UVA CS 6316/4501 – Fall 2016 Machine Learning

Lecture 16: Decision Tree / Random Forest / Ensemble

Dr. Yanjun Qi

University of Virginia

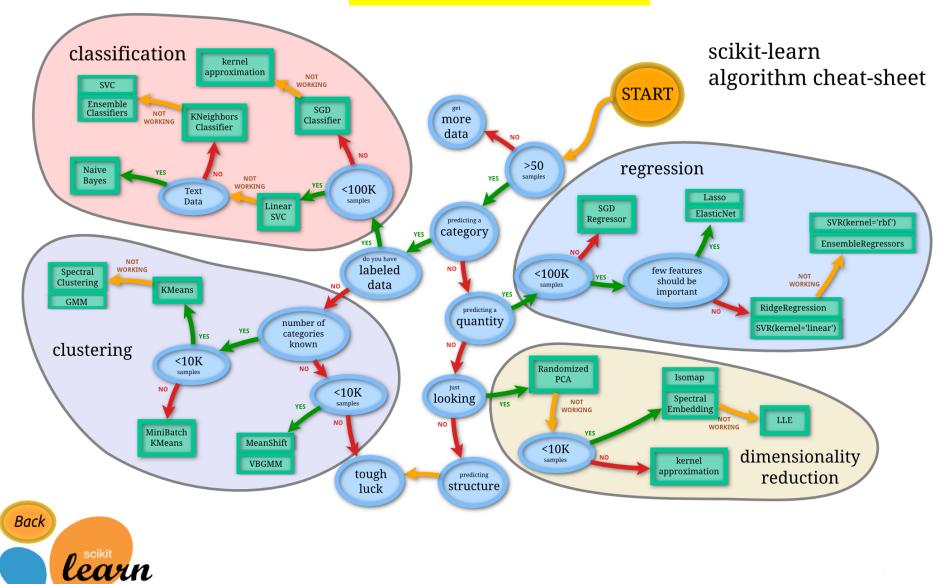
Department of Computer Science

Where are we ? Five major sections of this course

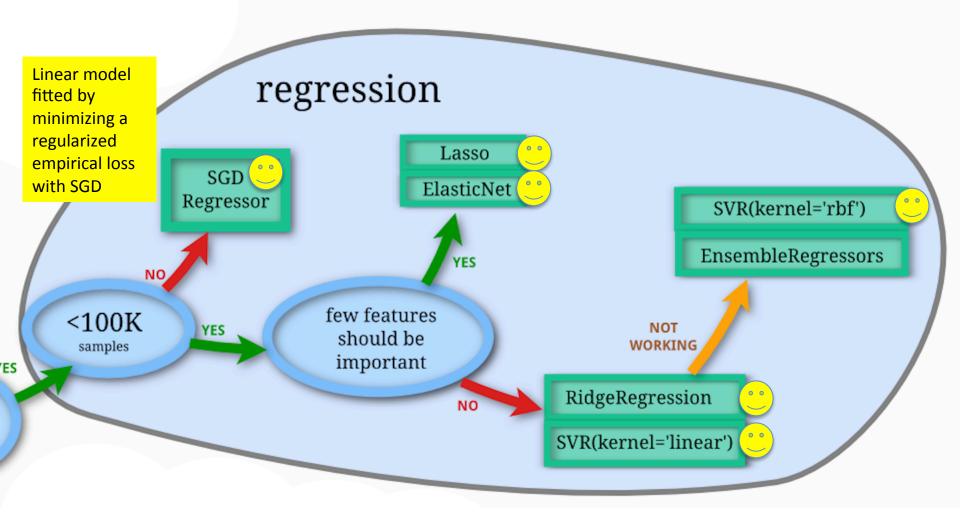
- □ Regression (supervised)
- □ Classification (supervised)
- Unsupervised models
- Learning theory
- Graphical models

http://scikit-learn.org/stable/tutorial/machine_learning_map/

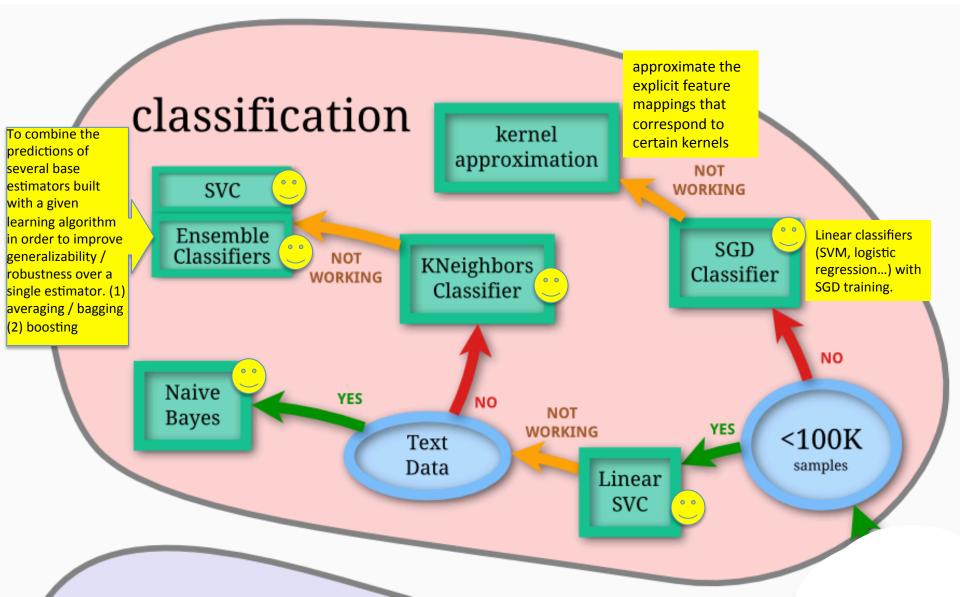
Choosing the right estimator



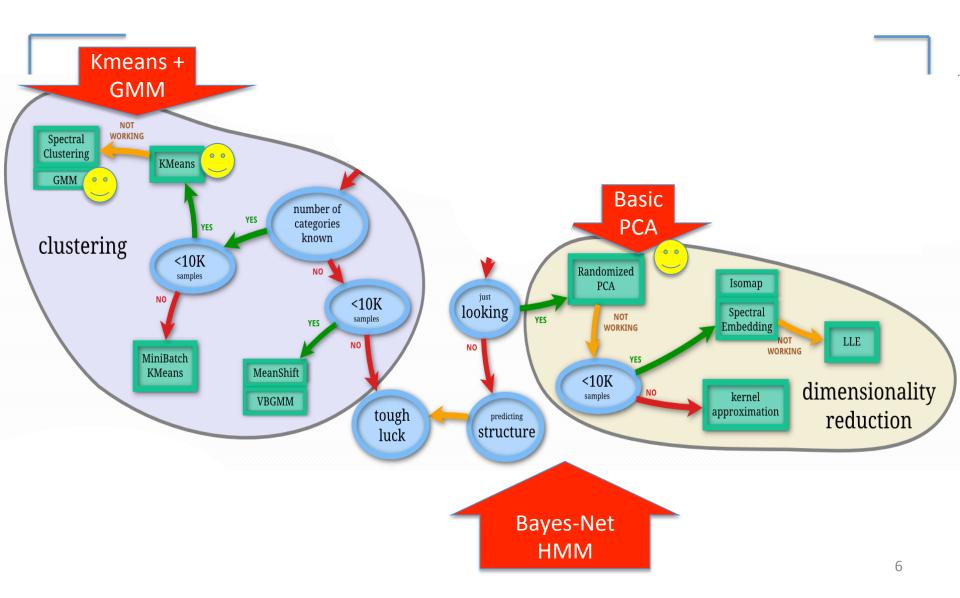
Scikit-learn : Regression



Scikit-learn : Classification



next after classification ?



