UVA CS 6316/4501 – Fall 2016 Machine Learning

Lecture 22: Review

Dr. Yanjun Qi

University of Virginia

Department of Computer Science

Announcements: Final Exam

- Closed Note
- Allowing a paper (us letter size) of cheat sheet
- No laptop / No Cell phone / No internet access / No electronic devices
- Recital session this Friday (@OSL120, 4pm-5pm) for HW7
- Covering post-midterm contents (L12-) till today
 - Practice with sample questions in HW7
 - HW7 due next Monday noon
 - Please review course slides carefully

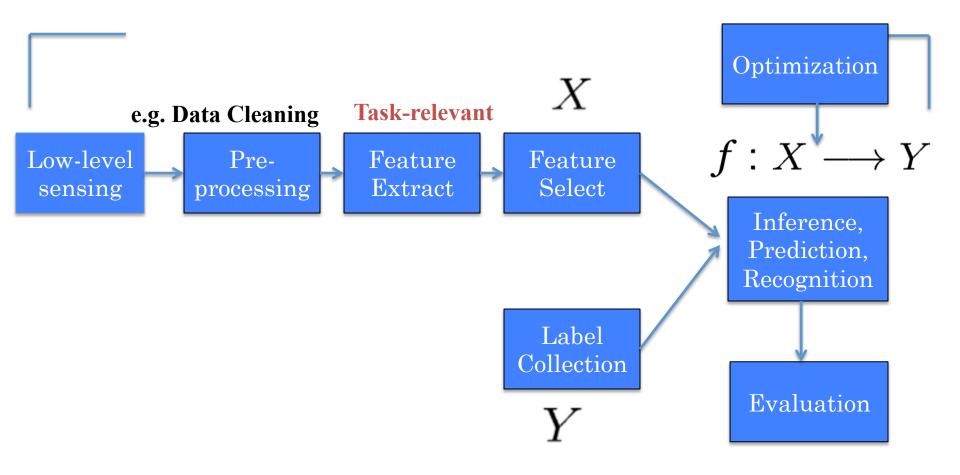
Today

Review of ML methods covered so far

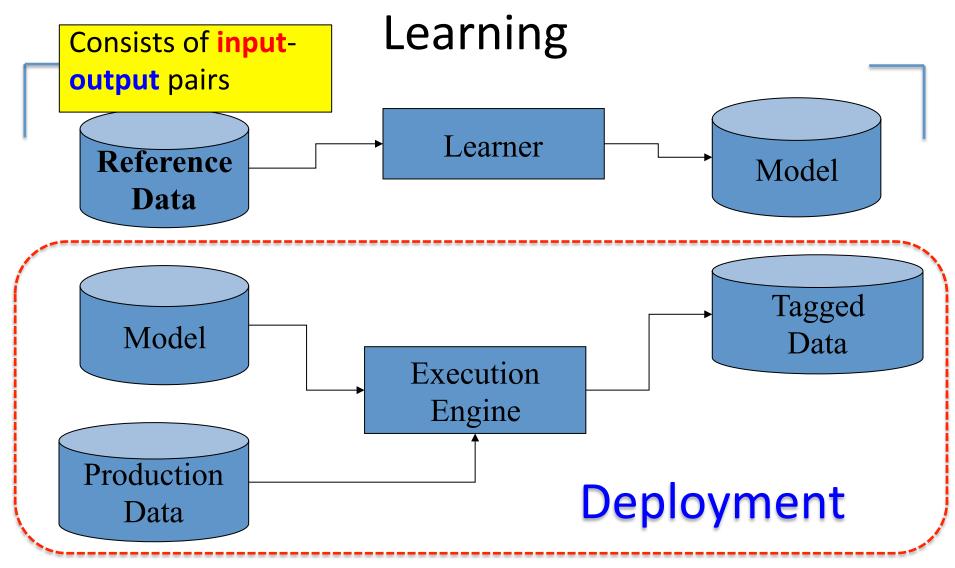
- Regression (supervised)
- □ Classification (supervised)
- Unsupervised models
- Learning theory

□ Review of Assignments covered so far

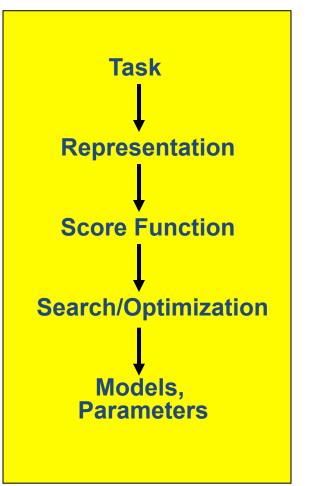
A Typical Machine Learning Pipeline



An Operational Model of Machine



Machine Learning in a Nutshell



ML grew out of work in Al

Optimize a performance criterion using example data or past experience,

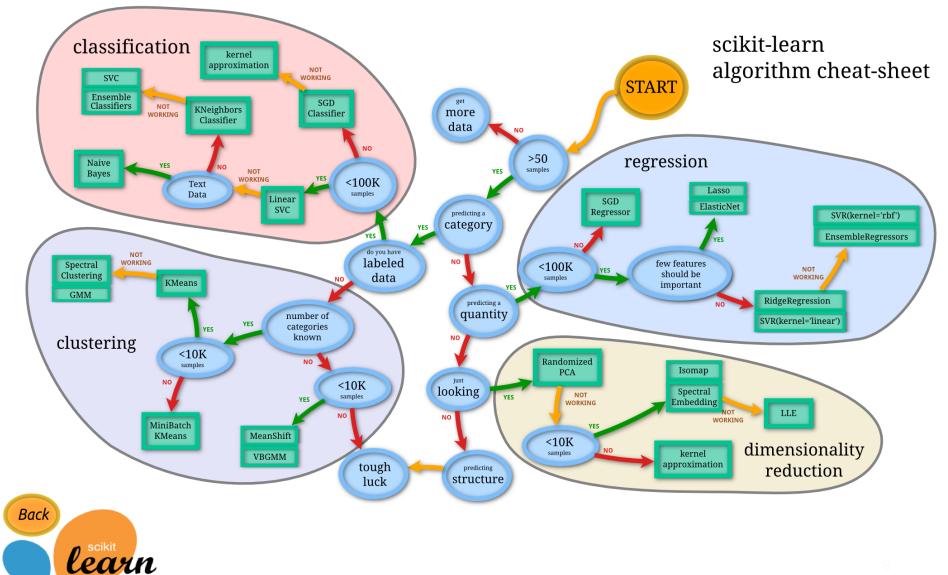
Aiming to generalize to unseen data

What we have covered

Task	
Representation	
Score Function	
Search/ Optimization	
Models, Parameters	

http://scikit-learn.org/stable/tutorial/machine_learning_map/

Scikit-learn algorithm cheat-sheet



http://scikit-learn.org/stable/

scikit-learn

Machine Learning in Python

- · Simple and efficient tools for data mining and data analysis
- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable BSD license

Classification

Identifying to which set of categories a new observation belong to.

