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Where	are	we	?	è		
major	secGons	of	this	course	

q 	Regression	(supervised)	
q 	ClassificaGon	(supervised)	

q 	Feature	selecGon			
q 	Unsupervised	models	

q 	Dimension	ReducGon	(PCA)	
q 	Clustering	(K-means,	GMM/EM,	Hierarchical	)	

q 	Learning	theory		
q 	Graphical	models		

q 	(BN	and	HMM	slides	shared)	
11/29/16	 2	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f15	



Today Outline	
•  Principles for Model Inference  

–  Maximum Likelihood Estimation 
–  Bayesian Estimation 

•  Strategies for Model Inference 
–  EM Algorithm – simplify difficult MLE 

•  Algorithm 
•  Application 
•  Theory 

–  MCMC – samples rather than maximizing 
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Model Inference through  
Maximum Likelihood Estimation (MLE) 

Assumption: the data is coming from a known probability distribution 
 
The probability distribution has some parameters that are unknown to you 

Example:	data	is	distributed	as	Gaussian																																						,	
so	the	unknown	parameters	here	are			

MLE is a tool that estimates the unknown parameters of the probability 
distribution from data 

✓ = (µ,�2)
yi = N(µ,�2)
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MLE: e.g. Single Gaussian 
Model (when p=1) 

•  Need to adjust the 
parameters (è model 
inference) 

•  So that the resulting 
distribution fits the 
observed data well 
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Maximum Likelihood revisited 
yi = N(µ,�2)

!! Y = { y1 , y2 ,…, yN }

!!
l(θ )= log(L(θ ;Y ))= log p( yi )

i=1

N

∏

)	
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MLE: e.g. Single Gaussian Model  

•  Assume observation data yi are independent 

•  Form the Likelihood: 

•  Form the Log-likelihood:  
 

!! 

L(θ ;Y )= p( yi )
i=1

N

∏ = 1
2πσ 2i=1

N

∏ exp(− ( yi − µ)
2

2σ 2 );

Y = { y1 , y2 ,…, yN }

!!
l(θ )= log( 1

2πσi=1

N

∏ exp(− ( yi − µ)
2

2σ 2 ))= − ( yi − µ)2
2σ 2

i=1

N

∑ −N log( 2πσ )
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MLE: e.g. Single Gaussian Model  

 
•  To find out the unknown parameter values, maximize the 

log-likelihood with respect to the unknown parameters: 
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MLE: A Challenging Mixture Example 

histogram 

Indicator variable 

        is the probability with which the observation is chosen from density model 2 
 
(1-      ) is the probability with which the observation is chosen from density 1 

Mixture model: 
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MLE: Gaussian Mixture Example 

Maximum likelihood fitting for parameters:

Numerically (and of course analytically, too) 
Challenging to solve!!

),,,,( 2121 σσµµπ=θ

)	
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Bayesian Methods &  
Maximum Likelihood 

•  Bayesian 
Pr(model|data)  i.e. posterior   
=>Pr(data|model) Pr(model) 
=> Likelihood * prior 

 
•  Assume prior is uniform, equal to MLE 

   argmax_model Pr(data | model) Pr(model) 
= argmax_model Pr(data | model) 
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Today Outline	
•  Principles for Model Inference  

–  Maximum Likelihood Estimation 
–  Bayesian Estimation 

•  Strategies for Model Inference 
–  EM Algorithm – simplify difficult MLE 

•  Algorithm 
•  Application 
•  Theory 

–  MCMC – samples rather than maximizing 
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Here is the problem 
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All we have is  

From	which	we	need	to	infer	the	likelihood	funcGon	
which	generate	the	observaGons		

histogram 
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Expectation Maximization: add 
latent variable   è latent data 

EM augments the data space– assumes with latent data 
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Computing log-likelihood based on 
complete data 

Maximizing this form of log-likelihood is now tractable 

Note that we cannot analytically maximize the previous log-likelihood with only  
observed Y={y_1, y_2, …, y_n} 

T = {ti = (yi,�i), i = 1...N}
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EM: The Complete Data Likelihood 
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By simple differentiations we have: 

How do we get the latent variables? 

So, maximization of the complete data likelihood is much easier! 
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EM: The Complete Data Likelihood 
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By simple 
differentiations we 
have: 

How do we get the latent variables? 

