
Lecture 17: 
Neural Networks and 

Deep Learning
Jack Lanchantin

Dr. Yanjun Qi

1

UVA CS 6316 / CS 4501-004
Machine Learning

Fall 2016



Neurons
1-Layer Neural Network

Multi-layer Neural Network

Loss Functions

Backpropagation

Nonlinearity Functions

NNs in Practice
2



3

x1

x2

x3

W1

w3

W2

x ŷ



ewx+b

1 + ewx+b

Logistic Regression
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Neurons
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http://cs231n.stanford.edu/slides/winter1516_lecture5.pdf
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z = wT . x 

ŷ = sigmoid(z) =
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From here on, we leave 
out bias for simplicity 

Input x

w1

w2

w3



“Block View” of a Neuron
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Input output
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parameterized block
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Neuron Representation

Σ
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The linear transformation and nonlinearity together is typically considered a single neuron 
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Neuron Representation
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The linear transformation and nonlinearity together is typically considered a single neuron 
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1-Layer Neural Network (with 4 neurons)
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1-Layer Neural Network (with 4 neurons)
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Element-wise on vector z



1-Layer Neural Network (with 4 neurons)
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“Block View” of a Neural Network
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Dot Product Sigmoid
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Input output

Dot Product SigmoidInput output

x *
W z ŷ

W is now a matrix

ez

1 + ez

z =WT   x

ŷ = sigmoid(z) =
px1dxpdx1

dx1 dx1

z is now a vector
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Multi-Layer Neural Network
(Multi-Layer Perceptron (MLP) Network) 
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Multi-Layer Neural Network (MLP)

21

1st  
hidden 
layer

2nd 
hidden
layer

Output
layer

x1

x2

x3

x ŷ

3-layer NN

W1

w3

W2



Multi-Layer Neural Network (MLP)
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z1 =WT x
h1 = sigmoid(z1)
z2 =WT h1 
h2 = sigmoid(z2)
z3 =wT  h2 
ŷ = sigmoid(z3)
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Multi-Class Output MLP
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“Block View” Of MLP
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“Deep” Neural Networks (i.e. > 1 hidden layer)
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Researchers have successfully used 1000 layers to train an object classifier
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ŷ = P(y=1|X,W)
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Binary Classification Loss

E= loss = - logP(Y = ŷ | X= x )
               = - y log(ŷ) - (1 - y) log(1-ŷ)

W1

w3

W2

this example is for a 
single sample x

true output



29

x1

x2

x3

Σ

W1

w3

W2

x

Regression Loss

E = loss=    ( y - ŷ )21
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Multi-Class Classification Loss

“Softmax” function. 
Normalizing function which 
converts each class output 
to a probability.

E = loss = -     yj ln ŷjΣ
j = 1...K

= P( ŷi = 1 | x )

W1 W3

W2

ŷi 

“0” for all except true class

K = 3
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Training Neural Networks
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How do we learn the optimal  weights WL  for our task??
● Gradient descent: 

LeCun et. al. Efficient Backpropagation. 1998 

WL(t+1) = WL(t) - ᶙ ᷦ E
ᷦ WL(t)

But how do we get gradients of lower layers?
● Backpropagation!

○ Repeated application of chain rule of calculus
○ Locally minimize the objective
○ Requires all “blocks” of the network to be differentiable

x ŷ

W1
w3

W2
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Backpropagation Intro

http://cs231n.stanford.edu/slides/winter1516_lecture5.pdf
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Backpropagation Intro

http://cs231n.stanford.edu/slides/winter1516_lecture5.pdf
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Backpropagation Intro

http://cs231n.stanford.edu/slides/winter1516_lecture5.pdf



37

Backpropagation Intro

http://cs231n.stanford.edu/slides/winter1516_lecture5.pdf
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Backpropagation Intro

http://cs231n.stanford.edu/slides/winter1516_lecture5.pdf
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Backpropagation Intro

http://cs231n.stanford.edu/slides/winter1516_lecture5.pdf
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Backpropagation Intro
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Backpropagation Intro
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Backpropagation Intro
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Backpropagation Intro
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Backpropagation Intro

http://cs231n.stanford.edu/slides/winter1516_lecture5.pdf
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Backpropagation Intro

http://cs231n.stanford.edu/slides/winter1516_lecture5.pdf
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Backpropagation Intro