Applications: Spam detection, Image recognition. Algorithms: SVM, nearest neighbors, random Examples forest. ...

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency Algorithms: PCA, feature selection, nonnegative matrix factorization. Examples

Regression

Predicting a continuous value for a new example.

Applications: Drug response, Stock prices. Algorithms: SVR, ridge regression, Lasso, ...

Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes Algorithms: k-Means, spectral clustering, mean-shift. ... Examples

Model selection

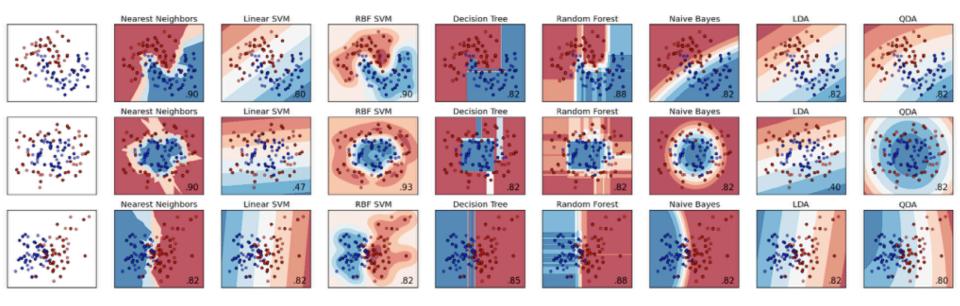
Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tuning Modules: grid search, cross validation, metrics. Examples

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms. Modules: preprocessing, feature extraction.



✓ different assumptions on data
 ✓ different scalability profiles at training time
 ✓ different latencies at prediction (test) time
 ✓ different model sizes (embedability in mobile devices)

Today

Review of ML methods covered so far
 Regression (supervised)
 Classification (supervised)
 Unsupervised models
 Learning theory

□ Review of Assignments covered so far

SUPERVISED LEARNING

 $f: X \longrightarrow Y$

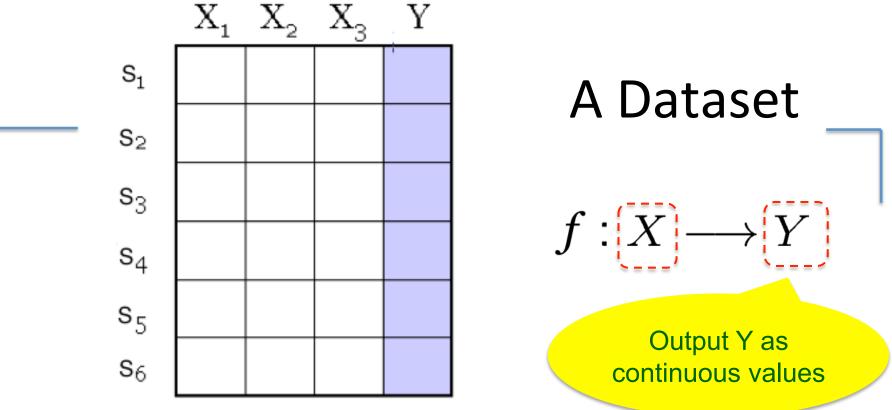
KEY

- Find function to map input space X to output space Y
- Generalisation: learn function / hypothesis from past data in order to "explain", "predict", "model" or "control" new data examples

What we have covered (I)

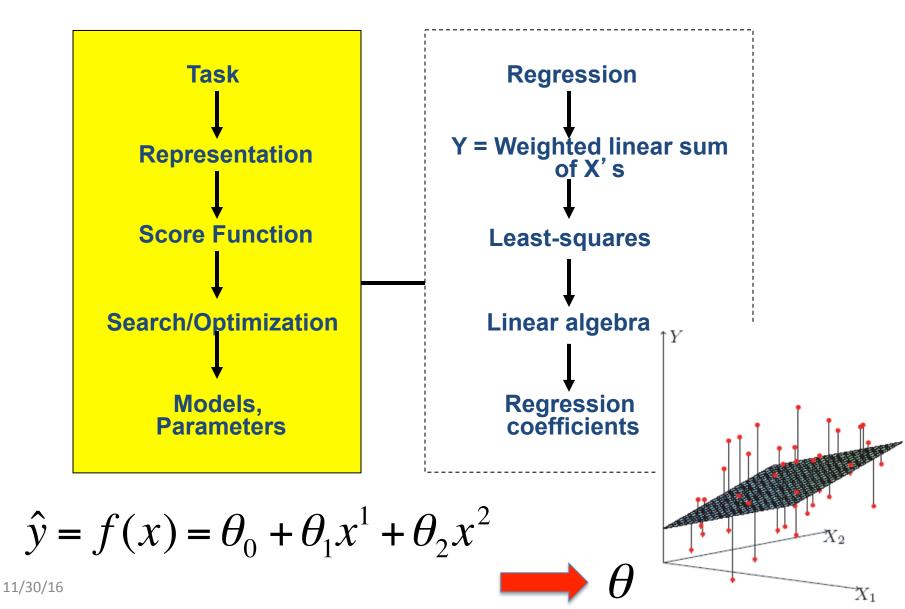
Supervised Regression models

- Linear regression (LR)
- LR with non-linear basis functions
- Locally weighted LR
- LR with Regularizations
- Feature selection *

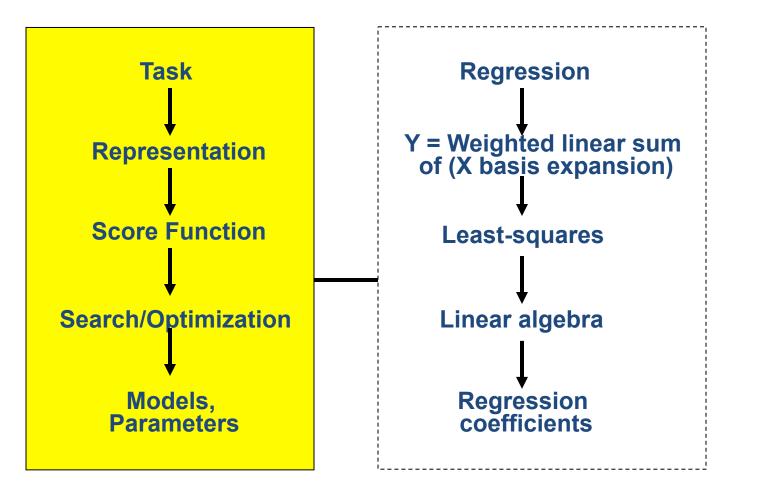


- **Data**/points/instances/examples/samples/records: [rows]
- Features/attributes/dimensions/independent variables/covariates/ predictors/regressors: [columns, except the last]
- Target/outcome/response/label/dependent variable: special column to be predicted [last column]

