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Where	are	we	?	è		
major	secJons	of	this	course	

q 	Regression	(supervised)	
q 	ClassificaJon	(supervised)	

q 	Feature	selecJon			
q 	Unsupervised	models	

q 	Dimension	ReducJon	(PCA)	
q 	Clustering	(K-means,	GMM/EM,	Hierarchical	)	

q 	Learning	theory		
q 	Graphical	models		

q 	(BN	and	HMM	slides	shared)	
11/30/16	 2	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	



An	unlabeled		
Dataset	X		

•  Data/points/instances/examples/samples/records:	[	rows	]	
•  Features/a0ributes/dimensions/independent	variables/covariates/predictors/regressors:	[	columns]		
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a data matrix of n observations on 
p variables x1,x2,…xp 

Unsupervised	learning	=	learning	from	raw	(unlabeled,	
unannotated,	etc)	data,	as	opposed	to	supervised	data	
where	a	classificaJon	label	of	examples	is	given	
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•  Find groups (clusters) of data points such that data points in a 
group will be similar (or related) to one another and different from 
(or unrelated to) the data points in other groups 

What	is	clustering? 

Inter-cluster 
distances are 
maximized 

Intra-cluster 
distances are 

minimized 
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Roadmap:	clustering	

§  DefiniJon	of	"groupness”	
§  DefiniJon	of	"similarity/distance"	
§  RepresentaJon	for	objects	
§  How	many	clusters?	
§  Clustering	Algorithms	

§ ParJJonal	algorithms	
§ Hierarchical	algorithms	

§  Formal	foundaJon	and	convergence	
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Clustering	Algorithms	

•  ParJJonal	algorithms	
– Usually	start	with	a	random	
(parJal)	parJJoning	

–  Refine	it	iteraJvely	
•  K	means	clustering	
•  Mixture-Model	based	clustering	

•  Hierarchical	algorithms	
–  Boeom-up,	agglomeraJve	
–  Top-down,	divisive	
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(1) Hierarchical Clustering  

Clustering 

n/a  

No clearly 
defined loss  

greedy bottom-up (or 
top-down)  

Dendrogram 
(tree)  

Task  

Representation  

Score Function  

Search/Optimization  

Models, 
Parameters 

11/30/16	 7	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	



(2)	ParJJonal	Clustering	

•  Nonhierarchical	
•  Construct	a	parJJon	of	n	objects	into	a	set	of	
K	clusters	

•  User	has	to	specify	the	desired	number	of	
clusters	K.	
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Partitional clustering (e.g. K=3) 

Original points Partitional clustering 
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Partitional clustering (e.g. K=3) 

$$$ 
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Clustering	Algorithms	

•  ParJJonal	algorithms	
– Usually	start	with	a	random	
(parJal)	parJJoning	

– Refine	it	iteraJvely	
•  K	means	clustering	
•  Mixture-Model	based	clustering	
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ParJJoning	Algorithms	

•  Given:	a	set	of	objects	and	the	number	K	

•  Find:	a	parJJon	of	K	clusters	that	opJmizes	a	
chosen	parJJoning	criterion	
– Globally	opJmal:	exhausJvely	enumerate	all	
parJJons	

– EffecJve	heurisJc	methods:	K-means	and	K-
medoids	algorithms	
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K-Means	

Algorithm	
	

1.  Decide	on	a	value	for	k.	
2.  IniJalize	the	k	cluster	centers	randomly	if	necessary.	
3.  Decide	the	class	memberships	of	the	N	objects	by	assigning	them	to	the	

nearest	cluster	centroids	(aka	the	center	of	gravity	or	mean)	

4.  Re-esJmate	the	k	cluster	centers,	by	assuming	the	memberships	found	
above	are	correct.	

5.  If	none	of	the	N	objects	changed	membership	in	the	last	iteraJon,	exit.	
Otherwise	go	to	3.	
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K-means	Clustering:	Step	1	-	
random	guess	of	cluster	centers	
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K-means	Clustering:	Step	2	
-	Determine	the	membership	of	each	data	points	
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K-means	Clustering:	Step	3		
-	Adjust	the	cluster	centers		
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K-means	Clustering:	Step	4		
-	redetermine	membership	

Blue	
cluster	
gets	
more	
points	
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K-means	Clustering:	Step	5		
-	readjust	cluster	centers	



19 

How K-means partitions? 
  

