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Logistic Regression

0.8 4

emﬁb

]+emwb

P(Y=I|x) =
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Sigmoid Function
(aka logistic, logit, “S”, soft-step)




Expanded Logistic Regression

Multiply by

weights

Summing Sigmoid
Function Function
z=wl-x+b
]x] pr px]
eZ

y = sigmoid(z) =

1+ é”

~y=P(Y=I|x,w)



“Neuron”




Neurons

impulses carried
toward cell body
branches
of axon

dendrites

axon

S terminals

impulses carried
away from cell body

oy wo

*@ synapse
axon from a neuron ™.
~ WoZTo

cell body

f (Zwil‘s +b)
Zw,-:n,- +b '

output axon

activation
function

Wwo 9

http://cs231n.stanford.edu/slides/winter1516_lecture5.pdf



Input X

Neuron

From here on, we leave
out bias for simplicity

-

z=whXx
]X] ]xp px]

eZ

1 + e~

Yy = sigmoid(z) =

\/

<



“Block View” of a Neuron

parameterized block

V4

Input Dot Product Sigmoid output

\
<

z=whXx
]X] ]xp px]

eZ

1 + e~

Yy = sigmoid(z) =




Neuron Representation

The linear transformation and nonlinearity together is typically considered a single neuron
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Neuron Representation

:

The linear transformation and nonlinearity together is typically considered a single neuron
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1-Layer Neural Network (with 4 neurons)

matrix — vector

Input x

Linear Sigmoid
— _/

YT
1 layer
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1-Layer Neural Network (with 4 neurons)

Input x

Element-wise on vector z

/

=W'x

dx1

N

y

dx1

= sigmoid(z) =
dxl1

dxp pxl /
eZ

1 +é”
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1-Layer Neural Network (with 4 neurons)

Input x

Element-wise on vector z

/

7=W'x
dx1 dxp px] 7
e

y = sigmoid(z) =
dxl1

dx1

1 +é”

16



“Block View” of a Neural Network

Input

W is now a matrix z iS now a vector

/

=- z

s

Dot Product Sigmoid
7=W'x
dx1 dxp pPx x/ Z

y= Szgmozd(z) =

dx1

1 +é°

output
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Multi-Layer Neural Network
(Multi-Layer Perceptron (MLP) Network)

weight subscript
represents layer

number I— W,

<

Hidden Output
layer layer
— v
—

2-layer NN
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Multi-Layer Neural Network (MLP)

1st 2nd
hidden hidden Output
layer layer layer
— _/

——
3-layer NN
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Multi-Layer Neural Network (MLP)

hidden layer 1 output

z, =W/x
~h, = sigmoid(z,)
z, =W.h,

2
I
=

N

=~

y = sigmoid(z,)
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Multi-Class Output MLP

Yo
N

T Mo
el il

@i 4;{
Ve

g, =W x
h, = sigmoid(z,)
z,=W!h,
h, = sigmoid(z,)
2, =Wih
y = sigmoid(z,)

2




1st
hidden
layer

“Block View” Of MLP

2nd
hidden
layer

Output
layer
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“Deep” Neural Networks (i.e. > 1 hidden layer)

hidden layer 1 hidden laver 2 hidden layer 3

input

=
L
-

OSSN
(S
<=

<

Researchers have successfully used 1000 layers to train an object classifier .
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Binary Classification Loss

y=Py=IX.W)

this example is for a

/single sample X
E=1loss =-logP(Y =y | X=x)

= {log()?) -(1 /—,y) log(1-y)

true output

28



Regression Loss

true output
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Multi-Class Classification Loss

“0” for all except true class

“Softmax” function.
Normalizing function which
converts each class output
to a probability.
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Training Neural Networks

How do we learn the optimal weights /¥, for our task??
e Gradient descent:

WL(t+1) - WL(O - 778 iVE(lj

L

But how do we get gradients of lower layers?
e Backpropagation!
o Repeated application of chain rule of calculus
o Locally minimize the objective
o Requires all “blocks” of the network to be differentiable

LeCun et. al. Efficient Backpropagation. 1998
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Backpropagation Intro

f(z,y,2) = (z +y)z
eg.x=-2,y=95,z=-4
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Backpropagation Intro

