	Refit	the	model	to	
each	bootstrap	
dataset,	and	then	
examine	the	behavior	
over	the	B	
replicaLons.	
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Bagging	for	Classifica_on	with	0,1	Loss	

•  ClassificaLon	with	0,	1	loss	
–  Bagging	a	good	classifier	can	make	it	beJer.	

–  Bagging	a	bad	classifier	can	make	it	worse.	

–  Can	understand	the	bagging	effect	in	terms	of	a	consensus	of	
independent	weak	leaners	and	wisdom	of	crowds	
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Peculiari_es	

•  Model	Instability	is	good	when	bagging		

–  The	more	variable	(unstable)	the	basic	model	is,	the	more	
improvement	can	potenLally	be	obtained	

–  Low-Variability	methods	(e.g.	LDA)	improve	less	than	High-
Variability	methods	(e.g.	decision	trees)	
	

•  Load	of	Redundancy	
–  Most	predictors	do	roughly	“the	same	thing”	

11/9/16	 46	
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Bagging	:	an	simulated	example 
•  N	=	30	training	samples,		
•  two	classes	and	p	=	5	features,		
•  Each	feature	N(0,	1)	distribuLon	and	pairwise	correlaLon	.95	
•  Response	Y	generated	according	to:	
•  Test	sample	size	of	2000	
•  Fit	classificaLon	trees	to	training	set	and	bootstrap	samples	
•  B	=	200	

ESL	book	/	Example	8.7.1	



NoLce	the	
bootstrap	
trees	are	
different	than	
the	original	
tree	

Five	features	
highly	correlated	
with	each	other		
	
è	No	clear	
difference	with	
picking	up	which	
feature	to	split		
	
è Small	

changes	in	
the	training	
set	will	result	
in	different	
tree		

è But	these	
trees	are	
actually	quite	
similar	for	
classificaLon				

ESL	book	/	Example	8.7.1	



	
	

•  Consensus:	Majority	vote	
•  Probability:	Average	distribuLon	at	terminal	nodes	

ESL	book	/	Example	8.7.1	

B	

è For	B>30,	more	trees	
do	not	improve	the	
bagging	results	

	
è Since	the	trees	

correlate	highly	to	
each	other	and	give	
similar	classificaLons	



Bagging 

•  Slightly	increases	model	space	
– Cannot	help	where	greater	enlargement	of	
space	is	needed	

•  Bagged	trees	are	correlated		
– Use	random	forest	to	reduce	correlaLon	
between	trees	



Today	

Ø 	Decision	Tree	(DT):		
Ø Tree	representaLon	

Ø Brief	informaLon	theory	
Ø Learning	decision	trees	
Ø Bagging		
Ø Random	forests:	special	ensemble	of	DT	
Ø More	about	ensemble		
	
	11/9/16	 51	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	



Random	forest	classifier	

•  Random	forest	classifier,		
– an	extension	to	bagging		
– which	uses	de-correlated	trees.	
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Random	Forest	Classifier	
N
	e
xa
m
pl
es
	

Create	bootstrap	samples	
from	the	training	data		

...
.…
	

M	features	
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Random	Forest	Classifier	
N
	e
xa
m
pl
es
	

...
.…
	

M	features	

At	each	node	when	choosing	the	split	feature	
choose	only	among	m<M	features	
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Random	Forest	Classifier	
Create	decision	tree	

from	each	bootstrap	sample	

N
	e
xa
m
pl
es
	

...
.…
	

...
.…
	

M	features	
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Random	Forest	Classifier	
N
	e
xa
m
pl
es
	

...
.…
	

...
.…
	

Take	he	
majority	
vote	

M	features	
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Random Forests 

1. For	each	of	our	B	bootstrap	samples	
a.  Form	a	tree	in	the	following	manner	

i.  Given	p	dimensions,	pick	m	of	them		
ii.  Split	only	according	to	these	m	dimensions		

1.  (we	will	NOT	consider	the	other	p-m	dimensions)	

iii.  Repeat	the	above	steps	i	&	ii	for	each	split	
1.  Note:	we	pick	a	different	set	of	m	dimensions	for	each	split	

on	a	single	tree	
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Random Forests 
•  Random	forest	can	be	viewed	as	a	refinement	of	bagging	with	a	

tweak	of	decorrela_ng	the	trees:		

o  At	each	tree	split,	a	random	subset	of	m	features	out	of	all	p	
features	is	drawn	to	be	considered	for	spliqng	

•  Some	guidelines	provided	by	Breiman,	but	be	careful	to	choose	
m	based	on	specific	problem:	

o  m	=	p			amounts	to	bagging	
o  m	=	p/3	or	log2(p)			for	regression	
o  m	=	sqrt(p)			for	classificaLon	

		



Why correlated trees are not ideal ?  

•  Random	Forests	try	to	reduce	correlaLon	
between	the	trees.	

• Why?	



Why correlated trees are not ideal ?  

•  Assuming	each	tree	has	variance	σ2	

•  If	trees	are	independently	idenLcally	
distributed,	then	average	variance	is	σ2/B	



 Why correlated trees are not ideal ?  

•  Assuming	each	tree	has	variance	σ2	

•  If	simply	idenLcally	distributed,	then	average	
variance	is		

ρ	refers	to	
pairwise	
correlaLon,	a	
posiLve	value	

•  As	B	→	∞,	second	term	→	0	
•  Thus,	the	pairwise	correlaLon	always	affects	the	variance	



Why correlated trees are not ideal ?  

•  How	to	deal?	
o  If	we	reduce	m	(the	number	of	dimensions	we	

actually	consider),		
o  then	we	reduce	the	pairwise	tree	correlaLon	

o  Thus,	variance	will	be	reduced.	



Today	

Ø 	Decision	Tree	(DT):		
Ø Tree	representaLon	

Ø Brief	informaLon	theory	
Ø Learning	decision	trees	
Ø Bagging		
Ø Random	forests:	Ensemble	of	DT	
Ø More	ensemble		
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e.g. Ensembles in practice 

Oct	2006	-	2009	

Each	raLng/sample:		
		+	<user,	movie,	date	of	grade,	grade>		
Training	set	(100,480,507	raLngs)	
Qualifying	set	(2,817,131	raLngs)è	winner	



Ensemble in practice 
Team	“Bellkor's	PragmaLc	
Chaos”	defeated	the	team	
“ensemble”	by	submiqng	
just	20	minutes	earlier!		è	
1	million	dollar	!		

The	ensemble	team	è	blenders	of	mulLple	different	methods		
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