Tells us: by increasing x by a scale of 1, 
we decrease f by a scale of 4

http://cs231n.stanford.edu/slides/winter1516_lecture5.pdf
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ŷ = P(y=1|X,W)
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Backpropagation
(binary classification example)

Example on 1-hidden layer NN for binary classification
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Backpropagation
(binary classification example)
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E = loss =  

Backpropagation
(binary classification example)

Gradient Descent 
to Minimize loss: Need to find these!
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Backpropagation
(binary classification example)
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Backpropagation
(binary classification example)

= ??

= ??
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Backpropagation
(binary classification example)

= ??

= ??

Exploit the chain rule!
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Backpropagation
(binary classification example)
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Backpropagation
(binary classification example)

chain rule
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Backpropagation
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Backpropagation
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Backpropagation
(binary classification example)
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Backpropagation
(binary classification example)

already computed
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“Local-ness” of Backpropagation

f
x y

“local gradients”
activations

gradients

http://cs231n.stanford.edu/slides/winter1516_lecture5.pdf
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“Local-ness” of Backpropagation

f
x y

“local gradients”
activations

gradients
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Example: Sigmoid Block

sigmoid(x) 
= ᵫ (x)

  

 



Deep Learning = 
Concatenation of Differentiable Parameterized Layers (linear & nonlinearity functions)

x y

1st  
hidden 
layer

2nd 
hidden 
layer

Output 
layer
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*
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*
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*
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z1 z2 z3
h1 h2

Want to find optimal weights W to minimize some loss function E!



Backprop Whiteboard Demo
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1
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z1 = x1w1 + x2w3 + b1
z2 = x1w2 + x2w4 + b2

h1 =
exp(z1)

1 + exp(z1)
exp(z2)

1 + exp(z2)
h2 =

 ŷ = h1w5 + h2w6 + b3 

 E = ( y - ŷ )2

 

f1

f2

f3
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w(t+1) = w(t) - ᶙ ᷦ E
ᷦ w(t)

ᷦ E
ᷦ w = ??
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Nonlinearity Functions 
(i.e. transfer or activation functions)
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Summing
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x﹡w

Multiply by 
weights
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Nonlinearity Functions 
(i.e. transfer or activation functions)

x﹡w

70
https://en.wikipedia.org/wiki/Activation_function#Comparison_of_activation_functions

Name Plot Equation Derivative ( w.r.t x )

https://en.wikipedia.org/wiki/Activation_function#Comparison_of_activation_functions
https://en.wikipedia.org/wiki/Activation_function#Comparison_of_activation_functions


Nonlinearity Functions 
(i.e. transfer or activation functions)

x﹡w

71
https://en.wikipedia.org/wiki/Activation_function#Comparison_of_activation_functions

Name Plot Equation Derivative ( w.r.t x )

https://en.wikipedia.org/wiki/Activation_function#Comparison_of_activation_functions
https://en.wikipedia.org/wiki/Activation_function#Comparison_of_activation_functions


Nonlinearity Functions 
(aka transfer or activation functions)

x﹡w

72
https://en.wikipedia.org/wiki/Activation_function#Comparison_of_activation_functions

Name Plot Equation Derivative ( w.r.t x )

usually works best in practice

https://en.wikipedia.org/wiki/Activation_function#Comparison_of_activation_functions
https://en.wikipedia.org/wiki/Activation_function#Comparison_of_activation_functions
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Neural Net Pipeline

x ŷ

W1
w3

1. Initialize weights
2. For each batch of input x samples S:

a. Run the network “Forward” on S to compute outputs and loss
b. Run the network “Backward” using outputs and loss to compute gradients
c. Update weights using SGD (or a similar method)

3. Repeat step 2 until loss convergence

W2

E
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Non-Convexity of Neural Nets

In very high dimensions, there exists many local 
minimum which are about the same. 