(1) Multivariate Linear Regression



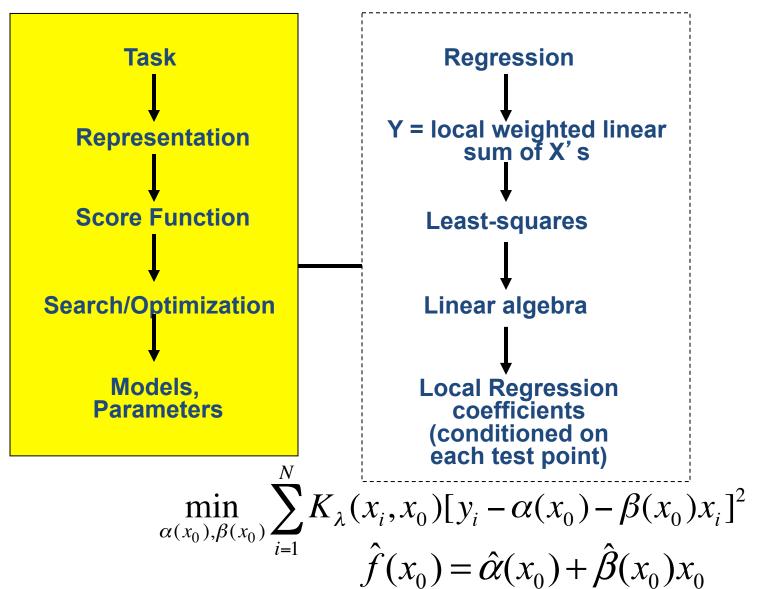
(2) Multivariate Linear Regression with basis Expansion



 $\hat{y} = \theta_0 + \sum_{j=1}^m \theta_j \varphi_j(x) = \varphi(x)\theta$

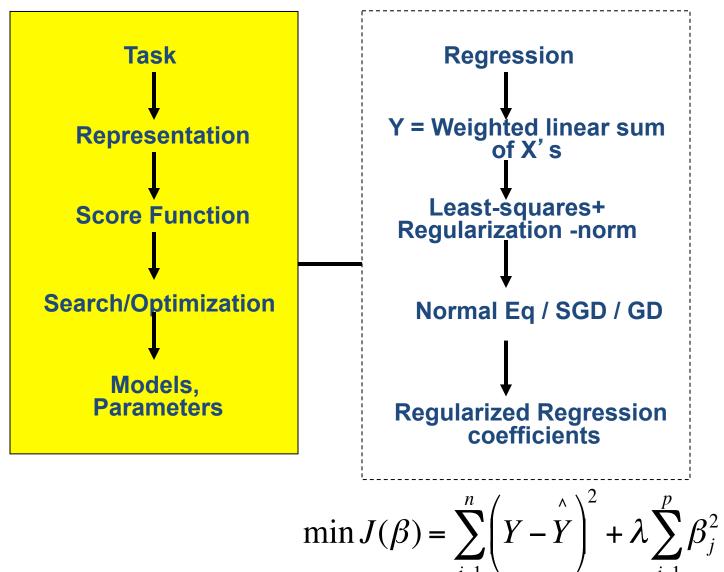
17

(3) Locally Weighted / Kernel Regression



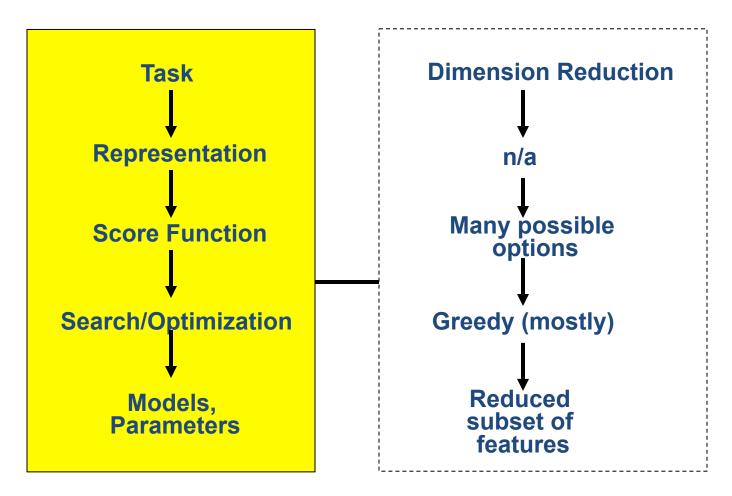
11/30/16

(4) Regularized multivariate linear regression



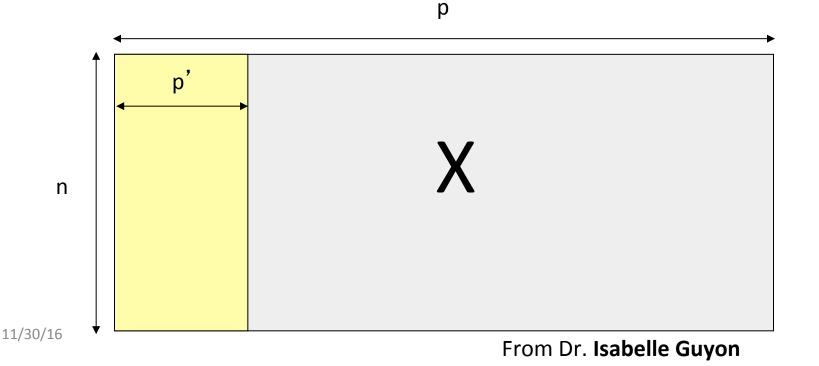
11/30/16

(5) Feature Selection



(5) Feature Selection

 Thousands to millions of low level features: select the most relevant one to build better, faster, and easier to understand learning machines.



Today

Review of ML methods covered so far Regression (supervised) Classification (supervised) Unsupervised models Learning theory

□ Review of Assignments covered so far

What we have covered (II)

Supervised Classification models

- Support Vector Machine
- Bayes Classifier
- Logistic Regression
- K-nearest Neighbor
- Random forest / Decision Tree
- Neural Network (e.g. MLP)

Three major sections for classification

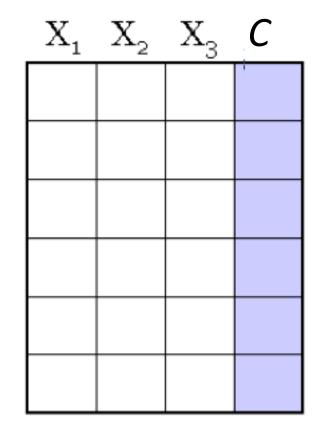
- We can divide the large variety of classification approaches into roughly three major types
- 1. Discriminative
 - directly estimate a decision rule/boundary
 - e.g., logistic regression, support vector machine, decisionTree

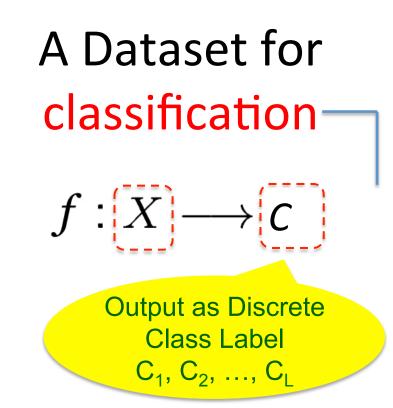
2. Generative:

- build a generative statistical model
- e.g., naïve bayes classifier, Bayesian networks

3. Instance based classifiers

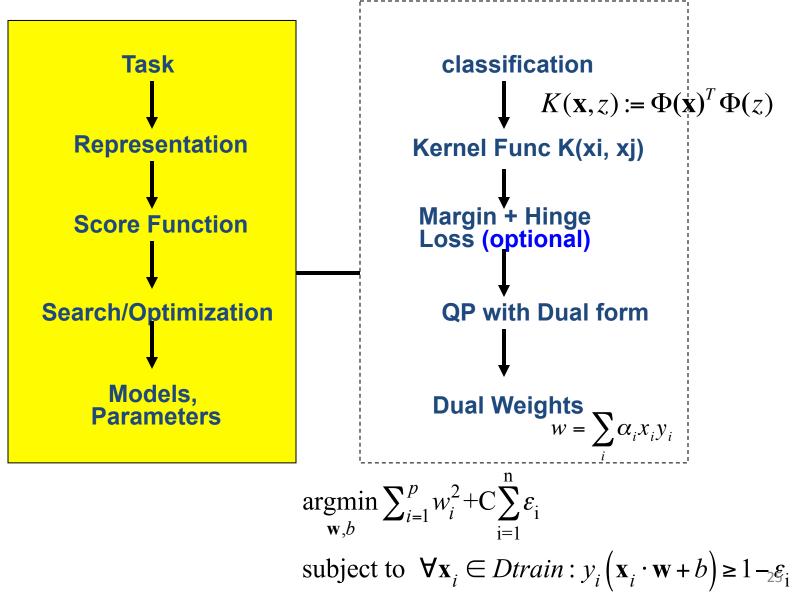
- Use observation directly (no models)
- e.g. K nearest neighbors



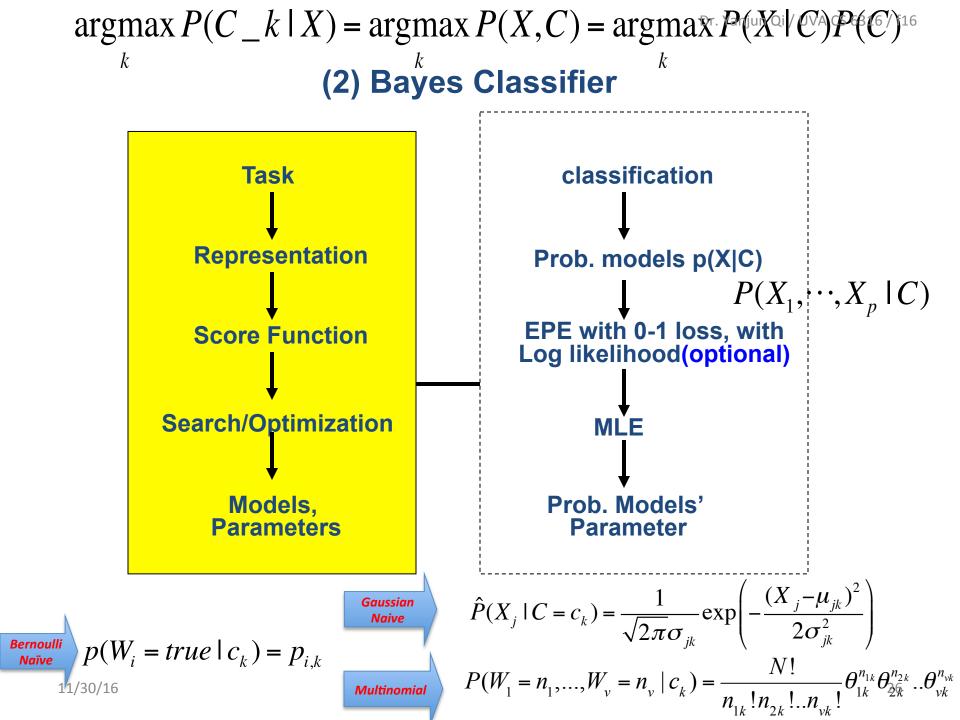


- Data/points/instances/examples/samples/records: [rows]
- Features/attributes/dimensions/independent variables/covariates/predictors/regressors: [columns, except the last]
- Target/outcome/response/label/dependent variable: special column to be predicted [last column]

(1) Support Vector Machine



11/30/16



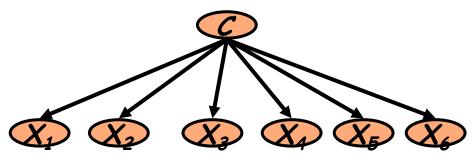
Naïve Bayes Classifier

Difficulty: learning the joint probability $P(X_1, \dots, X_p | C)$

• Naïve Bayes classification

Assumption that all input attributes are conditionally independent!

$$\begin{split} P(X_1, X_2, \cdots, X_p \mid C) &= P(X_1 \mid X_2, \cdots, X_p, C) P(X_2, \cdots, X_p \mid C) \\ &= \overline{P(X_1 \mid C) P(X_2, \cdots, X_p \mid C)} \\ &= P(X_1 \mid C) P(X_2 \mid C) \cdots P(X_p \mid C) \end{split}$$



Adapt from Prof. Ke Chen NB slides

27

(3) Logistic Regression



Logistic Regression—when?

Logistic regression models are appropriate for target variable coded as 0/1.

We only observe "0" and "1" for the target variable—but we think of the target variable conceptually as a probability that "1" will occur.

This means we use Bernoulli distribution to model the target variable with its Bernoulli parameter p=p(y=1 | x) predefined.

The main interest \rightarrow predicting the probability that an event occurs (i.e., the probability that $p(y=1 \mid x)$).

Discriminative

Logistic regression models for Dr. Yanjun Qi / UVA CS 6316 / f16 binary target variable coded 0/1.