Today

- Decision Tree (DT): Tree representation \blacktriangleright Brief information theory Learning decision trees ➢ Bagging Random forests: Ensemble of DT
- More about ensemble

CARUANA@CS.CORNELL.EDU

ALEXN@CS.CORNELL.EDU

A study comparing Classifiers

An Empirical Comparison of Supervised Learning Algorithms

Rich Caruana Alexandru Niculescu-Mizil Department of Computer Science, Cornell University, Ithaca, NY 14853 USA

Abstract

A number of supervised learning methods have been introduced in the last decade. Unfortunately, the last comprehensive empirical evaluation of supervised learning was the Statlog Project in the early 90's. We present a large-scale empirical comparison between ten supervised learning methods: SVMs, neural nets, logistic regression, naive bayes, memory-based learning, random forests, decision trees, bagged trees, boosted trees, and boosted stumps. We also examine the effect that calibrating the models via Platt Scaling and Isotonic Regression has on their performance. An important aspect of our study is This paper presents results of a large-scale empirical comparison of ten supervised learning algorithms using eight performance criteria. We evaluate the performance of SVMs, neural nets, logistic regression, naive bayes, memory-based learning, random forests, decision trees, bagged trees, boosted trees, and boosted stumps on eleven binary classification problems using a variety of performance metrics: accuracy, F-score, Lift, ROC Area, average precision, precision/recall break-even point, squared error, and cross-entropy. For each algorithm we examine common variations, and thoroughly explore the space of parameters. For example, we compare ten decision tree styles, neural nets of many sizes, SVMs with many kernels, etc.

Because some of the performance metrics we examine

Proceedings of the 23rd International Conference on Machine Learning (ICML `06).

A study comparing Classifiers Dr. Yanjun Qi / UVA CS 6316 / f16 → 11 binary classification problems / 8 metrics

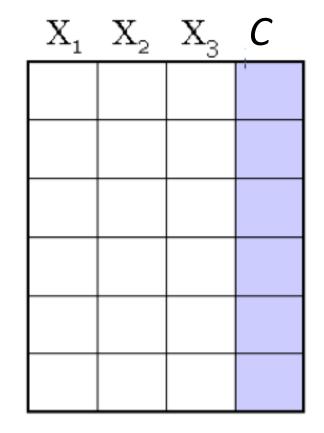
Table 2. Normalized scores for each learning algorithm by metric (average over eleven problems)

100.8							,			·		
Models											1	1
	CAL	ACC	FSC	\mathbf{LFT}	ROC	APR	BEP	RMS	MXE	MEAN	OPT-SEL	
		0.40*	770	0.00	0.00	0.00	000*	000	200	000	015	
BST-DT	PLT	.843*	.779	.939	.963	.938	.929*	.880	.896	.896	.917	
RF	PLT	.872*	.805	.934*	.957	.931	.930	.851	.858	.892	.898	
BAG-DT	-	.846	.781	.938*	.962*	.937*	.918	.845	.872	.887*	.899	
BST-DT	ISO	.826*	.860*	.929*	.952	.921	.925*	.854	.815	.885	.917*	
\mathbf{RF}	-	.872	.790	.934*	.957	.931	.930	.829	.830	.884	.890	
BAG-DT	PLT	.841	.774	.938*	.962*	.937*	.918	.836	.852	.882	.895	
RF	ISO	.861*	.861	.923	.946	.910	.925	.836	.776	.880	.895	
BAG-DT	ISO	.826	.843*	.933*	.954	.921	.915	.832	.791	.877	.894	
SVM	PLT	.824	.760	.895	.938	.898	.913	.831	.836	.862	.880	r
ANN	-	.803	.762	.910	.936	.892	.899	.811	.821	.854	.885	
SVM	ISO	.813	.836*	.892	.925	.882	.911	.814	.744	.852	.882	
ANN	PLT	.815	.748	.910	.936	.892	.899	.783	.785	.846	.875	
ANN	ISO	.803	.836	.908	.924	.876	.891	.777	.718	.842	.884	
BST-DT	_	.834*	.816	.939	.963	.938	.929*	.598	.605	.828	.851	
KNN	PLT	.757	.707	.889	.918	.872	.872	.742	.764	.815	.837	
KNN	_	.756	.728	.889	.918	.872	.872	.729	.718	.810	.830	
KNN	ISO	.755	.758	.882	.907	.854	.869	.738	.706	.809	.844	
BST-STMP	PLT	.724	.651	.876	.908	.853	.845	.716	.754	.791	.808	
SVM	_	.817	.804	.895	.938	.899	.913	.514	.467	.781	.810	
BST-STMP	ISO	.709	.744	.873	.899	.835	.840	.695	.646	.780	.810	
BST-STMP	_	.741	.684	.876	.908	.853	.845	.394	.382	.710	.726	
DT	ISO	.648	.654	.818	.838	.756	.778	.590	.589	.709	.774	

Where are we ? \rightarrow

Three major sections for classification

- We can divide the large variety of classification approaches into roughly three major types
- 1. Discriminative
 - directly estimate a decision rule/boundary
 - e.g., logistic regression, support vector machine, decisionTree
- 2. Generative:
 - build a generative statistical model
 - e.g., naïve bayes classifier, Bayesian networks
- 3. Instance based classifiers
 - Use observation directly (no models)
 - e.g. K nearest neighbors



A Dataset for classification f: X -**Output as Discrete Class Label** $C_1, C_2, ..., C_1$

- Data/points/instances/examples/samples/records: [rows]
- Features/attributes/dimensions/independent variables/covariates/predictors/regressors: [columns, except the last]
- Target/outcome/response/label/dependent variable: special column to be predicted [last column]