Pascanu, et. al. On the saddle point problem for non-convex optimization 2014
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Building Deep Neural Nets

http://cs231n.stanford.edu/slides/winter1516_lecture5.pdf

fx

y
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Building Deep Neural Nets

“GoogLeNet” for Object Classification
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Block Example Implementation

http://cs231n.stanford.edu/slides/winter1516_lecture5.pdf
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Advantage of Neural Nets

As long as it’s fully differentiable, we can train the 
model to automatically learn features for us.



Advanced Deep Learning Models:

Convolutional Neural Networks

& Recurrent Neural Networks

Most slides from http://cs231n.stanford.edu/
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Convolutional Neural Networks
(aka CNNs and ConvNets)



Challenges in Visual Recognition



Challenges in Visual Recognition
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Problems with “Fully Connected Networks” on Images

1000x1000 Image
1M hidden units:
→ 10^12 parameters

  

Spatial Correlation is local! → Connect units   

  

locally

    

  

  

Each neuron corresponds to a 
specific pixel 
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Problems with “Fully Connected Networks” on Images

1000x1000 Image
1M hidden units:
→ 10^12 parameters

  

Spatial Correlation is local! → Connect units   

  

locally

    

  

  

Each neuron corresponds to a 
specific pixel 

How do we deal with multiple dimensions in the 
input? Length,height, channel (R,G,B)
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Convolution
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Convolution
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Neuron View of Convolutional Layer
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Neuron View of Convolutional Layer

  



94

Convolutional Layer
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Convolutional Layer
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Neuron View of Convolutional Layer
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Convolutional Neural Networks
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Convolutional Neural Networks
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Convolutional Neural Networks
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Convolutional Neural Networks

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
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Pooling Layer
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Pooling Layer (Max Pooling example)
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History of ConvNets

Gradient-based learning applied 
to document recognition [LeCun, 
Bottou, Bengio, Haffner]

ImageNet Classification with Deep 
Convolutional Neural Networks 
[Krizhevsky, Sutskever, Hinton, 2012]

1998 2012
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Recurrent Neural Networks
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Standard “Feed-Forward” Neural Network
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Standard “Feed-Forward” Neural Network
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Recurrent Neural Networks (RNNs)
RNNs can handle
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Recurrent Neural Networks (RNNs)
RNNs can handle



Recurrent Neural Networks (RNNs)

Traditional “Feed 
Forward” Neural Network Recurrent Neural Network

input 

hidden

output

predict a vector 
at each timestep

input 

hidden

output
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Recurrent Neural Networks

ht

ht-1
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Recurrent Neural Networks

ht

ht-1
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“Vanilla” Recurrent Neural Network

ht

ht-1
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Character Level Language Model with an RNN
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Character Level Language Model with an RNN
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Character Level Language Model with an RNN
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Character Level Language Model with an RNN
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Character Level Language Model with an RNN
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Character Level Language Model with an RNN
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Character Level Language Model with an RNN
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Example: Generating Shakespeare with RNNs
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Example: Generating C Code with RNNs



Long Short Term Memory Networks (LSTMs)
Recurrent networks suffer from the “vanishing gradient problem”
● Aren’t able to model long term dependencies in sequences

input 

hidden

output



Long Short Term Memory Networks (LSTMs)
Recurrent networks suffer from the “vanishing gradient problem”
● Aren’t able to model long term dependencies in sequences

Use “gating units” to learn when to remember

input 

output
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RNNs and CNNs Together