When K centroids are set/fixed, 
they partition the whole data 
space into K  mutually exclusive 
subspaces to form a partition. 
 
A partition amounts to a 
 
 
 
Changing positions of centroids 
leads to a new partitioning.  
 
 

Voronoi Diagram 

11/30/16	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	



How	to	draw	voronoi	diagram		

hep://765.blogspot.com/2009/09/how-to-draw-voronoi-diagram.html	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	

20	



 K-means: another Demo 

•  K-means 
–  Start with a random 

guess of cluster 
centers 

–  Determine the 
membership of each 
data points 

–  Adjust the cluster 
centers  
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 K-means: another Demo 
1.  User set up the number of 

clusters they’d like. (e.g. 
k=5)  

11/30/16	
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 K-means: another Demo 
1.  User set up the number of 

clusters they’d like. (e.g. 
K=5) 

2.  Randomly guess K cluster 
Center locations 
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 K-means: another Demo 
1.  User set up the number of 

clusters they’d like. (e.g. 
K=5) 

2.  Randomly guess K cluster 
Center locations 

3.  Each data point finds out 
which Center it’s closest to. 
(Thus each Center “owns” a 
set of data points) 
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 K-means: another Demo 
1.  User set up the number of 

clusters they’d like. (e.g. 
K=5) 

2.  Randomly guess K cluster 
centre locations 

3.  Each data point finds out 
which centre it’s closest to. 
(Thus each Center “owns” a 
set of data points) 

4.  Each centre finds the 
centroid of the points it owns 

  

11/30/16	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	



26 

 K-means: another Demo 
1.  User set up the number of 

clusters they’d like. (e.g. 
K=5) 

2.  Randomly guess K cluster 
centre locations 

3.  Each data point finds out 
which centre it’s closest to. 
(Thus each centre “owns” a 
set of data points) 

4.  Each centre finds the 
centroid of the points it owns 

5.  …and jumps there 
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 K-means: another Demo 
1.  User set up the number of 

clusters they’d like. (e.g. 
K=5) 

2.  Randomly guess K cluster 
centre locations 

3.  Each data point finds out 
which centre it’s closest to. 
(Thus each centre “owns” a 
set of data points) 

4.  Each centre finds the 
centroid of the points it owns 

5.  …and jumps there 

6.  …Repeat until terminated! 
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K-means 
1.  Ask user how many clusters 

they’d like. (e.g. k=5)  

2.  Randomly guess k cluster 
Center locations 

3.  Each datapoint finds out 
which Center it’s closest to. 

4.  Each Center finds the 
centroid of the points it 
owns 

Any Computational Problem? 

11/30/16	 28	
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K-means 
1.  Ask user how many clusters 

they’d like. (e.g. k=5)  

2.  Randomly guess k cluster 
Center locations 

3.  Each datapoint finds out 
which Center it’s closest to. 

4.  Each Center finds the 
centroid of the points it 
owns 

Any Computational Problem? 

ComputaJonal	Complexity:	O(n)	
where	n	is	the	number	of	points?	

11/30/16	 29	
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Time	Complexity	

•  CompuJng	distance	between	two	objs	is	O(p)	where	p	
is	the	dimensionality	of	the	vectors.	

•  Reassigning	clusters:	O(Knp)	distance	computaJons,		

•  CompuJng	centroids:	Each	obj	gets	added	once	to	
some	centroid:	O(np).	

•  Assume	these	two	steps	are	each	done	once	for	l	
iteraJons:	O(lKnp).	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	



11/30/16	

Roadmap:	clustering	

§  DefiniJon	of	"groupness”	
§  DefiniJon	of	"similarity/distance"	
§  RepresentaJon	for	objects	
§  How	many	clusters?	
§  Clustering	Algorithms	

§ ParJJonal	algorithms	
§ Hierarchical	algorithms	

§  Formal	foundaJon	and	convergence	
31	
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•  Find groups (clusters) of data points such that data points in a 
group will be similar (or related) to one another and different from 
(or unrelated to) the data points in other groups 

How to Find good Clustering? 