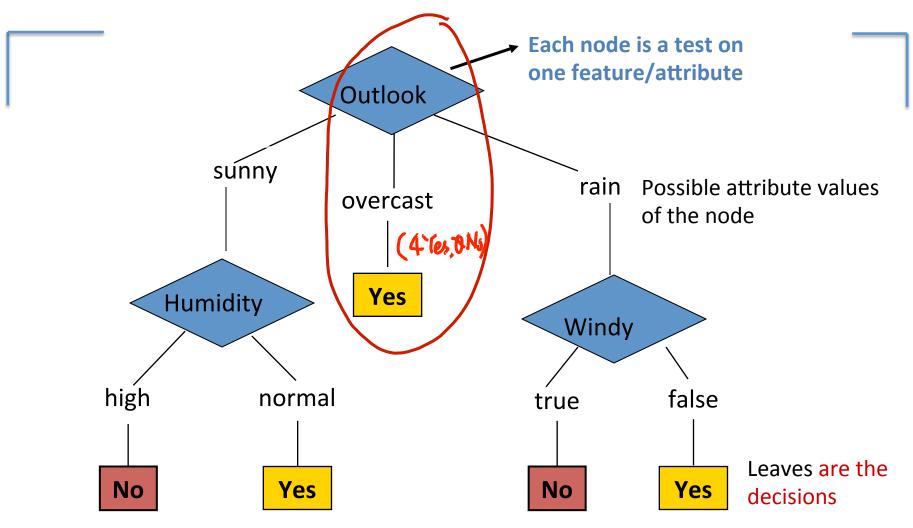
Example

• Example: Play Tennis

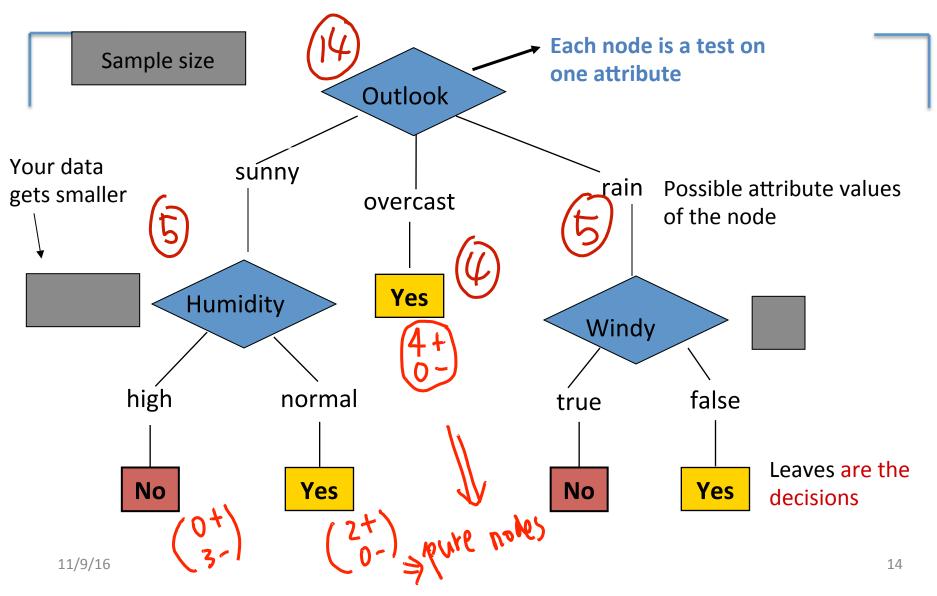
PlayTennis: training examples

Day	Outlook	Temperature	Humidity	Wind	PlayTennis	
D1	Sunny	Hot	High	Weak	No	
D2	Sunny	Hot	High	Strong	No	
D3	Overcast	Hot	High	Weak	Yes 🗲	
D4	Rain	Mild	High	Weak	Yes	
D5	Rain	Cool	Normal	Weak	Yes	
D6	Rain	Cool	Normal	Strong	No	
D7	Overcast	Cool	Normal	Strong	Yes 🗲	
D8	Sunny	Mild	High	Weak	No	
D9	Sunny	Cool	Normal	Weak	Yes	
D10	Rain	Mild	Normal	Weak	Yes	
D11	Sunny	Mild	Normal	Strong	Yes	
D12	Overcast	Mild	High	Strong	Yes 🗲	
D13	Overcast	Hot	Normal	Weak	Yes 🗲	
D14	Rain	Mild	High	Strong	No	

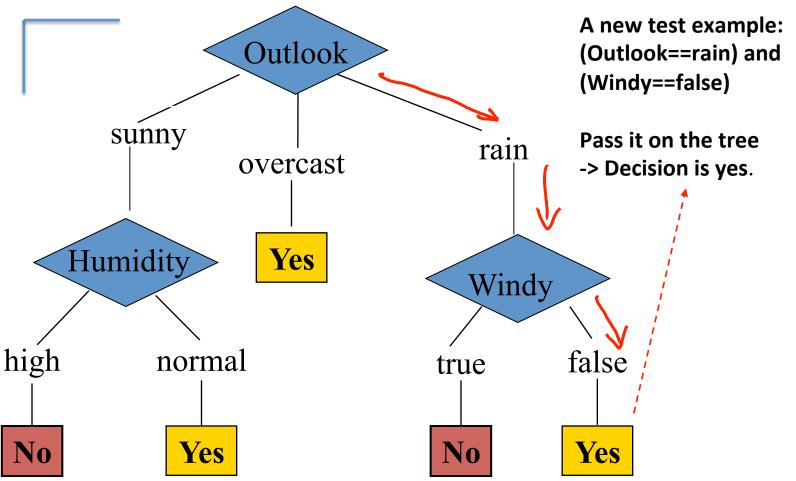
Anatomy of a decision tree

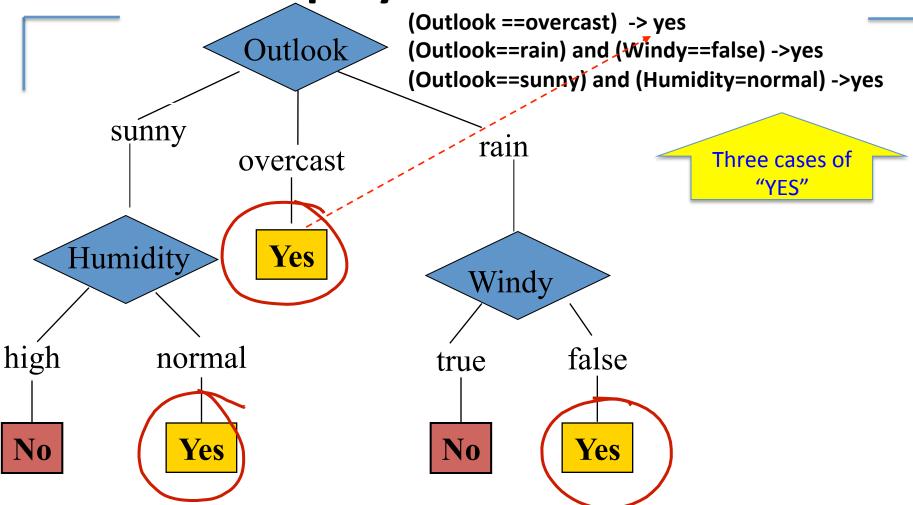


Anatomy of a decision tree



Apply Model to Test Data: To 'play tennis' or not.





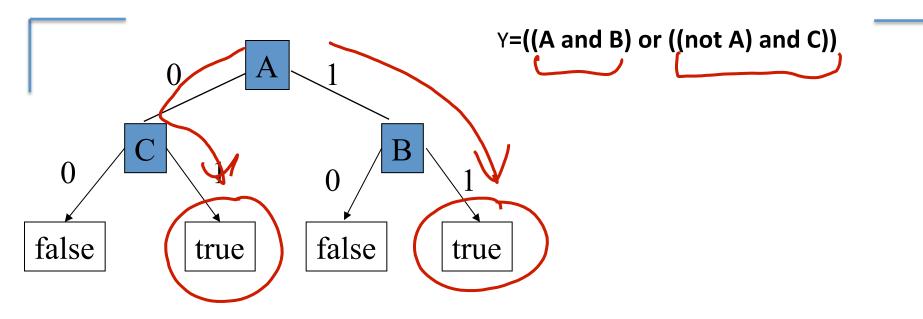
Decision trees

 Decision trees represent a disjunction of conjunctions of constraints on the attribute values of instances.