P(C=1|X)1.0 e.g. Probability of disease 8.0 logistic function 0.6 $P(c=1|x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$ 0.4 0.2 \mathcal{X} Logit function 0.0 **Decision Boundary** \rightarrow equals to zero $\ln \left| \frac{P(c=1|x)}{P(e=0|x)} \right| = \ln \left| \frac{P(c=1|x)}{1 - P(c=1|x)} \right| = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{30^p} x_p$

Discriminative vs. Generative

Generative approach

- Model the joint distribution p(X, C) using $p(X | C = c_k)$ and $p(C = c_k)$

Class prior

 $1 + e^{-(\beta_0 + \beta_1 * X)}$

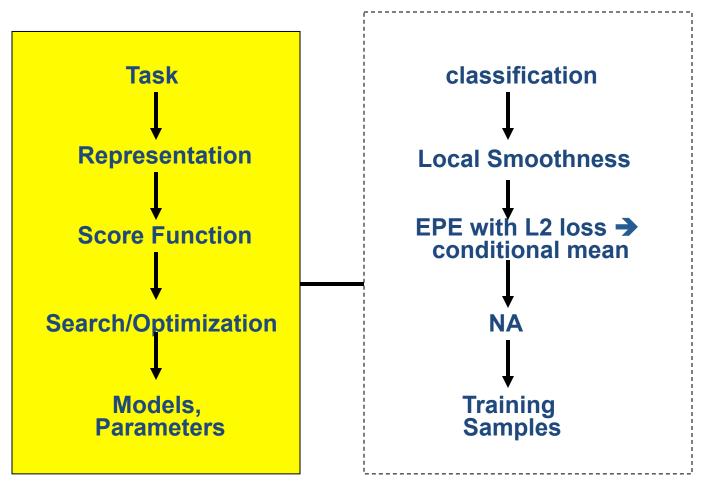
Discriminative approach

- Model the conditional distribution p(c | X) directly

Discriminative vs. Generative

- Empirically, generative classifiers approach their asymptotic error faster than discriminative ones
 - Good for small training set
 - Handle missing data well (EM)
- Empirically, discriminative classifiers have lower asymptotic error than generative ones
 - Good for larger training set

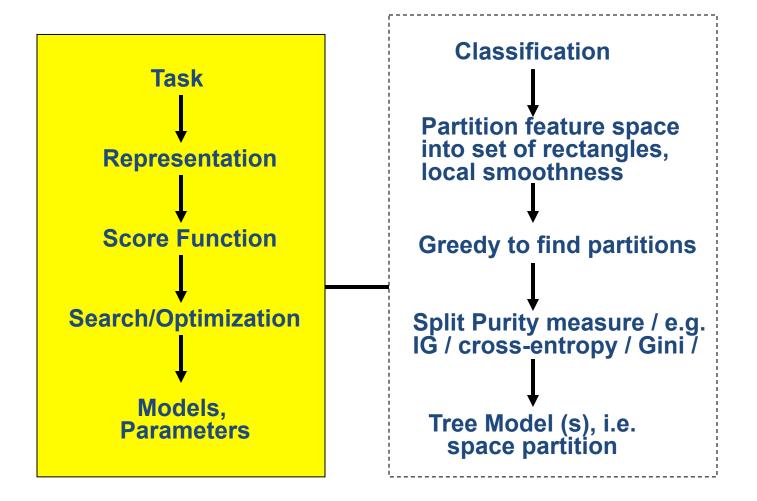
(4) K-Nearest Neighbor



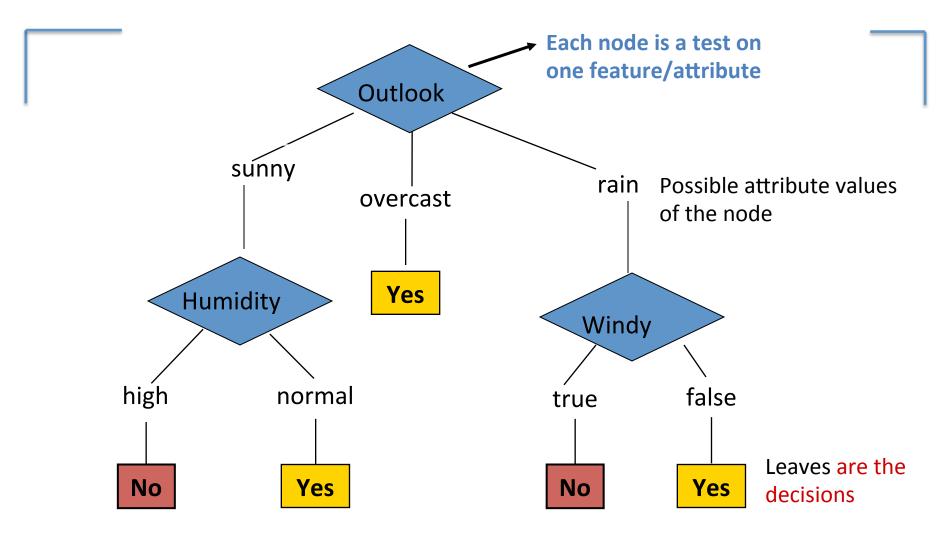
Nearest neighbor classification

- *k*-Nearest neighbor classifier is a lazy learner
 - Does not build model explicitly.
 - Unlike eager learners such as decision tree induction and rule-based systems.
 - Classifying unknown samples is relatively expensive.
- k-Nearest neighbor classifier is a local model, vs. global model of linear classifiers.

(5) Decision Tree / Random Forest



Anatomy of a decision tree



Decision trees

 Decision trees represent a disjunction of conjunctions of constraints on the attribute values of instances.

```
 (Outlook ==overcast)
```

- OR
- ((Outlook==rain) and (Windy==false))
- OR
- ((Outlook==sunny) and (Humidity=normal))
- => yes play tennis

Information gain

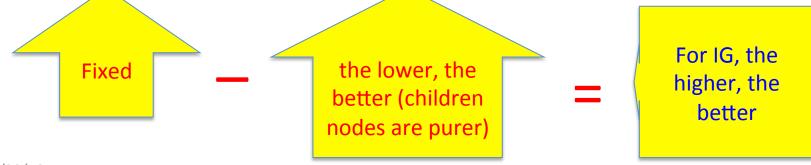
• IG(X_i,Y)=H(Y)-H(Y|X_i)

Reduction in uncertainty by knowing a feature X_i

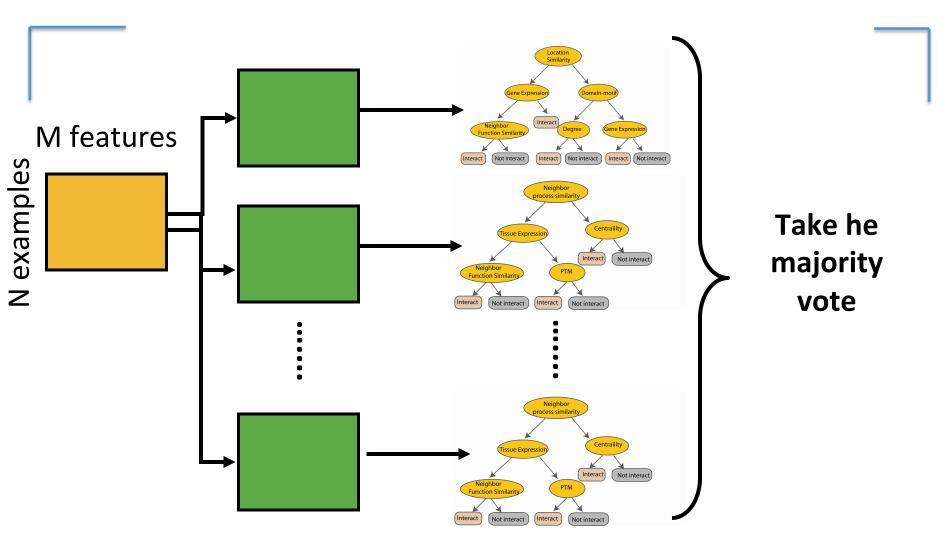
Information gain:

= (information before split) – (information after split)

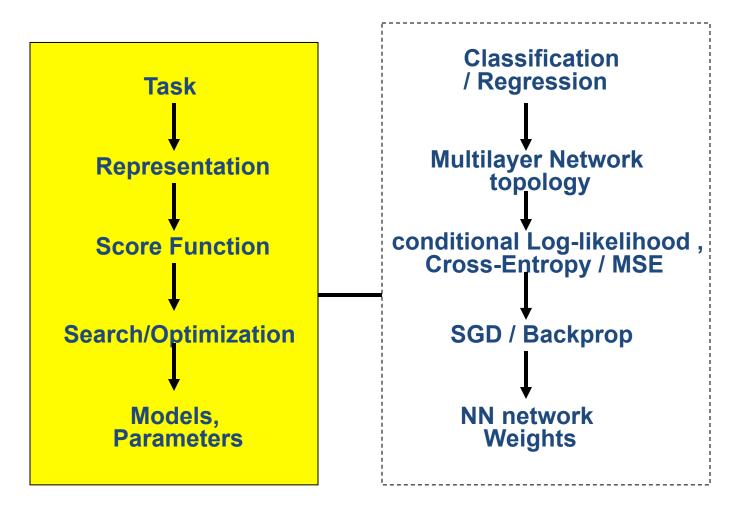
= entropy(parent) - [average entropy(children)]



Random Forest Classifier



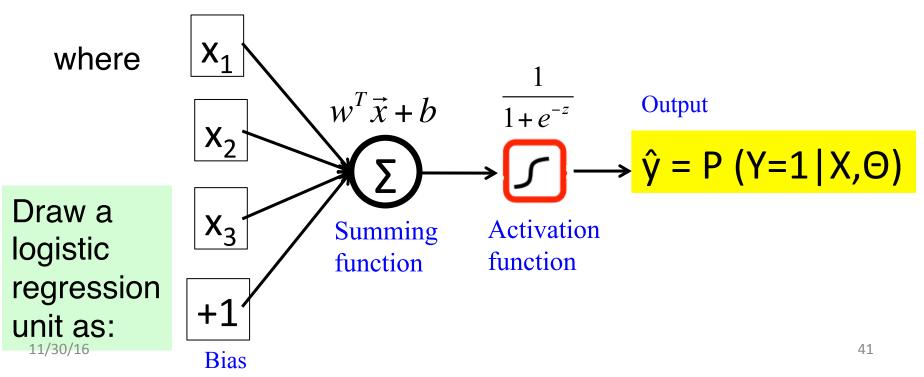
(6) Neural Network



Logistic regression

Logistic regression could be illustrated as a module

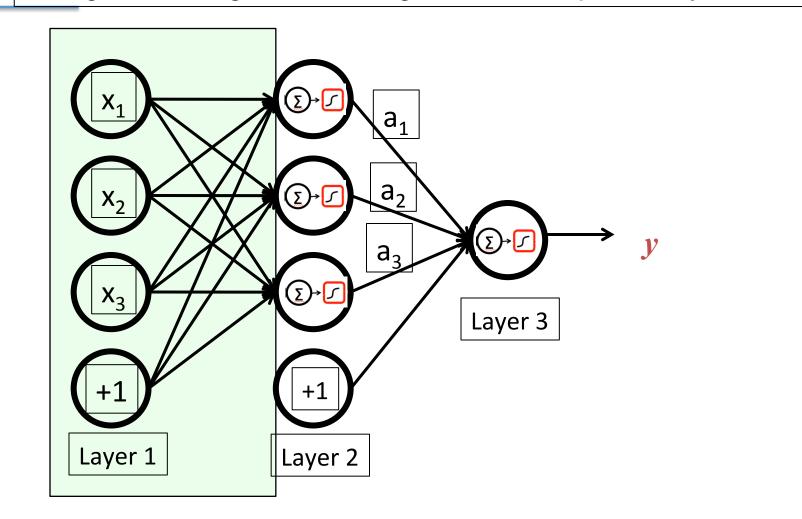
On input x, it outputs ŷ:



Dr. Yanjun Qi / UVA CS 6316 / f16

Multi-Layer Perceptron (MLP)

String a lot of logistic units together. Example: 3 layer network:

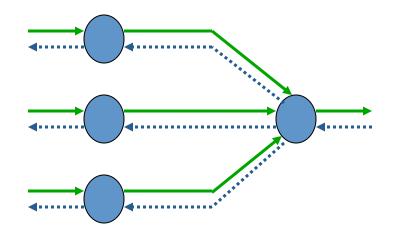


11/30/16 input

hidden

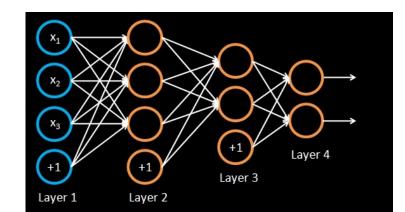
Backpropagation

• Back-propagation training algorithm

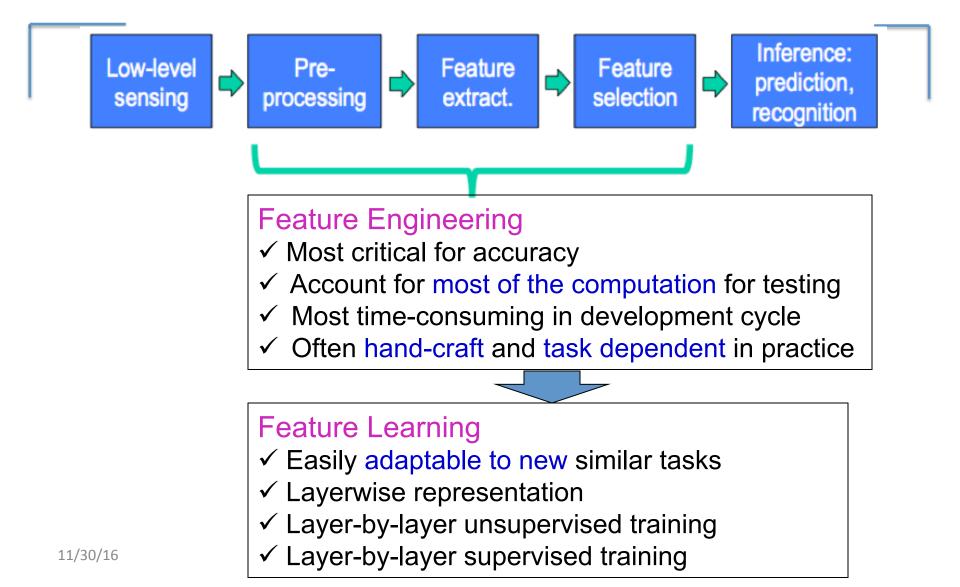


Network activation Forward Step

Error propagation Backward Step



Deep Learning Way: Learning features / Representation from data



Today

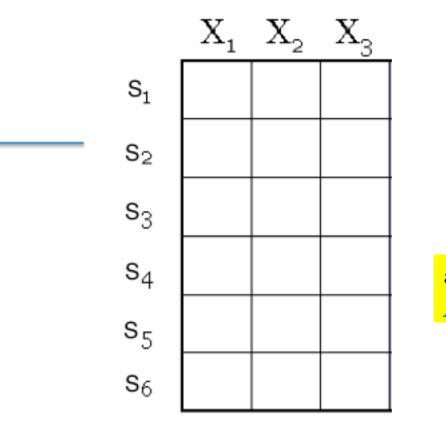
Review of ML methods covered so far Regression (supervised) Classification (supervised) Unsupervised models Learning theory

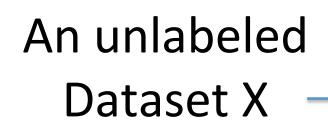
□ Review of Assignments covered so far

What we have covered (III)

Unsupervised models

- Dimension Reduction (PCA)
- Hierarchical clustering
- K-means clustering
- GMM/EM clustering



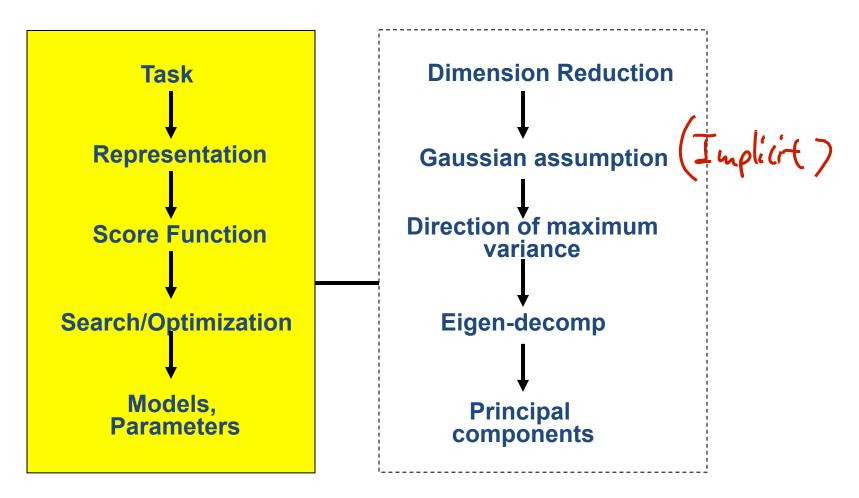


a data matrix of *n* observations on *p* variables $x_1, x_2, \dots x_p$

Unsupervised learning = learning from raw (unlabeled, unannotated, etc) data, as opposed to supervised data where a label of examples is given

- Data/points/instances/examples/samples/records: [rows]
- Features/attributes/dimensions/independent variables/covariates/predictors/regressors: [columns]

(0) Principal Component Analysis



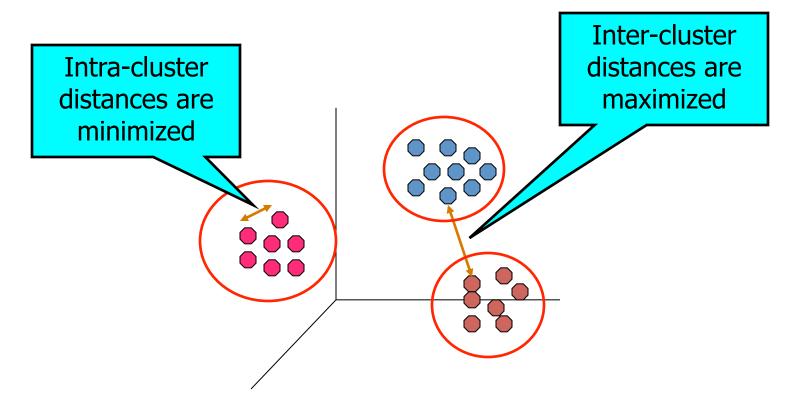
What we have covered (III)

Unsupervised models

- Dimension Reduction (PCA)
- Hierarchical clustering
- K-means clustering
- GMM/EM clustering

What is clustering?

 Find groups (clusters) of data points such that data points in a group will be similar (or related) to one another and different from (or unrelated to) the data points in other groups

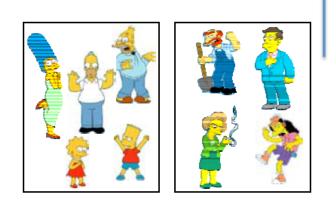


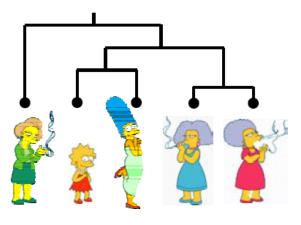
Issues for clustering

- What is a natural grouping among these objects?
 Definition of "groupness"
- What makes objects "related"?
 - Definition of "similarity/distance"
- Representation for objects
 - Vector space? Normalization?
- How many clusters?
 - Fixed a priori?
 - Completely data driven?
 - Avoid "trivial" clusters too large or small
- Clustering Algorithms
 - Partitional algorithms
 - Hierarchical algorithms
- Formal foundation and convergence

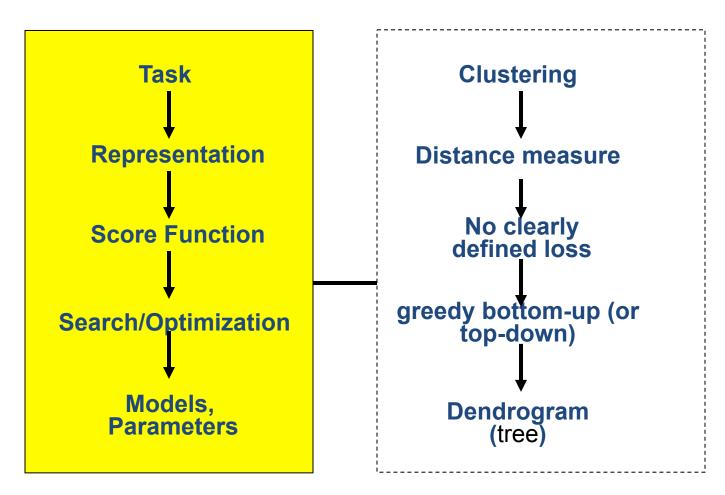
Clustering Algorithms

- Partitional algorithms
 - Usually start with a random (partial) partitioning
 - Refine it iteratively
 - K means clustering
 - Mixture-Model based clustering
- Hierarchical algorithms
 - Bottom-up, agglomerative
 - Top-down, divisive