Inter-cluster 
distances are 
maximized 

Intra-cluster 
distances are 

minimized 
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How to Find good Clustering? E.g.  

•  Minimize the sum of 
distance within clusters 

C1 

C2 

C3 

C4 
C5 

   

argmin
!
C j ,mi , j{ }

mi, j
!
xi −
!
C j( )2

i=1

n

∑
j=1

5

∑

   

mi, j =
1 !

xi  ∈ the j-th cluster

0 !
xi  ∉ the j-th cluster

⎧
⎨
⎪

⎩⎪

mi, j
j=1

5

∑ = 1

→ any !xi ∈ a single cluster
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How to Efficiently Cluster Data? 

   

argmin
!
C j ,mi , j{ }

mi, j
!
xi −
!
C j( )2

i=1

n

∑
j=1

5

∑

{ } { },Memberships  and centers  are correlated.i j jm C

   

 Given memberships mi, j{ },  
!
C j =

mi, j
!
xi

i=1

n

∑

mi, j
i=1

n

∑
 

   

 Given centers {
!
C j},  mi, j =

1 j = argmin
k

(
!
xi −
!
C j )

2

0 otherwise

⎧
⎨
⎪

⎩⎪
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argmin
!
C j ,mi , j{ }

mi, j
!
xi −
!
C j( )2

i=1

n

∑
j=1

5

∑
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Convergence	

•  Why	should	the	K-means	algorithm	ever	reach	a	fixed	point?		
–  A	state	in	which	clusters	don’t	change.	

•  K-means	is	a	special	case	of	a	general	procedure	known	as	the	
ExpectaJon	MaximizaJon	(EM)	algorithm.	
–  EM	is	known	to	converge.	
–  Number	of	iteraJons	could	be	large.	

•  Cluster	goodness	measure	/	Loss	funcJon	to	minimize		
–  sum	of	squared	distances	from	cluster	centroid:	

•  Reassignment	monotonically	decreases	the	goodness	measure	
since	each	vector	is	assigned	to	the	closest	centroid.	
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Seed	Choice	
•  Results	can	vary	based	on	random	seed	selecJon.	

•  Some	seeds	can	result	in	poor	convergence	rate,	or	convergence	to	
sub-opJmal	clusterings.	
–  Select	good	seeds	using	a	heurisJc	(e.g.,	sample	least	similar	to	any	

exisJng	mean)	
–  Try	out	mulJple	starJng	points	(very	important!!!)	
–  IniJalize	with	the	results	of	another	method.	
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(2) K-means Clustering  

Clustering 

n/a 

Sum-of-square 
distance to centroid 

K-means algorithm 

Cluster 
membership & 

centroid 

Task  

Representation  

Score Function  

Search/Optimization  

Models, 
Parameters 

11/30/16	 38	
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Roadmap:	clustering	

§  DefiniJon	of	"groupness”	
§  DefiniJon	of	"similarity/distance"	
§  RepresentaJon	for	objects	
§  How	many	clusters?	
§  Clustering	Algorithms	

§ ParJJonal	algorithms	
§ Hierarchical	algorithms	

§  Formal	foundaJon	and	convergence	
39	
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Other	parJJoning	Methods	
•  ParJJoning	around	medoids	(PAM):	instead	of	averages,	

use	mulJdim	medians	as	centroids	(cluster	“prototypes”).	
Dudoit	and	Freedland	(2002).	

•  Self-organizing	maps	(SOM):	add	an	underlying	
“topology”	(neighboring	structure	on	a	laqce)	that	relates	
cluster	centroids	to	one	another.	Kohonen	(1997),	Tamayo	
et	al.	(1999).	

•  Fuzzy	k-means:	allow	for	a	“gradaJon”	of	points	between	
clusters;	sos	parJJons.	Gash	and	Eisen	(2002).	