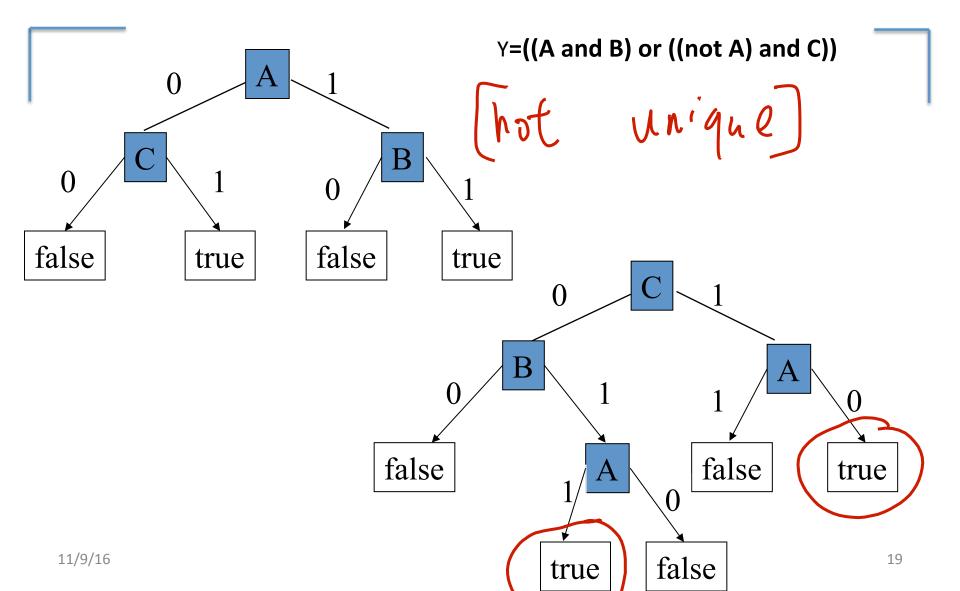
```
• (Outlook ==overcast)
```

- OR
- ((Outlook==rain) and (Windy==false))
- OR
- ((Outlook==sunny) and (Humidity=normal))
- => yes play tennis

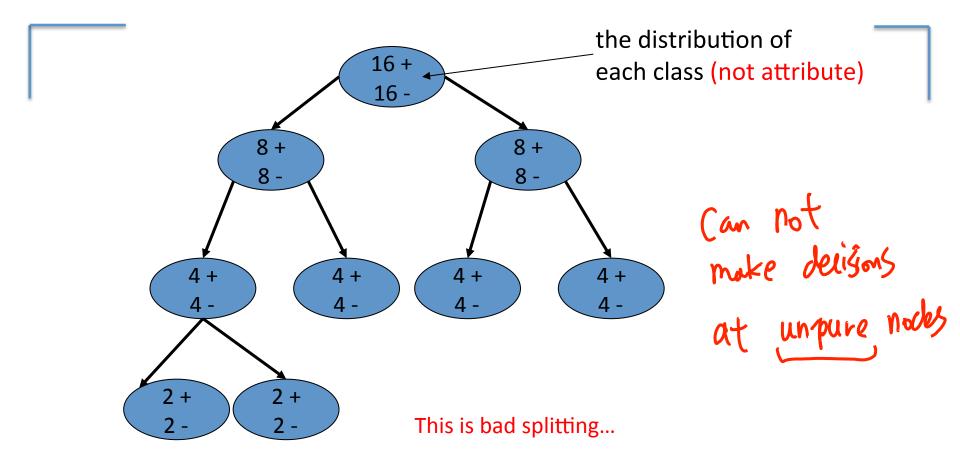
Representation



Same concept / different representation



Which attribute to select for splitting?



humidity

How do we choose which attribute to split ?

Which attribute should be used first to test?

high normal Intuitively, you would prefer the yes yes yes yes examples as much as possible. Wrt. Class yes yes no yes no yes no yes windy no no outlook temperature false true sunny overcast rainy hot mild cool yes no yes yes yes yes yes yes no no no no yes yes yes yes no no no no no no no no no no

Today

 \blacktriangleright Decision Tree (DT): ➤Tree representation Brief information theory Learning decision trees ➢ Bagging Random forests: Ensemble of DT More about ensemble

Information gain is one criteria to decide on which attribute for splitting

• Imagine:

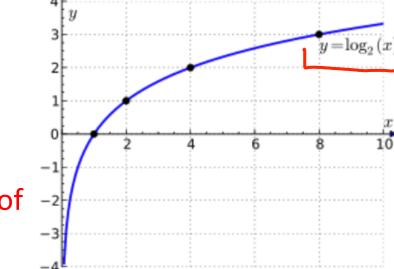
- 1. Someone is about to tell you your own name
- 2. You are about to observe the outcome of a dice roll
- 2. You are about to observe the outcome of a coin flip
- 3. You are about to observe the outcome of a biased coin flip
- Each situation have a different *amount of uncertainty* as to what outcome you will observe.

Information

• Information:

➔ Reduction in uncertainty (amount of surprise in the outcome)

$$I(E) = \log_2 \frac{1}{p(x)} = -\log_2 p(x)$$

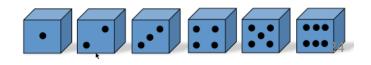


Dr. Yanjun Qi / UVA CS 6316 / f16

If the probability of this event happening is small and it happens, the information is large.

> Observing the outcome of a coin flip $\longrightarrow I = -\log_2 1/2 = 1$ is head

> Observe the outcome of a dice is 6 \longrightarrow $I = -\log_2 1/6 = 2.58$



Entropy

• The *expected amount of information* when observing the output of a random variable X

$$H(X) = E(I(X)) = \sum_{i} p(x_i)I(x_i) = -\sum_{i} p(x_i)\log_2 p(x_i)$$

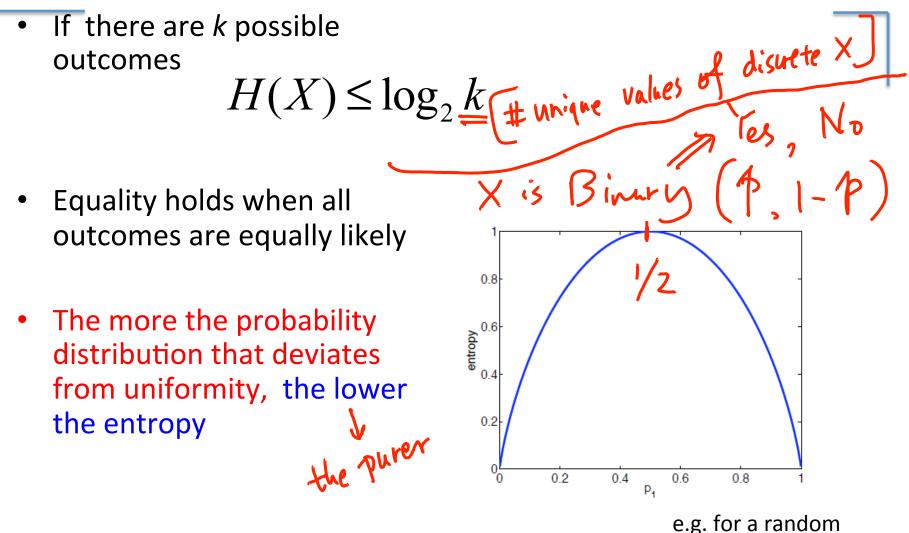
If the X can have 8 outcomes and all are equally likely

$$H(X) = -\sum_{i} \frac{1}{8 \log_2 1} = 3$$

26

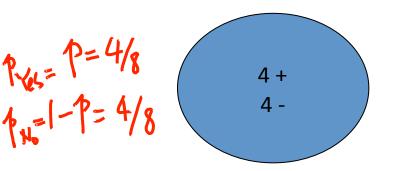
binary variable

Entropy



Entropy Lower -> better purity

• Entropy measures the purity



$$\begin{array}{c} 8+\\ 0-\\ \end{array} + \frac{1-p=0}{p=0} = \frac{1}{p} + \frac{1}{N_0} \end{array}$$