X -2

MLl
y 95

f
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f(z,y,2) = (¢ +y)z
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Backpropagation Intro
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Backpropagation Intro

f(z,y,2) = (x +y)z
eg.x=-2,y=95,z=-4

X -2

L
y 9

f
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f=gqz Fq:ZvE:q
agr oF Oy

Want:
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Backpropagation Intro

X -2

flz,y,2) = (z+y)z
eg.x=-2,y=5,z=+4
qg=z+y HF=15=1
f=e  H=nm =
Want: & o 4

8:13, 83/’ 32




Backpropagation Intro

X -2

f(z,y,2) = (z +y)z
eg.Xx=-2,y=95,z=-4
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Backpropagation Intro
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Backpropagation Intro

X -2

f(z,y,2) = (z +y)z
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Backpropagation Intro
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Backpropagation Intro
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Backpropagation Intro

X -2

f(z,y,2) = (z +y)z
eg.x=-2,y=95,z=-4

_ dq 9q
g=z+y 1,@—1
of of
f=4qz TR Chain rule: Ox
of _ of b
of Of Of o dq Ox

Want: Pz By e



Backpropagation Intro

f(z,y,2) = (z +y)z
eg.x=-2,y=95,z=-4

_ g _ . 0q _
of of
f=qz g “ 8 1
0 0 0 Tells us: by increasing x by a scale of 1,
Want: T o8

we decrease f by a scale of 4
Ox? Oy"? 02



Backpropagation

(binary classification example)

y=Py=1

Example on 1-hidden layer NN for binary classification

X W)
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Backpropagation

(binary classification example)
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Gradient Descent
to Minimize loss:

Backpropagation

(binary classification example)

L.if

=loss= —yIn(g) — (1 —y)In(1 — 7)

WQ(t + 1) =

Wi(t+1) =

Wit

- )
8E
\‘ Need to find these!

"awl

/
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Backpropagation

(binary classification example)

A e’
y=fs= T
2 = f3 =wy hy
et
hi = —
1=fe= 1

E = fa(f3(f2(f1(x)))) v



Backpropagation

(binary classification example)

A e’

?J—J°:3—1+ez2 08 _

23 = f3 = w3 hy Ovry

hi=f i 9) )

1= J2 = 2 =99
1+ e ow, 1

E = fa(f3(f2(f1(x)))) i



Backpropagation

(binary classification example)

AN B v 0E

23 = f3 = w3 hy Ovry

h i 9) )

1: 2: A =
1-;61 oW 77?

leflzwla'}

E = f4(fs(f2(f1(x)))) Exploit the chain rule! s



<
.

E = —yln(y)
—(1—y)In(1—
. g
T + e*2
29 = wghl
e?1
h _
P 14 em

Backpropagation

(binary classification example)

S

h, - %,

OF
8102

S
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¥ - 9 r h, - %)

E = —yln(y)
—(1—y)In(1—
. g
T + e*2
29 = wghl
e?1
h _
P 14 em

Backpropagation

(binary classification example)

OF
8102

S

chain rule
A

L oF . (()@ - 82’2
N 8:& 32:2 811)2
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E = —yln(y)
— (1 —y)In(1 - g)
" g
T + e*2
Z5 = wghl
el
P = 1+ e

Backpropagation

(binary classification example)

Owo N 0y 0zy Ows

- (@?1_—'1}@)) |
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E = —yln(j)
— (1 —y)In(1 - g)
N g
A + e*2
Z5 = wghl
el
P = 1+ e

Backpropagation

(binary classification example)

8’(.02 N 8:& 82’2 8'w2
y—y

- (@(1—:@) | (1; (1

=2

C 1+e®

)
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E = —yln(j)
— (1 —y)In(1 - g)
" g
A9 + e*2
Z5 = wghl
el
P = 1+ e

Backpropagation

(binary classification example)

Owo N 0y 0zy Ows

(7)) (75
-\ -9 1+ e
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E = —yln(j)
—(1-y)n(1-7)

z2

1 + e*2
22:::1051-hq

21

- 1+ e~
21 =Wl x

Backpropagation

(binary classification example)

OE OE 8j

h
U Ry -y
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E = —yln(j)
— (1 —y)In(1-g)
" g
T + e*2
Z5 = wghl
el
P = 1+ e

Backpropagation

(binary classification example)

OF

oW,

S

h, - %,

S
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. -zl Ve h, -zzf

E = —yln(j)
— (1 —y)In(1 - g)
" g
T + e*2
Z5 = wghl
el
P = 1+ e

Backpropagation

(binary classification example)