•  Mixture-based	clustering:	implemented	through	an	EM	
(ExpectaJon-MaximizaJon)algorithm.	This	provides	sos	
parJJoning,	and	allows	for	modeling	of	cluster	centroids	
and	shapes.	(Yeung	et	al.	(2001),	McLachlan	et	al.	(2002))	
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ParJJonal	:	Gaussian	Mixture	Model		

•  1.	Review	of	Gaussian	DistribuJon		
•  2.	GMM	for	clustering	:	basic	algorithm	
•  3.	GMM	connecJng	to	K-means	
•  4.	GMM	examples			
•  5.	ApplicaJons	of	GMM		
•  6.	Problems	of	GMM	and	K-means			

11/30/16	
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A Gaussian Mixture Model for Clustering 

•  Assume that data are generated 
from a mixture of Gaussian 
distributions 

•  For each Gaussian distribution 
–  Center:      i 
–  covariance:      i 
 

•  For each data point 
–  Determine membership  

:  if  belongs to j-th clusterij iz x

11/30/16	 42	
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Gaussian	DistribuHon	

Courtesy:	hep://research.microsos.com/~cmbishop/PRML/index.htm	

Covariance	Matrix	Mean	
11/30/16	
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MulHvariate	Normal	(Gaussian)	PDFs	

Where |*| represents determinant  

The only widely used continuous joint PDF is the multivariate normal (or Gaussian): 

Bivariate 
normal PDF: . 

X2 

X1 •  Mean of normal PDF is at 
peak value.  Contours of 
equal PDF form ellipses. 

• 	The	covariance	matrix	captures	linear	dependencies	among	the	variables	
11/30/16	
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Example: the Bivariate Normal distribution  

   

f x1,x2( ) = 1

2π( ) Σ 1/2 e
−1

2
!x−
!µ( )T Σ−1 !x−

!µ( )
    

with 
  

!
µ =

µ1

µ2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2
2 1 2

22 2
2 22 2 2

σ σ σ ρσ σ
σ σ ρσ σ σ

11 1 1

×
1 1

⎡ ⎤⎡ ⎤
Σ = = ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

and 

( )2 2 2 2
22 12 1 2 1σ σ σ σ σ ρ11Σ = − = −
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Surface Plots of the bivariate 
Normal distribution 
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Contour Plots of the bivariate 
Normal distribution 
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Scatter Plots of data from the 
bivariate Normal distribution 
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ParJJonal	:	Gaussian	Mixture	Model		

•  1.	Review	of	Gaussian	DistribuJon		
•  2.	GMM	for	clustering	:	basic	algorithm	
•  3.	GMM	connecJng	to	K-means	
•  4.	GMM	examples			
•  5.	ApplicaJons	of	GMM		
•  6.	Problems	of	GMM	and	K-means			

11/30/16	
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Learning a Gaussian Mixture 
(assuming with known shared covariance) 

 
•  Probability  ( )ip x x=

  

p(x = xi ) = p(x = xi ,µ = µ j )
µ j

∑ = p(µ = µ j ) p(x = xi |µ = µ j )
µ j

∑

= p(µ = µ j )
1

2πσ 2( )d /2
exp −

xi − µ j 2

2σ 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟µ j

∑
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Learning a Gaussian Mixture 
(assuming with known shared covariance) 

 
•  Probability  ( )ip x x=

  

p(x = xi ) = p(x = xi ,µ = µ j )
µ j

∑ = p(µ = µ j ) p(x = xi |µ = µ j )
µ j

∑

= p(µ = µ j )
1

2πσ 2( )d /2
exp −

xi − µ j 2

2σ 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟µ j

∑
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p(x = xi |µ = µ j ) =
1

2π( )p/2
Σ

1/2 e
−1

2
!x−
!µ j( )T Σ−1 !x−

!µ j( )     

•  Each cluster is model with a Gaussian (here assuming known Σ) 	

Assuming		



Log-likelihood	of	Observed	Data	
Samples		
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o  Log-likelihood	of	data			

o  Apply	MLE	to	find	opJmal	parameters			
   

log p(x = xi )
i
∑ = log p(µ = µ j )

1

2π( )p/2
Σ

1/2
e
−1

2
!
x−
!
µ j( )T Σ−1 !x−

!
µ j( )

   
µ j

∑
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥i

∑

{ }( ),j j j
p µ µ µ=
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Learning a Gaussian Mixture 
(with known covariance) 

   

=

1

2π( )p/2
Σ

1/2 e
−1

2
!
x−
!
µ j( )T Σ−1 !x−

!
µ j( )    p(µ = µ j )