So, 
maximization of 
the complete 
data likelihood 
is much easier! 
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Obtaining Latent Variables 
The latent variables are computed as expected values  
given the data and parameters: 

),|1Pr(),|()( iiiii yyEθγ θθ =Δ=Δ=

Apply Bayes’ rule: 
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Dilemma Situation   

•  We need to know latent variable / data to maximize the 
complete log-likelihood to get the parameters  

•  We need to know the parameters to calculate the 
expected values of latent variable / data  

•  è Solve through iterations 
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So we iterate è 
EM for Gaussian Mixtures… 

Y Y

Y
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EM for Gaussian Mixtures… 

Y
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EM for Two-component Gaussian Mixture 

•  Initialize  
•  Iterate until convergence 

–  Expectation of latent variables 

– Maximization for finding parameters 
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EM in….simple words 

•  Given observed data, you need to come up 
with a generative model 

•  You choose a model that comprises of some 
hidden variables  hi    (this is your belief!) 

•  Problem: To estimate the parameters of model 
–  Assume some initial values parameters 
–  Replace values of hidden variable with their 

expectation (given the old parameters) 
–  Recompute new values of parameters (given       ) 
–  Check for convergence using log-likelihood 

�i

�i
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EM – Example (cont’d) 

Selected iterations of the EM algorithm 
For mixture example 

Iteration � 
1 0.485 
5 0.493 
10 0.523 
15 0.544 
20 0.546 

⇡

histogram 
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EM Summary 
•  An iterative approach for MLE 
•  Good idea when you have missing or latent 

data 
•  Has a nice property of convergence 
•  Can get stuck in local minima (try different 

starting points) 
•  Generally hard to calculate expectation over 

all possible values of hidden variables 
•  Still not much known about the rate of 

convergence 
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Today Outline	
•  Principles for Model Inference  

–  Maximum Likelihood Estimation 
–  Bayesian Estimation 

•  Strategies for Model Inference 
–  EM Algorithm – simplify difficult MLE 

•  Algorithm 
•  Application 
•  Theory 

–  MCMC – samples rather than maximizing 
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Applications of EM 

– Mixture models 
– HMMs 
– Latent variable models 
– Missing data problems 
– … 
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Applications of EM (1) 

•  Fibng	mixture	models	
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Applications of EM (2) 

•  ProbabilisGc	Latent	SemanGc	Analysis	(pLSA)	
– Technique	from	text	for	topic	modeling		

	
	
						P(w,d)							
	
	
	

	
	
	P(w|z)		
	
	
	

	
							P(z|d)								
	

Z	

W	 D	

Z	

D	

W	
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Applications of EM (3) 

•  Learning	parts	and	structure	models	
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Applications of EM (4) 

•  AutomaGc	segmentaGon	of	layers	in	video	

	

hhp://www.psi.toronto.edu/images/figures/cutouts_vid.gif		

11/29/16	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f15	

32	



Expectation Maximization (EM) 

	

• 	Old	idea	(late	50’s)	but	formalized	by	Dempster,	
Laird	and	Rubin	in	1977	

• 	Subject	of	much	invesGgaGon.	See	McLachlan	&	
Krishnan	book	1997.		
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Today Outline	
•  Principles for Model Inference  

–  Maximum Likelihood Estimation 
–  Bayesian Estimation 

•  Strategies for Model Inference 
–  EM Algorithm – simplify difficult MLE 

•  Algorithm 
•  Application 
•  Theory 

–  MCMC – samples rather than maximizing 
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Why	is	Learning	Harder?	

•  In	fully	observed	iid	sebngs,	the	complete	log	
likelihood	decomposes	into	a	sum	of	local	
terms.	

	

•  When	with	latent	variables,	all	the	parameters	
become	coupled	together	via	marginaliza)on	

),|(log)|(log)|,(log);( xzc zxpzpzxpD θθθθ +==l

!! 
l (θ ;D)= logp(x |θ )= log p(z |θz )p(x |z ,θ x )

z
∑
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Gradient	Learning	for	mixture	models	

•  We	can	learn	mixture	densiGes	using	gradient	descent	on	
the	observed	log	likelihood.	The	gradients	are	quite	
interesGng:	

•  In	other	words,	the	gradient	is	the	responsibility	weighted	
sum	of	the	individual	log	likelihood	gradients.	