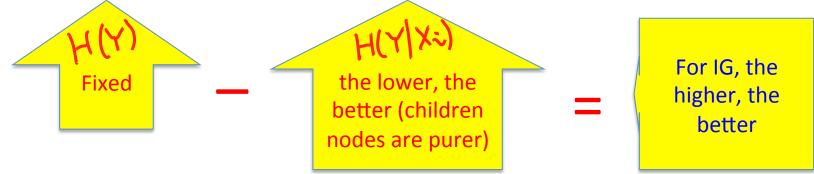
The distribution is less uniform Entropy is lower The node is purer

Information gain • IG(X,Y)=H(Y)-H(Y|X) iG(X,Y)=H(Y)-H(Y|X) Xi IG(X,Y)=H(Y)-H(Y|X) Xi IG(X,Y)=H(Y)-H(Y|X)

Reduction in uncertainty of Y by knowing a feature variable X

Information gain:

- = (information before split) (information after split)
- = entropy(parent) [average entropy(children)]



Conditional entropy

$$H(Y) = -\sum_{i} p(y_i) \log_2 p(y_i)$$

$$H(Y | X = x_j) = -\sum_{i} p(y_i | x_j) \log_2 p(y_i | x_j)$$

$$H(Y|X) = \sum_{j} p(x_{j})H(Y|X = x_{j})$$

$$= -\sum_{j} p(x_{j}) \sum_{i} p(y_{i} | x_{j}) \log_{2} p(y_{i} | x_{j})$$

Example

Attributes Labels							
X	1	X2	γ	Count			
Т		Т	+	2			
Т		F	+	2			
F		Т	-	5			
F		F	+	1			

Which one do we choose

X1 or X2?
$$H(Y) = 1$$

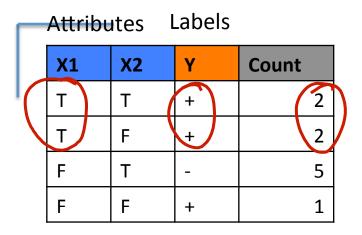
 $\int p(Y=+) = 5/10$
 $f(Y=-) = 5/10$

IG(X1,Y) = H(Y) - H(Y|X1)

 $H(Y) = -(5/10) \log(5/10) - 5/10 \log(5/10) = 1$ H(Y|X1) = P(X1=T)H(Y|X1=T) + P(X1=F) H(Y|X1=F) $= 4/10 (1\log 1 + 0 \log 0) + 6/10 (5/6\log 5/6 + 1/6\log 1/6)$ = 0.39

Information gain (X1,Y)= 1-0.39=0.61

Example



IC(V1 V) - II(V)

Which one do we choose

X1 or X2?
$$H(Y) = -\frac{5}{9} h_{y} h_{y}^{2} h_{y}^{2}$$

 $\int P(Y=+) = \frac{5}{10} + \frac{5}{-5}$
 $P(Y=-) = \frac{5}{10} - 5$

$$H(Y) = -(5/10) \log(5/10) - 5/10 \log(5/10) = 1$$

$$H(Y|X1) = P(X1=T)H(Y|X1=T) + P(X1=F) H(Y|X1=F)$$

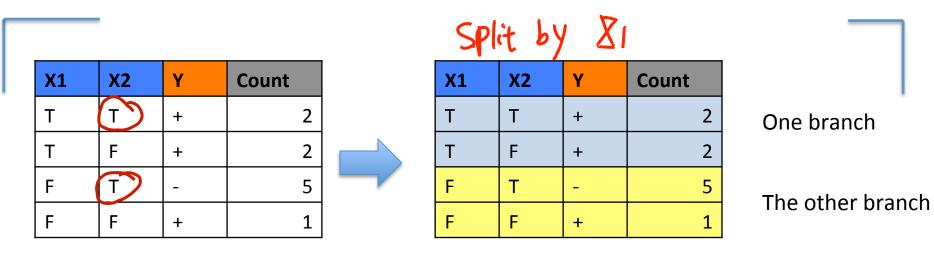
$$= 4/10 (1\log 1 + 0 \log 0) + 6/10 (5/6\log 5/6 + 1/6\log 1/6)$$

$$= 0.39 \qquad 4/4 \qquad 0/4$$

Information gain (X1 Y)= 1-0.39=0.61

 $\mathbf{II}(\mathbf{V}|\mathbf{V}1)$

Which one do we choose?



Information gain (X1,Y)=0.61Information gain (X2,Y)=0.12

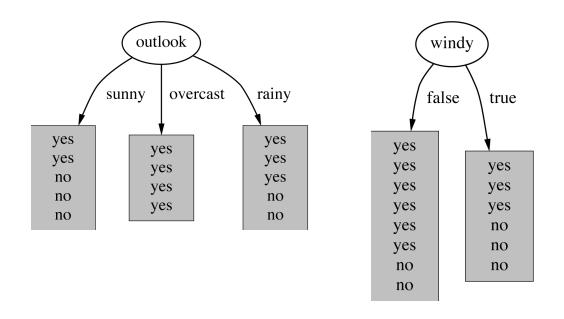
$$= H(Y) - H(Y|X_1) =$$

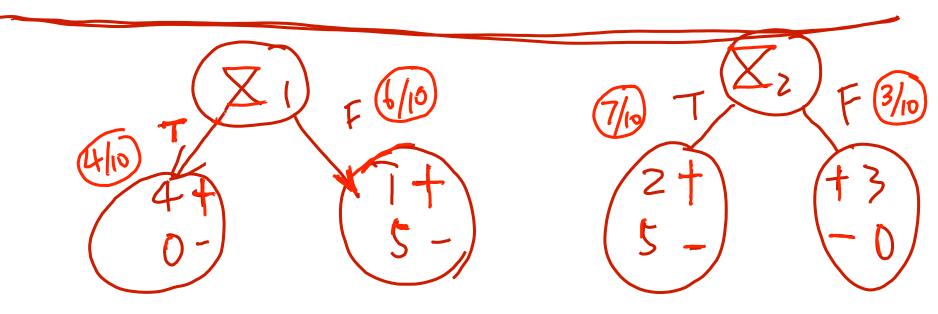
= H(Y) - H(Y|X_2)

⇒ Smaller, puver JI IG, lager Better €868

Pick the variable which provides the most information gain about Y Pick X1

→ Then recursively choose next Xi on branches





Decision Trees

- **Caveats:** The number of possible values influences the information gain.
 - The more possible values, the higher the gain (the more likely it is to form small, but pure partitions)
- Other Purity (diversity) measures
 - Information Gain
 - Gini (population diversity) $\sum_{k=1}^{K} \hat{p}_{mk} (1 \hat{p}_{mk})$
 - where p_{mk} is proportion of class k at node m
 - Chi-square Test