OF . oF 8@ 822 8h1 8Z1

8W1 N 83} . 822 . 8h1 . 621 . 8W1
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X -zz r h, - %) r

E = —yln(j)
— (1 =y)In(1 -9)
5 e*?
L + e*2
7y = wa hy
et
P = 1+ e

Backpropagation

(binary classification example)

oE . OF 8@ 822 8h1 8Z1

8W1 N 83} . 822 . 8h1 . 6z1 . 8W1

() )l et — ) o
— (225 = ) () (1 = ) - (2)
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E = —yln(j)
— (1 —y)In(1 - g)
" g
T + e*2
Z5 = wghl
el
P = 1+ e

Backpropagation

(binary classification example)

OF

7T

already computed

/

o 8@ 822 8h1 8Z1

oW,

) Ozy| Ohy 0z OW;

x

y—y

TV 1= 3)- () ({1~ b)) (@
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“Local-ness” of Backpropagation

“local gradients”

9y
ox

activations
X
-
OFE OFE Oy
or Oy Ox

gradients

http://cs231n.stanford.edu/slides/winter1516_lecture5.pdf

/




“Local-ness” of Backpropagation

“local gradients”

9y
ox

activations
X

OFE OFE Oy

or Oy Ox

gradients

/
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Example: Sigmoid Block

oF B OF Oo

OF
ox

oxr 0o Oz

sigmoid(x)
=0 (x)
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Deep Learning =
Concatenation of Differentiable Parameterized Layers (linear & nonlinearity functions)

1St 2nd
hidden hidden ?”tp“t
layer layer ayer

Want to find optimal weights /' to minimize some loss function E! o



Backprop Whiteboard Demo

= +xw,+b
f S TXV XTI, 0E
! =X, xw, +b, w(ttl) =w(t) -y 3 (1)
§ = exp(z,)
f. 1 1texp(z)
2 = @) OF_ _ 99
2 1+exp(z) aw
Jf; y=hpw;+thw +b,
Jy E=(y-y) 67
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Nonlinearity Functions
(i.e. transfer or activation functions)

Multiply by
weights

————— ——— — o — — —— —

Summing
Function

Sigmoid
Function
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Nonlinearity Functions
(i.e. transfer or activation functions)

Name Plot Equation Derivative (w.r.t x)
: | 0 for <0 " { 0 for z#0
B t — —
SRR HEER f(@) { 1 for z>0 fz) ? for z=0
Logistic (a.k.a g P ; B
Soft step) — fle) = l1+e® f(z) = f(z)(1 - f(2))

2

l1+4e 2=

—1 f(a) =1~ f@)’

TanH f(z) = tanh(z) =

/ (
Rectifier = { for z<0 )= for <0
(ReLU)! 7 xz for >0 1 for >0

https://en.wikipedia.org/wiki/Activation_function#Comparison_of_activation_functions



https://en.wikipedia.org/wiki/Activation_function#Comparison_of_activation_functions
https://en.wikipedia.org/wiki/Activation_function#Comparison_of_activation_functions

Nonlinearity Functions
(i.e. transfer or activation functions)

Name Plot Equation Derivative (w.r.t x)
: | _ O for z<0 yvn_ O, for z#0
Binary step ] Hz)= { 1 ot 2o f'(z) = o
Logistic (a.k.a g P ; B
Soft step) —_—1 f(2) = 1+e=® f(z) = f(=)(1 - f(=))

2

l1+4e 2=

—1 f(a) =1~ f@)’

TanH f(z) = tanh(z) =

/ (
Rectifier = { for z<0 )= for <0
(ReLU)! 7 xz for >0 1 for >0

https://en.wikipedia.org/wiki/Activation_function#Comparison_of_activation_functions



https://en.wikipedia.org/wiki/Activation_function#Comparison_of_activation_functions
https://en.wikipedia.org/wiki/Activation_function#Comparison_of_activation_functions

Nonlinearity Functions
(aka transfer or activation functions)

Name Plot Equation Derivative ( w.r.t x)
, e _ O for z<0 yvn_ O, for z#0
Blnaty atep EEER flz) = { 1 for >0 )= %@r x=0
Logistic (a.k.a Ll 1 ; B
| M@ = f'(2) = f(@)(1 - f(=))
2
TanH f f(z) = tanh(z) = T 1 f(z) =1- f(z)?
Rectifier flz) = for <0 f(z) = for z<0
(ReLU)®! B x for z>0 1 for >0