•  Can	pass	this	to	a	conjugate	gradient	rouGne.	
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Parameter	Constraints	
•  Onen	we	have	constraints	on	the	parameters,	e.g.									

being	symmetric	posiGve	definite.	
•  We	can	use	constrained	opGmizaGon,	or	we	can	re-

parameterize	in	terms	of	unconstrained	values.	
–  For	normalized	weights,	sonmax	to	e.g.		

–  For	covariance	matrices,	use	the	Cholesky	decomposiGon:	

		
	where	A	is	upper	diagonal	with	posiGve	diagonal:	
		
		
		

–  Use	chain	rule	to	compute		

AAT=Σ−1

( ) )(  )(  exp ijij ijijijiii <=>=>= 00 AAA ηλ

.  ,
A∂
∂

∂
∂ ll
π

⌃k

  
π j

j=1

K

∑ = 1



11/29/16	

Dr.	Yanjun	Qi	/	UVA	CS	6316	/	f15	

	
	
	

40	

IdenGfiability	
•  A	mixture	model	induces	a	mulG-modal	likelihood.	
•  Hence	gradient	ascent	can	only	find	a	local	maximum.	
•  Mixture	models	are	unidenGfiable,	since	we	can	always	

switch	the	hidden	labels	without	affecGng	the	likelihood.	
•  Hence	we	should	be	careful	in	trying	to	interpret	the	
“meaning”	of	latent	variables.	
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ExpectaGon-MaximizaGon	(EM)	Algorithm	

•  EM	is	an	IteraGve	algorithm	with	two	linked	
steps:	
– E-step:	fill-in	hidden	values	using	inference:	p(z|x,	\thetat).	
– M-step:	update	parameters	(t+1)	rounds	using	
standard	MLE/MAP	method	applied	to	completed	
data	

•  We	will	prove	that	this	procedure	monotonically	
improves	(or	leaves	it	unchanged).	Thus	it	always	
converges	to	a	local	opGmum	of	the	likelihood.	
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Theory	underlying	EM	
•  What	are	we	doing?	

•  Recall	that	according	to	MLE,	we	intend	to	learn	the	model	
parameter	that	would	have	maximize	the	likelihood	of	the	
data.		

•  But	we	do	not	observe	z,	so	compuGng			

	is	difficult!	
	
•  What	shall	we	do?	

∑∑ ==
z

xz
z

c zxpzpzxpD ),|()|(log)|,(log);( θθθθl
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(1)	Incomplete	Log	Likelihoods	

•  Incomplete	log	likelihood	
	
With	z	unobserved,	our	objecGve	becomes	the	log	of	a	marginal	probability:	

– This	objecKve	won't	decouple		
	

!! 
l (θ ;x)= logp(x |θ )= log p(x ,z |θ )

z
∑
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(2)	Complete	Log	Likelihoods	

•  Complete	log	likelihood	
Let	X	denote	the	observable	variable(s),	and	Z	denote	the	latent	variable(s).		
If	Z	could	be	observed,	then	
	
	
	

– Usually,	opGmizing	lc()	given	both	z	and	x	is	
straightorward	(c.f.	MLE	for	fully	observed	models).	

–  Recalled	that	in	this	case	the	objecGve	for,	e.g.,	MLE,	
decomposes	into	a	sum	of	factors,	the	parameter	for	
each	factor	can	be	esGmated	separately.	

–  But	given	that	Z		is	not	observed,	lc()	is	a	random	
quanKty,	cannot	be	maximized	directly.	

	

!! l c(θ ;x ,z)=
def
logp(x ,z |θ )= logp(z |θz )p(x |z ,θ x )



Complete	log-likelihood	(CLL)	

Log-likelihood	[Incomplete	log-likelihood	(ILL)]	

Expected	complete	log-likelihood	(ECLL)	

Three	types	of	log-likelihood		
over	mulGple	observed	samples	(x_1,	x_2,	…,	x_N) 

Observed	data	

Latent	variables	

IteraGon	index	
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(3)	Expected	Complete	Log	Likelihood	

•  For	any	distribuGon	q(z),	define	expected	
complete	log	likelihood	(ECLL):	

•  CLL	is	random	variable	è	ECLL	is	a	determinisGc	
funcGon	of	q

•  Linear	in	CLL()	---	inherit	its	factorizabiility		
•  Does	maximizing	this	surrogate	yield	a	maximizer	of	the	
likelihood?	