1

2π( )p/2
Σ

1/2 e
−1

2
!
x−
!
µs( )T Σ−1 !x−

!
µs( )

   p(µ = µs )
s=1

k

∑

[ ] ( | )ij j iE z p x xµ µ= = =E-Step 
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=
p(x = xi |µ = µ j ) p(µ = µ j )

p(x = xi |µ = µs ) p(µ = µs )
s=1

k

∑



Learning a Gaussian Mixture 
(with known covariance) 

  

µ j ←
1

E[zij ]
i=1

n

∑
E[zij ]xi

i=1

n

∑M-Step 

  
p(µ = µ j )←

1
n

E[zij ]
i=1

n

∑
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Covariance:     j (j: 1 to K) will also be 
derived in the M-step under a full setting 	

⌃



11/30/16	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	

	
	
	

55	

M-step	for	EsJmaJng	unknown	
Covariance	Matrix	

	(more	general,	details	in	EM-Extra	lecture)	

!! 

!Σ j
(t+1) = i=1

n E[zij ](t )(xi − µ j
(t+1))(xi − µ j

(t+1))T∑
E[zij ](t )

i=1

n

∑
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ExpectaJon-MaximizaJon	
for	training		GMM	

•  Start:		
–  "Guess"	the	centroid	and	covariance	for	each	of	the	K	
clusters		

–  “Guess”	the	proporJon	of	clusters,	e.g.,	uniform	prob	1/K	
	

•  Loop	
–  For each point, revising its proportions belonging to each 

of the K clusters 	
–  For each cluster, revising both the mean (centroid 

position) and covariance (shape) 	
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each cluster, revising both the mean (centroid position) and covariance (shape) 	



•  We	assume	in	HW6,	K	clusters	shared	the	same	
known	covariance	matrix	(to	reduce	the	total	
number	of	esJmated	parameters	)	

•  We	just	use	the	sample	covariance	calculaJng	from	
all	samples		
–  Full	case:		

– Diagonal	case:		to	simply	use	the	diagonal	of	the	above	
sample	covariance		

11/30/16	
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Detour	for	HW6:		
Learning a Gaussian Mixture 

(with known covariance and multi-variable and multi-cluster case) 
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Detour	for	HW6:		
Learning a Gaussian Mixture 

(with known covariance and multi-variable and multi-cluster case) 

[ ] ( | )ij j iE z p x xµ µ= = =

  

=
p(x = xi |µ = µ j ) p(µ = µ j )

p(x = xi |µ = µs ) p(µ = µs )
s=1

k

∑

E-Step:  



  

µ j ←
1

E[zij ]
i=1

n

∑
E[zij ]xi

i=1

n

∑
M-Step 

  
π j = p(µ = µ j ) ←

1
n

E[zij ]
i=1

n

∑
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Detour	for	HW6:		
Learning a Gaussian Mixture 

(with known covariance and multi-variable and multi-cluster case) 



Adapted	From	Andrew	W.	Moore	

The	Simplest	GMM	assumpJon	

•  Each component 
generates data from a 
Gaussian with  

•  mean µi 

•  Shared covariance 
matrix σ2I   

m1 

m2 

m3 



Adapted	From	Andrew	W.	Moore	

A	Simple	GMM	assumpJon	

•  Each component 
generates data from a 
Gaussian with  

•  mean µi 

•  Cluster-specific 
covariance matrix 
as σj2I 

m1 

m2 

m3 

σj2I	



Adapted	From	Andrew	W.	Moore	

Another	Simple	GMM	assumpJon	

•  Each component 
generates data from a 
Gaussian with  

•  mean µi 

•  Shared covariance 
matrix as diagonal 
matrix  

m1 

m2 

m3 



Adapted	From	Andrew	W.	Moore	

A	bit	More	General	GMM	assumpJon	

•  Each component 
generates data from a 
Gaussian with  

•  mean µi 

•  Shared covariance 
matrix as full matrix  

m1 

m2 

m3 
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The	General	GMM	assumpJon	

m1 

m2 

m3 

•  Each component 
generates data from a 
Gaussian with  

•  mean µi 

•  covariance matrix Σi 
 



ParJJonal	:	Gaussian	Mixture	Model		

•  1.	Review	of	Gaussian	DistribuJon		
•  2.	GMM	for	clustering	:	basic	algorithm	
•  3.	GMM	connecJng	to	K-means	
•  4.	GMM	examples			
•  5.	ApplicaJons	of	GMM		
•  6.	Problems	of	GMM	and	K-means			
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Recap: K-means iterative learning  