Overfitting

- You can perfectly fit DT to any training data
- Instability of Trees

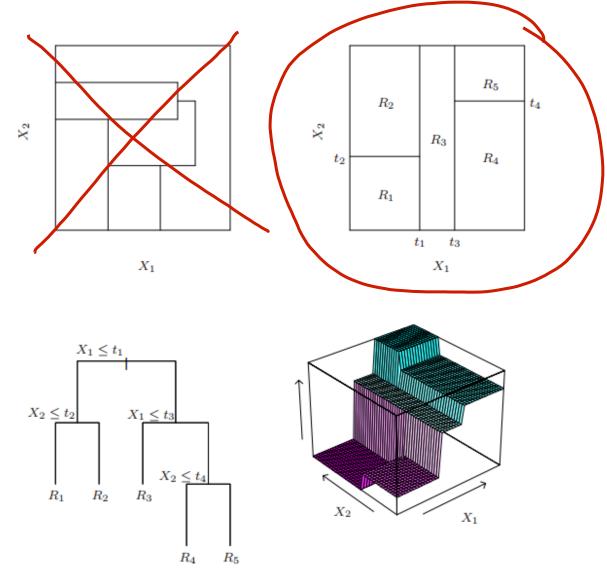
- High variance (small changes in training set will result in changes of tree model)
- Hierarchical structure → Error in top split propagates down
- Two approaches:

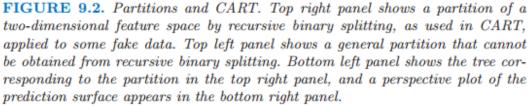
- 1. Stop growing the tree when further splitting the data does not yield an improvement
- 2. Grow a full tree, then prune the tree, by eliminating nodes.

From ESL book Ch9 :

<u>C</u>lassification <u>a</u>nd <u>R</u>egression <u>T</u>rees (CART)

- Partition feature space into set of rectangles
- Fit simple model in each partition

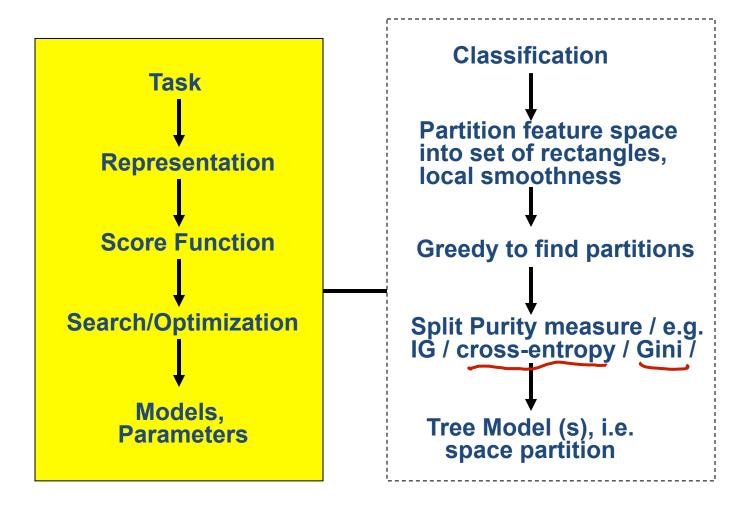




Summary: Decision trees

- Non-linear classifier
- Easy to use
- Easy to interpret
- Susceptible to overfitting but can be avoided.

Decision Tree / Random Forest



Today

 \blacktriangleright Decision Tree (DT): ➤Tree representation Brief information theory Learning decision trees Bagging Random forests: Ensemble of DT More about ensemble

Bagging

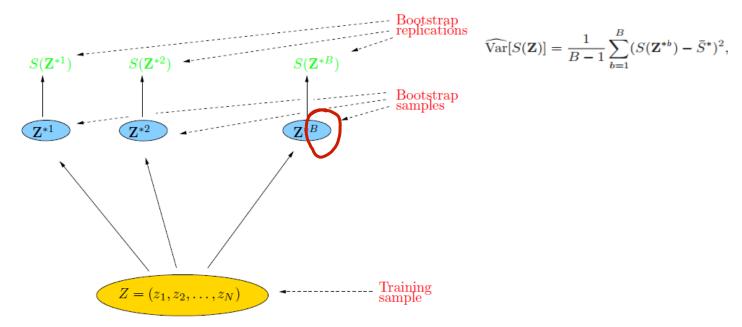
- Bagging or *bootstrap aggregation*
 - a technique for reducing the variance of an estimated prediction function.

- For instance, for classification, a *committee* of trees
 - Each tree casts a vote for the predicted class.

Bootstrap

The basic idea:

randomly draw datasets *with replacement (i.e. allows duplicates)* from the training data, each sample *the same size as the original training set*

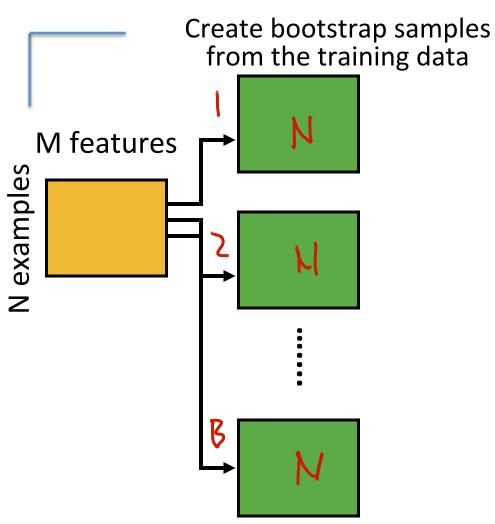


With vs Without Replacement

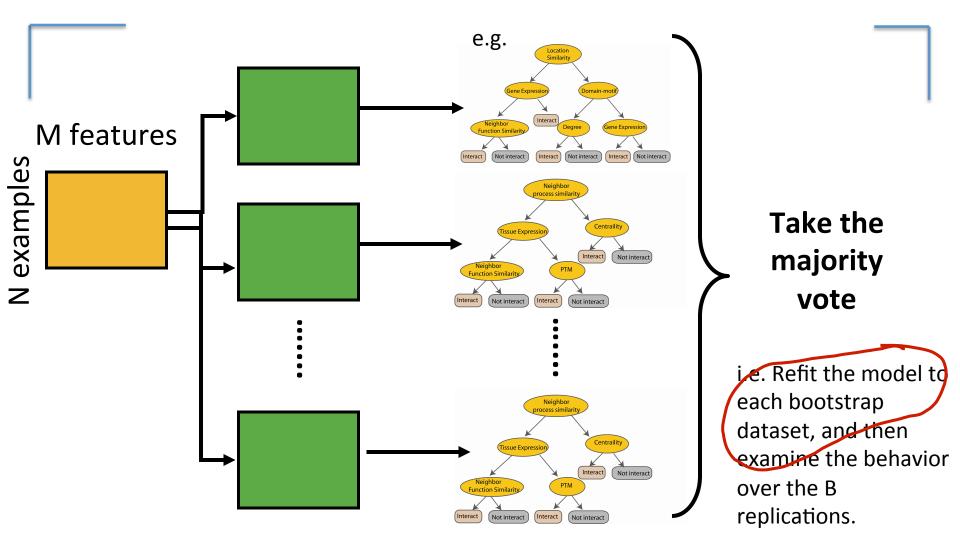
• Bootstrap with replacement can keep the sampling size the same as the original size for every repeated sampling. The sampled data groups are independent on each other.

 Bootstrap without replacement cannot keep the sampling size the same as the original size for every repeated sampling. The sampled data groups are dependent on each other.