N

https://en.wikipedia.org/wiki/Activation_function#Comparison_of_activation_functions usua”y works best in praCtiCG
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Neural Net Pipeline

Initialize weights
For each batch of input x samples S:
a. Run the network “Forward” on S to compute outputs and loss

b. Run the network “Backward” using outputs and loss to compute gradients
c. Update weights using SGD (or a similar method)

Repeat step 2 until loss convergence 5



Non-Convexity of Neural Nets

A local
cost minimum

/

Global
cost minimum

J(W)

In very high dimensions, there exists many local
minimum which are about the same.

Pascanu, et. al. On the saddle point problem for non-convex optimization 2014
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Building Deep Neural Nets

—
D T ——
gy f 5
o8 _oF oy| |5 o
or  dy Ox

http://cs231n.stanford.edu/slides/winter1516_lecture5.pdf
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Building Deep Neural Nets

“GoogLeNet” for Object Classification

77



Block Example Implementation

class MultiplyGate(object):

def forward(x,y):

X z = x*ty
y4 self.x = x # must keep these around!
self.y = y
return z
)/ def backward(dz):

dx = self.y * dz # [dz/dx * dL/dz]
dy = self.x * dz # [dz/dy * dL/dz]
return [dx, dy]

(x,y,z are scalars)

http://cs231n.stanford.edu/slides/winter1516_lecture5.pdf




Advantage of Neural Nets

Inference:
Low-level Pre- Feature Feature =
bl > . [ o .~ L3 prediction,
processing extract. selection e
| i
|

Feature Engineering

v" Most critical for accuracy

v Account for most of the computation for testing
v Most time-consuming in development cycle

v Often hand-craft and task dependent in practice

~—

Feature Learning

v' Easily adaptable to new similar tasks
v" Layerwise representation

v" Layer-by-layer unsupervised training
v' Layer-by-layer supervised training

As long as it’s fully differentiable, we can train the
model to automatically learn features for us.



Advanced Deep Learning Models:

Convolutional Neural Networks

& Recurrent Neural Networks

Most slides from http://cs231n.stanford.edu/

80



Convolutional Neural Networks
(aka CNNs and ConvNets)

81



Challenges in Visual Recognition

The problem:
semantic gap

Images are represented as
3D arrays of numbers, with
integers between [0, 2535].

E.g.
300 x 100 x 3

(3 for 3 color channels RGB)

15 94 03 8
6 55 58 88 2 01
86 56 0D 48 35 T1 29 07 05 44 44 37 44 €0 21 S8 31 54 17 58
19 80 81 60 O3 94 47 69 20 73 92 13 86 $3 17 TT 04 89 55 40
4 53 o8 7 97 87 33 P8
1

4 3 480 41 43 32 01 © L3 -

What the computer sees



Challenges in Visual Recognition

Camera pose lllumination Deformation Occlusion

Background clutter




Problems with “Fully Connected Networks” on Images

Each neuron corresponds to a
specific pixel




Problems with “Fully Connected Networks” on Images

Each neuron corresponds to a
specific pixel

How do we deal with multiple dimensions in the
input? Length,height, channel (R,G,B)

v



Convolutional Layer

32x32x3 image

ox5x3 filter
32 4
Il Convolve the filter with the image
l.e. “slide over the image spatially,

computing dot products”

32




Convolutional Layer

Filters always extend the full

e depth of the input volume

32x32x3 image /
ox5x3 filter
32 /4
Il Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32




Convolutional Layer

___— 32x32x3 image

ox5x3 filter w
R
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

wlz +b

™~ 1 number:




Convolutional Layer

e

V

32

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

Ve

.

28



Convolution

We call the layer convolutional
because it is related to convolution
of two signals:

flxyl=glx,yl = D, Y fln.ml-glx—n,y—n,]

m My =—02 T

elementwise multiplication and sum of
a filter and the signal (image)

90
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Convolution

Convolution kernel

New pixel value (deslination pixel)

Source pixel



Neuron View of Convolutional Layer

__— 32x32x3 image
5x5x3 filter

V
=

\

1 number:

Lo wy

axon from a neuron

@ synapse

Woxo

cell body

Zwi—zi +b

I (Zw.w. + b)
—_— -
output axon
activation
function

It's just a neuron with local
connectivity...