   

argmin
!
C j ,mi , j{ }

mi, j
!
xi −
!
C j( )2

i=1

n

∑
j=1

K

∑

{ } { },Memberships  and centers  are correlated.i j jm C

   

 Given memberships mi, j{ },  
!
C j =

mi, j
!
xi

i=1

n

∑

mi, j
i=1

n

∑
 

   

 Given centers {
!
C j},  mi, j =

1 j = argmin
k

(
!
xi −
!
C j )

2

0 otherwise

⎧
⎨
⎪

⎩⎪
 

M-Step 

E-Step 
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Compare:	K-means	

•  The	EM	algorithm	for	mixtures	of	Gaussians	is	
like	a	"sos	version"	of	the	K-means	algorithm.	

•  In	the	K-means	“E-step”	we	do	hard	
assignment:	

•  In	the	K-means	“M-step”	we	update	the	means	
as	the	weighted	sum	of	the	data,	but	now	the	
weights	are	0	or	1:	

11/30/16	
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argmin
!
C j ,mi , j{ }

mi, j
!
xi −
!
C j( )2

i=1

n

∑
j=1

K

∑

   

log p(x = xi )
i=1

n

∏
i
∑ = log p(µ = µ j )

1

2π( ) Σ 1/2
e
−1

2
!
x−
!
µ j( )T Σ−1 !x−

!
µ j( )

 
µ j

∑
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥i

∑

K-Mean	only	detect	spherical	clusters.	
GMM	can	adjust	its	self	to	ellipJc	shape	clusters.	



ParJJonal	:	Gaussian	Mixture	Model		

•  1.	Review	of	Gaussian	DistribuJon		
•  2.	GMM	for	clustering	:	basic	algorithm	
•  3.	GMM	connecJng	to	K-means	
•  4.	GMM	examples			
•  5.	ApplicaJons	of	GMM		
•  6.	Problems	of	GMM	and	K-means			
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Gaussian Mixture Example: Start 
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After First Iteration 
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For each cluster, revising its mean (centroid position), covariance (shape)  
and proportion in the mixture 	

For each point, revising its proportions belonging to each of the K clusters 	



After 2nd Iteration 
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For each point, revising its proportions belonging to each of the K clusters 	

For each cluster, revising its mean (centroid position), covariance (shape)  
and proportion in the mixture 	



After 3rd Iteration 
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For each point, revising its proportions belonging to each of the K clusters 	

For each cluster, revising its mean (centroid position), covariance (shape)  
and proportion in the mixture 	



After 4th Iteration 
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For each point, revising its proportions belonging to each of the K clusters 	

For each cluster, revising its mean (centroid position), covariance (shape)  
and proportion in the mixture 	



After 5th Iteration 
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For each point, revising its proportions belonging to each of the K clusters 	

For each cluster, revising its mean (centroid position), covariance (shape)  
and proportion in the mixture 	



After 6th Iteration 
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For each point, revising its proportions belonging to each of the K clusters 	

For each cluster, revising its mean (centroid position), covariance (shape)  
and proportion in the mixture 	



After 20th Iteration 
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For each point, revising its proportions belonging to each of the K clusters 	

For each cluster, revising its mean (centroid position), covariance (shape)  
and proportion in the mixture 	



(3) GMM Clustering  

Clustering 

Likelihood  

EM algorithm 

Each point’s soft 
membership & 

mean / covariance 
per cluster  

Task  

Representation  

Score Function  

Search/Optimization  

Models, 
Parameters 
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log p(x = xi )
i=1

n

∏
i
∑ = log p(µ = µ j )

1

2π( ) Σ j

1/2
e
−1

2
!
x−
!
µ j( )T Σ j

−1 !x−
!
µ j( )

µ j

∑
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥i

∑



ParJJonal	:	Gaussian	Mixture	Model		

•  1.	Review	of	Gaussian	DistribuJon		
•  2.	GMM	for	clustering	:	basic	algorithm	
•  3.	GMM	connecJng	to	K-means	
•  4.	GMM	examples			
•  5.	ApplicaJons	of	GMM		
•  6.	Problems	of	GMM	and	K-means			
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ApplicaJon	(I)	:		
Three	Speaker	RecogniJon	Tasks	

MIT Lincoln Laboratory
7

Speaker Recognition Tasks

?