!! 
ECLL= l c(θ ;x ,z) q

=
def

q(z |x ,θ )logp(x ,z |θ )
z
∑



Jensen’s	inequality	
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Jensen’s	inequality	

!! 
ECLL= l c(θ ;x ,z) q

=
def

q(z |x ,θ )logp(x ,z |θ )
z
∑

!! 

ILL= l (θ ;x)= logp(x |θ )
= log p(x ,z |θ )

z
∑

= log q(z |x)p(x ,z |θ )
q(z |x)z

∑

≥ q(z |x)log p(x ,z |θ )
q(z |x)z

∑

= q(z |x)logp(x ,z |θ )− q(z |x)log
z
∑ q(z |x)

z
∑

= ECLL+Hq

qqc Hzxx +≥⇒ ),;();(     θθ ll

•  Jensen’s	inequality	

	

Entropy	term	
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Lower	Bounds	and	Free	Energy	

•  For	fixed	data	x,	define	a	funcGonal	called	the	
free	energy:	

	
•  The	EM	algorithm	is	coordinate-ascent	on	F :	

– E-step:	

– M-step:	

);(
)|(
)|,(

log)|(),(
def

x
xzq

zxpxzqqF
z

θθθ l≤=∑

),(maxarg t
q

t qFq θ=+1

),(maxarg ttt qF θθ
θ

11 ++ =



How	EM	opGmize	ILL	?			
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E-step:	maximizaGon	of	w.r.t.	q 
•  Claim:		

–  This	is	the	posterior	distribuGon	over	the	latent	variables	given	the	
data	and	the	parameters.	Onen	we	need	this	at	test	Gme	anyway	
(e.g.	to	perform	clustering).	

•  Proof	(easy):	this	sebng	ahains	the	bound	of	ILL	

•  Can	also	show	this	result	using	variaGonal	calculus	or	the	fact	
that	

),|(),(maxarg tt
q

t xzpqFq θθ ==+1

);()|(log

)|(log),(
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M-step:	maximizaGon	w.r.t.	\theta	

•  Note	that	the	free	energy	breaks	into	two	
terms:	

– The	first	term	is	the	expected	complete	log	
likelihood	(energy)	and	the	second	term,	which	
does	not	depend	on q,	is	the	entropy.	
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M-step:	maximizaGon	w.r.t.	\theta	

•  Thus,	in	the	M-step,	maximizing	with	respect	
to	q	for	fixed	q	we	only	need	to	consider	the	
first	term:	

	

– Under	opGmal	qt+1, this	is	equivalent	to	solving	a	
standard	MLE	of	fully	observed	model	p(x,z|q),	
with	the	sufficient	staGsGcs	involving	z	replaced	
by	their	expectaGons	w.r.t.	p(z|x,q).	
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Summary:	EM	Algorithm	
•  A	way	of	maximizing	likelihood	funcGon	for	latent	variable	models.	

Finds	MLE	of	parameters	when	the	original	(hard)	problem	can	be	
broken	up	into	two	(easy)	pieces:	
1.  EsGmate	some	“missing”	or	“unobserved”	data	from	observed	data	

and	current	parameters.	
2.  Using	this	“complete”	data,	find	the	maximum	likelihood	parameter	

esGmates.	

•  Alternate	between	filling	in	the	latent	variables	using	the	best	
guess	(posterior)	and	updaGng	the	parameters	based	on	this	
guess:	
–  E-step:		
–  M-step:		

•  In	the	M-step	we	opGmize	a	lower	bound	on	the	likelihood.	In	the	
E-step	we	close	the	gap,	making	bound=likelihood.	

),(maxarg t
q

t qFq θ=+1

),(maxarg ttt qF θθ
θ

11 ++ =



How	EM	opGmize	ILL	?			
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A	Report	Card	for	EM	
•  Some	good	things	about	EM:	

–  no	learning	rate	(step-size)	parameter	
–  automaGcally	enforces	parameter	constraints	
–  very	fast	for	low	dimensions	
–  each	iteraGon	guaranteed	to	improve	likelihood	
–  Calls	inference	and	fully	observed	learning	as	subrouGnes.	

	
•  Some	bad	things	about	EM:	

–  can	get	stuck	in	local	minima	
–  can	be	slower	than	conjugate	gradient	(especially	near	
convergence)	

–  requires	expensive	inference	step	
–  is	a	maximum	likelihood/MAP	method	
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