32 the result of taking a dot product between
the filter and this part of the image
(i.e. 5*5*3 = 75-dimensional dot product)




Neuron View of Convolutional

32 /

/

32

An activation map is a 28x28 sheet of neuron
outputs:

1. Each is connected to a small region in the input
2. All of them share parameters

“5x5 filter” -> “5x5 receptive field for each neuron”



Convolutional Layer
consider a second, green filter

L an

{2

—

32

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation maps

.

L%

28



Convolutional Layer

For example, if we had 6 5x5 filters, we’'ll get 6 separate activation maps:

activation maps

32

\

28

Convolution Layer

32 A

3 6

We stack these up to get a “new image” of size 28x28x6!



32

32

Neuron View of Convolutional

O O000O(

28

28

E.g. with 5 filters,

CONYV layer consists of
neurons arranged in a 3D grid
(28x28x5)

There will be 5 different
neurons all looking at the same
region in the input volume



Convolutional Neural Networks

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32 28

CONYV,
RelLU
e.g. 6
5%x5x3
filters

32 28




Convolutional Neural Networks

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with

activation functions

32

32

CONYV,
RelLU
e.g.6
SX5X3
filters

28

28

CONV,
RelLU
e.g. 10
5x5x6
filters

10

24

CONYV,
RelLU

24



Convolutional Neural Networks

[From recent Yann
LeCun slides]

Low-Level
Feature

| Mid-Level

Feature

High-Level
—

Feature

Trainable
Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]



Convolutional Neural Networks

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected
lI
dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)
e -
LI
| Rt
--- t---

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nip/
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Pooling Layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64

112x112x64

pool

R

- o 112
224 downsampling
112

224




Pooling Layer (Max Pooling example)

Single depth slice

1112 | 4

max pool with 2x2 filters
516 | 7|8 and stride 2 6 | 8
3 | 2 3 | 4
112 |3 | 4




History of ConvNets

1998

Gradient-based learning applied

to document recognition [LeCun,
Bottou, Bengio, Haffner]

LeNet-5

2012

ImageNet Classification with Deep

Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]

“AlexNet”

103



Fast-forward to today: ConvNets are everywhere

Classification Retrieval

motor scooter
‘motor scooter
go-kart
moped
tick fireboat bumper car snow leopard
starfish dri platform art E cat

r e mushroom erry a ISISCIT ca

agaric m\ monkey

grille mushroom grape spider monkey

pickup jelly fungus elderberry titi

beach wagon gill fungus bullterrier indri
fire engine | dead-man’s-fingers currant howler monkey

[Krizhevsky 2012]
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Fast-forward to today: ConvNets are everywhere

Segmentation

[Farabet et al., 2012]
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Fast-forward to today: ConvNets are everywhere

-

- 7t
L . LB
v ket i 3
- 2 @ v
i B
" NVIDIA . B
& TEGRA X1
- - SO

i

NVIDIA Tegra X1

self-driving cars
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Fast-forward to today: ConvNets are everywhere

1 camgh. this mewie on the Sci-Fi channel rocently. It sctuslly nurmed out 30 be peetry decest s far as Bofist b e flms g e v
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[Denil et al. 2014]

Connected componenis

CN affini

[Turaga et al., 2010]
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Recurrent Neural Networks
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Standard “Feed-Forward” Neural Network

one to one
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one to one

Standard “Feed-Forward” Neural Network

one to many many to one many to many many to many
i I t A Pt 1
! t S Pt ¢
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one to one

Recurrent Neural Networks (RNNs)

RNNs can handle

one to many many to one many to many
O f Pt 1
f t t W

\ e.g. Sentiment Classification
sequence of words -> sentiment

many to many
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Recurrent Neural Networks (RNNs)

RNNs can handle

one to one one to many many to one many to many many to many
I t t 1 f Pt 1 Pt 1
I f Pt Pt o

\ e.g. Machine Translation
seq of words -> seq of words
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Recurrent Neural Networks (RNNs)

Traditional “Feed

Forward” Neural Network Recurrent Neural Network

predict a vector

/ at each timestep

output output

hidden hidden /)

input input




Recurrent Neural Networks

We can process a sequence of vectors x by
applying a recurrence formula at every time step: y

hy|= fW(h’t—la xt)

new state / old state input vector at

some time step
some function x

with parameters W
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Recurrent Neural Networks