?

?

?

Whose voice is this?Whose voice is this?
?

?

?

?

Whose voice is this?Whose voice is this?

Identification

?

Is this Bob’s voice?Is this Bob’s voice?

?

Is this Bob’s voice?Is this Bob’s voice?

Verification/Authentication/
Detection

Speaker B

Speaker A

Which segments are from 
the same speaker?
Which segments are from 
the same speaker?

Where are speaker 
changes?
Where are speaker 
changes?

Speaker B

Speaker A

Which segments are from 
the same speaker?
Which segments are from 
the same speaker?

Where are speaker 
changes?
Where are speaker 
changes?

Segmentation and Clustering (Diarization)

slide	from	Douglas	Reynolds	



ApplicaJon	(I)	:		
GMMs	for	speaker	recogniJon	

•  A	Gaussian	mixture	model	
(GMM)	represents	features	
as	the	weighted	sum	of	
mulJple	Gaussian	
distribuJons	

•  Each	Gaussian	state	i	has	a	
– Mean		
– Covariance	
– Weight	

Nicolas Malyska, Sanjeev Mohindra, Karen Lauro, Douglas Reynolds, and Jeremy Kepner  

Dim 1 Dim 2 

Model λ

( | )p λx

iµ
iΣwi



RecogniJon	Systems	
Gaussian	Mixture	Models	

Nicolas Malyska, Sanjeev Mohindra, Karen Lauro, Douglas Reynolds, and Jeremy Kepner  

Parameters iµ

iΣ

iw

Dim 1 Dim 2 

( )p x



RecogniJon	Systems	
Gaussian	Mixture	Models	

Nicolas Malyska, Sanjeev Mohindra, Karen Lauro, Douglas Reynolds, and Jeremy Kepner  

Model Components

Parameters

Dim 1 Dim 2 

( )p x



GMM	training	

•  During	training,	the	
system	learns	about	
the	data	it	uses	to	
make	decisions	
– A	set	of	features	are	
collected	from	a	
speaker	(or	language	
or	dialect)	

Nicolas Malyska, Sanjeev Mohindra, Karen Lauro, Douglas Reynolds, and Jeremy Kepner  

Training Features

Dim 1 Dim 2 

Dim 1 Dim 2 

Model

1x
2x

( )p x
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Some	Bio	
Assay	data	

Applications (2) 
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GMM	
clustering	
of	the	

assay	data	

Applications of GMM (2) 
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ResulJng	
Clusters	
Density	
Plot	

Applications of GMM (2) 
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Unsupervised	Learning:	
not	as	hard	as	it	looks	

 
Sometimes easy 

 
Sometimes impossible 

 
and sometimes                  

in between 



Problems (I) 

•  Both k-means and mixture models need to compute 
centers of clusters and explicit distance measurement 
–  Given strange distance measurement, the center of clusters 

can be hard to compute 
E.g.,  

   

!
x − !x '

∞
= max x1 − x1

' , x2 − x2
' ,..., xp − xp

'( )
x y 

z 

∞ ∞− = −x y x z
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Problem (II) 

•  Both k-means and mixture models look for compact 
clustering structures 
–  In some cases, connected clustering structures are more desirable 

Graph based 
clustering  

 
e.g. MinCut,  

Spectral 
clustering   
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e.g. Image Segmentation through 
minCut 
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Roadmap:	clustering	

§  DefiniJon	of	"groupness”	
§  DefiniJon	of	"similarity/distance"	
§  RepresentaJon	for	objects	
§  How	many	clusters?	
§  Clustering	Algorithms	

§ ParJJonal	algorithms	
§ Hierarchical	algorithms	

§  Formal	foundaJon	and	convergence	
94	
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1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

1	
2	
3	
4	
5	
6	
7	
8	
9	

How	can	we	tell	the	right	number	of	clusters?	
	