Bagging



Bagging of DT Classifiers



Bagging for Classification with 0,1 Loss

- Classification with 0, 1 loss
 - Bagging a **good** classifier can make it **better**.
 - Bagging a **bad** classifier can make it **worse**.
 - Can understand the bagging effect in terms of a consensus of independent *weak leaners* and *wisdom of crowds*

Peculiarities

- Model Instability is good when bagging
 - The more variable (unstable) the basic model is, the more improvement can potentially be obtained
 - Low-Variability methods (e.g. LDA) improve less than High-Variability methods (e.g. decision trees)
- Load of Redundancy

Most predictors do roughly "the same thing"

Bagging : an simulated example

N = 30 training samples,

two classes and p = 5 features,

Each feature N(0, 1) distribution and pairwise correlation .95

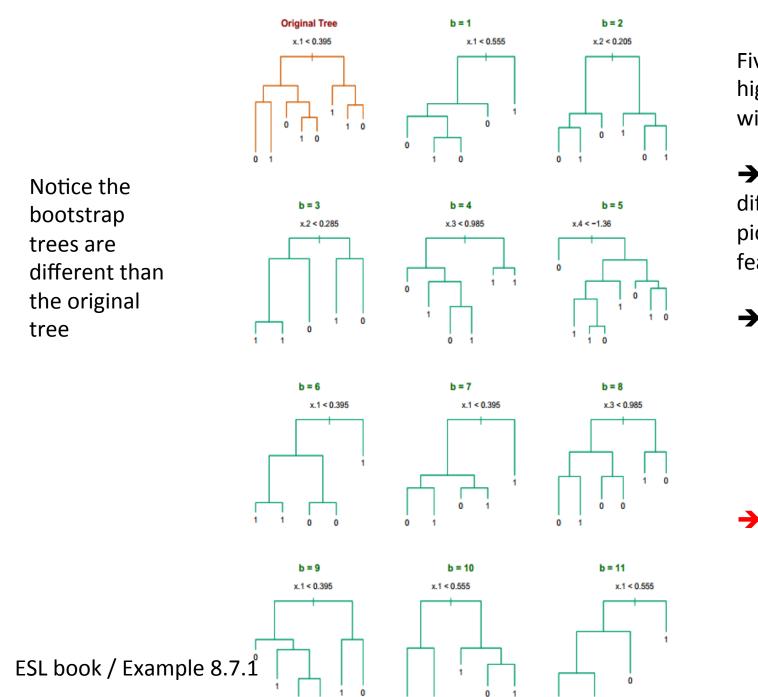
Response Y generated according to:

 $\Pr(Y = 1 | x_1 \le 0.5) = 0.2$ $\Pr(Y = 1 | x_1 > 0.5) = 0.8$

Test sample size of 2000

Fit classification trees to training set and bootstrap samples

B = 200



1 0

0

1

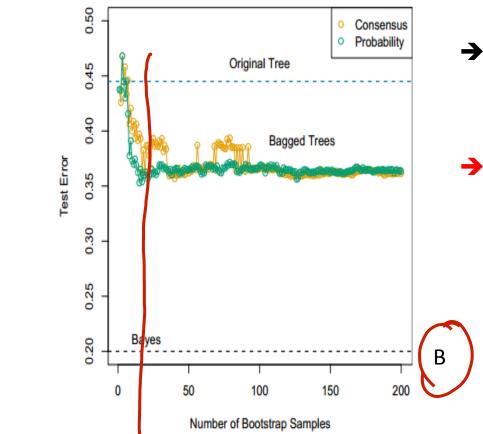
0

Five features highly correlated with each other

➔ No clear difference with picking up which feature to split

Small changes in the training set will result in different tree

But these trees are actually quite similar for classification



➔ For B>30, more trees do not improve the bagging results

Since the trees correlate highly to each other and give similar classifications

Consensus: Majority vote

Probability: Average distribution at terminal nodes

Bagging

- Slightly increases model space
 - Cannot help where greater enlargement of space is needed

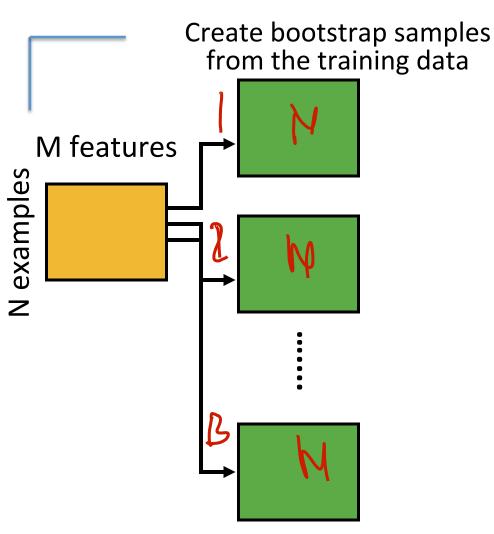
 Bagged trees are correlated

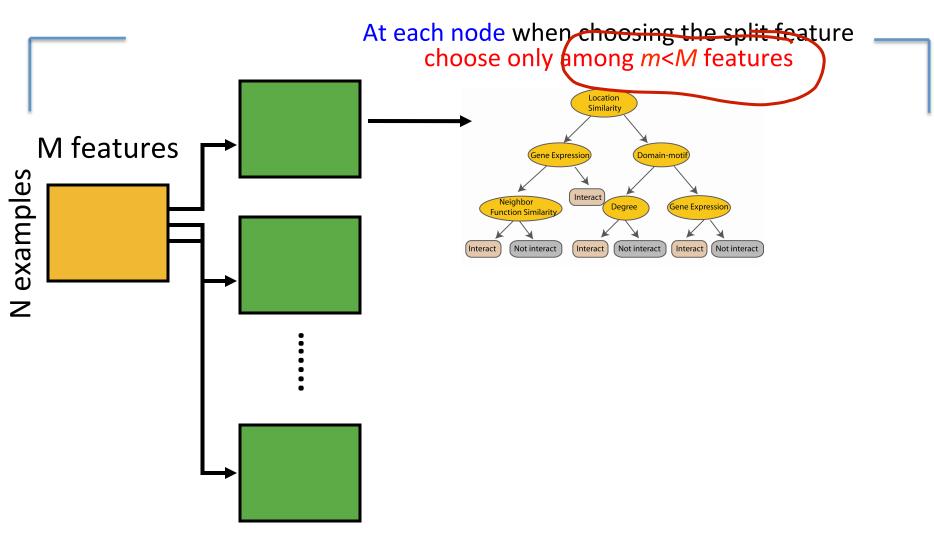
 Use random forest to reduce correlation between trees