We can process a sequence of vectors x by
applying a recurrence formula at every time step:

ht = fW(ht—la er;t)

Notice: the same function and the same set
of parameters are used at every time step.
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“Vanilla” Recurrent Neural Network

The state consists of a single “hidden” vector h:

y hy = fW(ht—la wt)
|

h; = tanh(Wpphy_1 + Wopzy)

X Yt — Why h’t




Character Level Language Model with an RNN

Character-level y

language model

example m>
T

Vocabulary: )

[h,e,l,0]

Example training
sequence:
“hello”



Character Level Language Model with an RNN

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

input layer

input chars:

1
0
0
0
H.h "
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Character Level Language Model with an RNN

hi = tanh(Whphi—1 + Wenzt)

|

Vocabulary: | 03
hidden layer | -0.1
[hsesl 50] 0.9
Example training I
sequence. input layer g
“hello” 0
input chars: “h”




Character Level Language Model with an RNN

target chars: ‘e’

1.0

output layer %%

4.1

Vocabulary: | 03
hidden layer | -0.1

[hsesl 50] 0.9
Example training I
sequence. input layer g
“hello” 0
input chars: “h”
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Character Level Language Model with an RNN

target chars: ‘e’ “—I”

1.0 0.5

output layer é% _2%

4.1 1.2

Vocabulary: , 0.3 i

hidden layer | -0.1 » 0.3

[h,e,l,o] 0.9 0.1
Example training I l
Sequence: input layer 8 é
uhe"ou 0 0
input chars: “h” e

121



Character Level Language Model with an RNN

target chars:

output layer

Vocabulary: |
hidden layer
[h,e,l,0]
Example training
sequence. input layer

“hello”

input chars: “

Z|looco=a|—s

Y

A=200
- O o=

—I

000
w o=

= |lo~00O —-\
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Character Level Language Model with an RNN

target chars: ‘e’ o 0. i
1.0 0.5 0.1 0.2
2.2 0.3 0.5 -1.5
output layer 30 1.0 1.9 0.1
4.1 1.2 -1.1 .
A
T I [y
Vocabulary: | 0.3 1.0 0.1 |w hn| 03
hidden layer | -0.1 » 03 +H—|-05+— 0.9
[h,e,l,o] 0.9 0.1 -0.3 0.7
" | T I W
Example training 1 o 0 0
sequence: input layer | O t ; ;
uhe"ou 0 0 0 0
input chars: “h” “e" s i T



Example: Generating Shakespeare with RNNs

t fi t tyntd-iafhatawiaoihrdemot 1ytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
at nrst. plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng

l train more

"Tmont thithey" fomesscerliund

Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

l train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort

how, and Gogition is so overelical and ofter.

J train more

"Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.

Pierre aking his soul came to the packs and drove up his father-in-law women.
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Example: Generating C Code with RNNs

static void do_command(struct seq file *m, wvoid *v)

{
int column = 32 << (cmd[2] & 0xB80);
if (state)
cmd = (int)(int state ™ (in 8(&ch->ch flags) & Cmd) ? 2 : 1);
else

seq = 1;
for (i = 0; 1 < 16; i++) {
if (k & (1 << 1))
pipe = (in_use & UMXTHREAD UNCCA) +
{(count & O0x00000000fffffff8) & Ox000000f) << 8;
if (count == ()
sub(pid, ppc md.kexec handle, 0x20000000);
pipe set bytes(i, 0);
}

subsystem info = &of changes[PAGE SIZE];
rek controls(offset, idx, &soffset);
control check polarity(&context, val, 0);
for (i = 0; i < COUNTER; i++)

seq puts(s, “"policy ");
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Long Short Term Memory Networks (LSTMs)

Recurrent networks suffer from the “vanishing gradient problem”
e Aren’t able to model long term dependencies in sequences

output

hidden /:::>

input




Long Short Term Memory Networks (LSTMs)

Recurrent networks suffer from the “vanishing gradient problem”
e Aren’t able to model long term dependencies in sequences

Use “gating units” to learn when to remember

\ l / \ i )( output

Input Gate




RNNs and CNNs Together

Recurrent Neural Network

“straw” “hat”

Convolutional Neural Network