In	general,	this	is	a	unsolved	problem.		However	there	exist	many	approximate	methods.		
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1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

	When	k	=	1,	the	objecJve	funcJon	is	873.0	
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argmin
!
C j ,mi , j{ }

mi, j
!
xi −
!
C j( )2

i=1

n

∑
j=1

K

∑



1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

	When	k	=	2,	the	objecJve	funcJon	is	173.1	
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argmin
!
C j ,mi , j{ }

mi, j
!
xi −
!
C j( )2

i=1

n

∑
j=1

K

∑



1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

	When	k	=	3,	the	objecJve	funcJon	is	133.6	
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argmin
!
C j ,mi , j{ }

mi, j
!
xi −
!
C j( )2

i=1

n

∑
j=1

K

∑



0.00E+00	
1.00E+02	
2.00E+02	
3.00E+02	
4.00E+02	
5.00E+02	
6.00E+02	
7.00E+02	
8.00E+02	
9.00E+02	
1.00E+03	

1	 2	 3	 4	 5	 6	

We	can	plot	the	objecJve	funcJon	values	for	k	equals	1	to	6…	
	
The	abrupt	change	at	k	=	2,	is	highly	suggesJve	of	two	clusters	in	the	data.	This	
technique	for	determining	the	number	of	clusters	is	known	as	“knee	finding”	or	
“elbow	finding”.	

Note	that	the	results	are	not	always	as	clear	cut	as	in	this	toy	example	

k	

O
bj
ec
Jv
e	
Fu
nc
Jo

n	
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What	Is	A	Good	Clustering?	
•  Internal	criterion:	A	good	clustering	will	produce	high	

quality	clusters	in	which:	
–  the	intra-class	(that	is,	intra-cluster)	similarity	is	high	
–  the	inter-class	similarity	is	low	
–  The	measured	quality	of	a	clustering	depends	on	both	the	data	
representaJon	and	the	similarity	measure	used	

•  External	criteria	for	clustering	quality	
–  Quality	measured	by	its	ability	to	discover	some	or	all	of	the	
hidden	paeerns	or	latent	classes	in	gold	standard	data	

–  Assesses	a	clustering	with	respect	to	ground	truth	
–  Example:	

•  Purity	
•  entropy	of	classes	in	clusters	(or	mutual	informaJon	between	classes	
and	clusters)	
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External	EvaluaJon	of	Cluster	Quality,	
e.g.	using	purity		

•  Simple	measure:	purity,	the	raJo	between	the	dominant	class	in	
the	cluster	and	the	size	of	cluster	
–  Assume	data	samples	with	C	gold	standard	classes/groups,	while	the	

clustering	algorithms	produce	K	clusters,	ω1,	ω2,	…,	ωK	with	ni	
members.	

–  Example	

	 	 	Cluster	I:	Purity	=	1/6	(max(5,	1,	0))	=	5/6 		
	 	 	Cluster	II:	Purity	=	1/6	(max(1,	4,	1))	=	4/6	
	 	 	Cluster	III:	Purity	=	1/5	(max(2,	0,	3))	=	3/5	
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Application 
(I): Search 

Result 
Clustering 
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Application (II): Navigation 
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Islands	of	music		
(Pampalk	et	al.,	KDD’	03) 

Application (III): Visualization 
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Application (III): Visualization  
(feature changes è clusters’ change) 

Islands	of	music		(Pampalk	et	al.,	KDD’	03,		hep://www.ofai.at/~elias.pampalk/kdd03/	
Visualizing	Changes	in	the	Structure	of	Data	for	Exploratory	Feature	SelecJon) 

11/30/16	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	

105	



References		

q 	HasJe,	Trevor,	et	al.	The	elements	of	
sta=s=cal	learning.	Vol.	2.	No.	1.	New	York:	
Springer,	2009.	

q 	Big	thanks	to	Prof.	Eric	Xing	@	CMU	for	
allowing	me	to	reuse	some	of	his	slides	

q 	Big	thanks	to	Prof.	Ziv	Bar-Joseph	@	CMU	for	
allowing	me	to	reuse	some	of	his	slides	

q 	clustering	slides	from	Prof.	Rong	Jin	@	MSU	
	

	

11/30/16	 106	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f16	