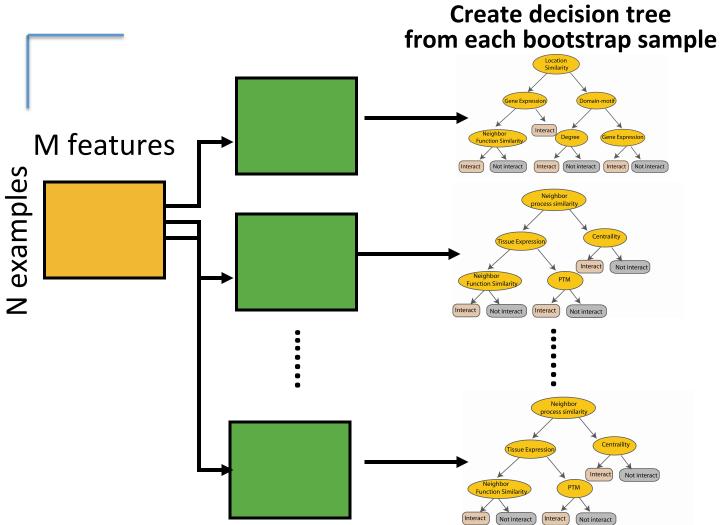
Today

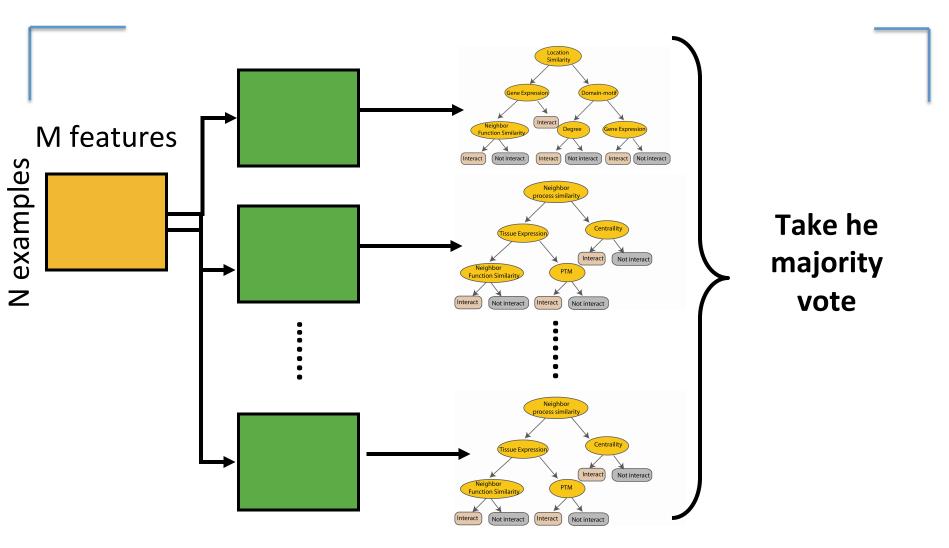
- Decision Tree (DT):
 Tree representation
 Brief information theory
 Learning decision trees
 Bagging
 Random forests: special ensemble of DT
- ➢ More about ensemble

- Random forest classifier,
 - an extension to bagging
 - which uses *de-correlated* trees.









Random Forests

For each of our *B* bootstrap samples Form a tree in the following manner Given *p* dimensions, pick *m* of them Split only according to these *m* dimensions (we will NOT consider the other *p-m* dimensions) Repeat the above steps i & ii for each split Note: we pick a different set of *m* dimensions for each split on a single tree

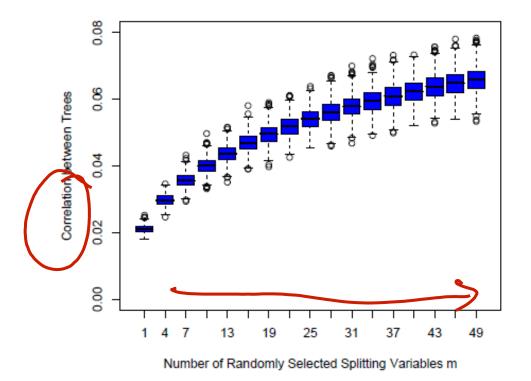


FIGURE 15.9. Correlations between pairs of trees drawn by a random-forest regression algorithm, as a function of m. The boxplots represent the correlations at 600 randomly chosen prediction points x.

Page 598-599 In ESL book

Random Forests

Random forest can be viewed as a refinement of bagging with a tweak of **decorrelating** the trees:

At each tree split, a random subset of **m** features out of all **p** features is drawn to be considered for splitting

Some guidelines provided by Breiman, but be careful to choose m based on specific problem:

$$m = p/3$$
 or $log2(p)$ for regression

m = sqrt(p) for classification

Random Forests try to reduce correlation between the trees.

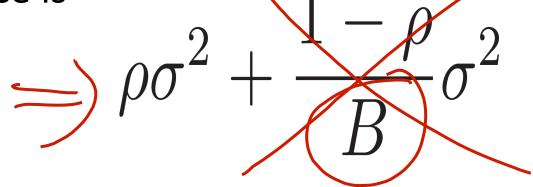
Why?

Assuming each tree has variance σ^2

If trees are independently identically distributed, then average variance is σ^2/B

Assuming each tree has variance σ^2

If simply identically distributed, then average variance is



As $B \rightarrow \infty$, second term $\rightarrow 0$

Thus, the pairwise correlation always affects the variance

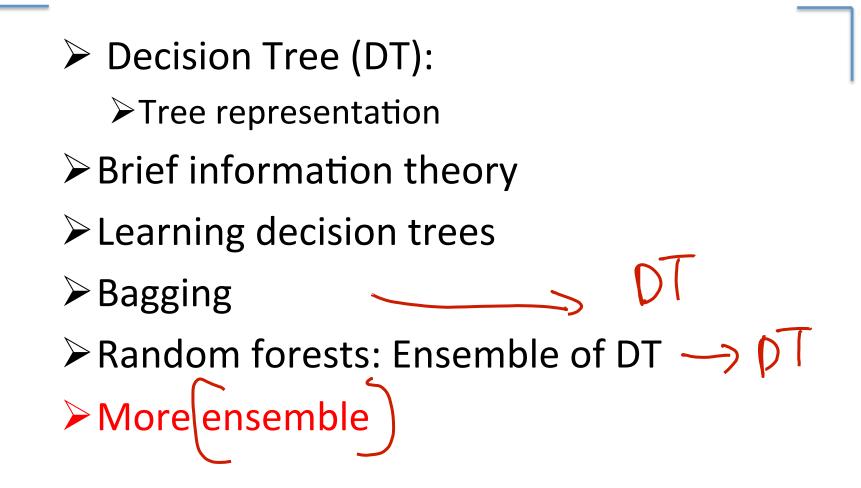
How to deal?

If we reduce *m* (the number of dimensions we actually consider),

then we reduce the pairwise tree correlation

Thus, variance will be reduced.

Today



e.g. Ensembles in practice

Each rating/sample: + <user, movie, date of grade, grade> Training set (100,480,507 ratings) Qualifying set (2,817,131 ratings)→ winner

Oct 2006 - 2009

- Training data is a set of users and ratings (1,2,3,4,5 stars) those users have given to movies.
- Predict what rating a user would give to any movie
- \$1 million prize for a 10% improvement over Netflix's current method (MSE = 0.9514)

Ensemble in practice

Team "Bellkor's Pragmatic Chaos" defeated the team "ensemble" by submitting just 20 minutes earlier! → 1 million dollar !

Rank	Team Name	Best Test Score	% Improvement	Best Submit Time
Grand Prize - RMSE = 0.8567 - Winning Team: BellKor's Pragmatic Chaos				
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22
3	Grand Prize Team	0.8582	9.90	2009-07-10 21:24:40
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31
5	Vandelay Industries !	0.8591	9.81	2009-07-10 00:32:20
6	PragmaticTheory	0.8594	9.77	2009-06-24 12:06:56
7	BellKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09
8	Dace	0.8612	9.59	2009-07-24 17:18:43
9	Feeds2	0.8622	9.48	2009-07-12 13:11:51
10	BigChaos	0.8623	9.47	2009-04-07 12:33:59
11	Opera Solutions	0.8623	9.47	2009-07-24 00:34:07
12	BellKor	0.8624	9.46	2009-07-26 17:19:11

The ensemble team -> blenders of multiple different methods

References

- Prof. Tan, Steinbach, Kumar's "Introduction to Data Mining" slide
- Hastie, Trevor, et al. The elements of statistical learning. Vol. 2. No. 1. New York: Springer, 2009.
- Dr. Oznur Tastan's slides about RF and DT