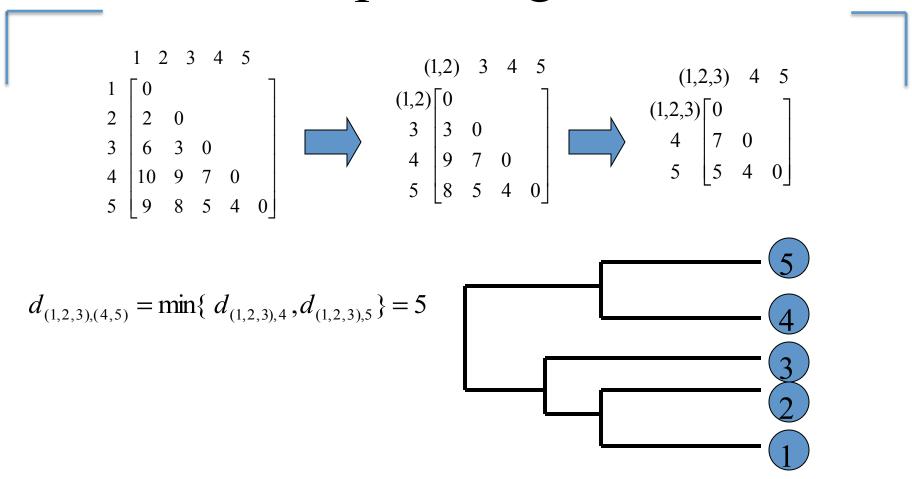




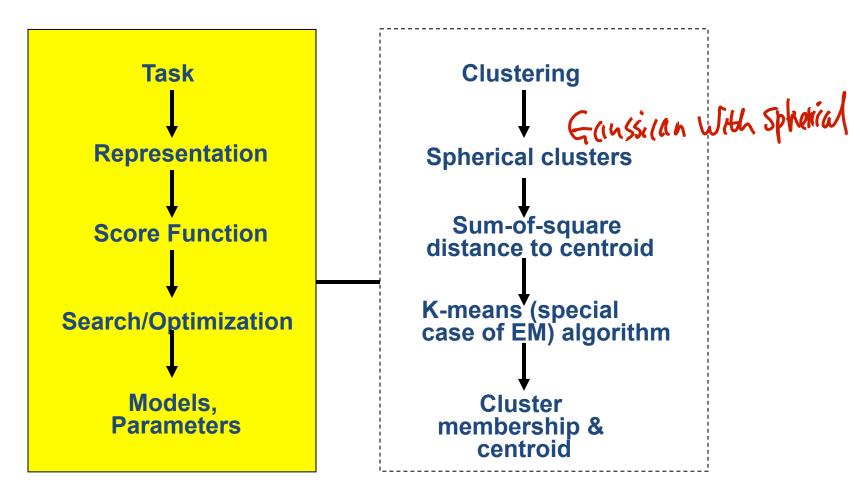
(1) Hierarchical Clustering



Example: single link

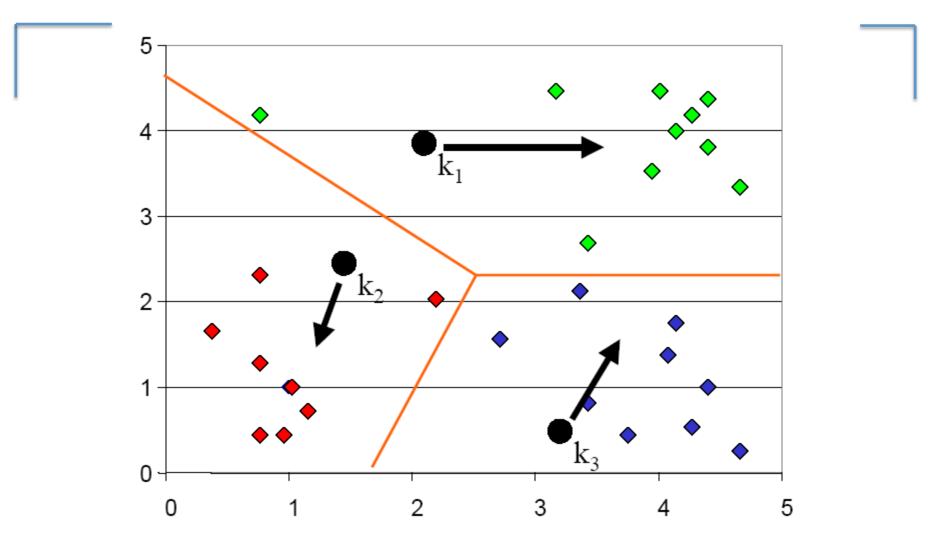


(2) K-means Clustering

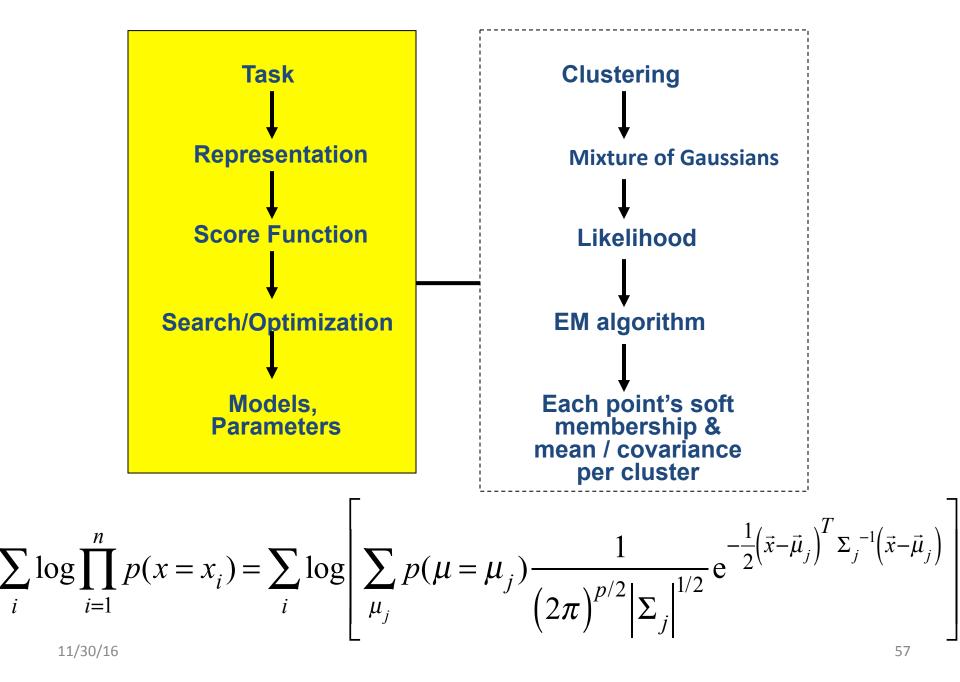


K-means Clustering: Step 2

- Determine the membership of each data points

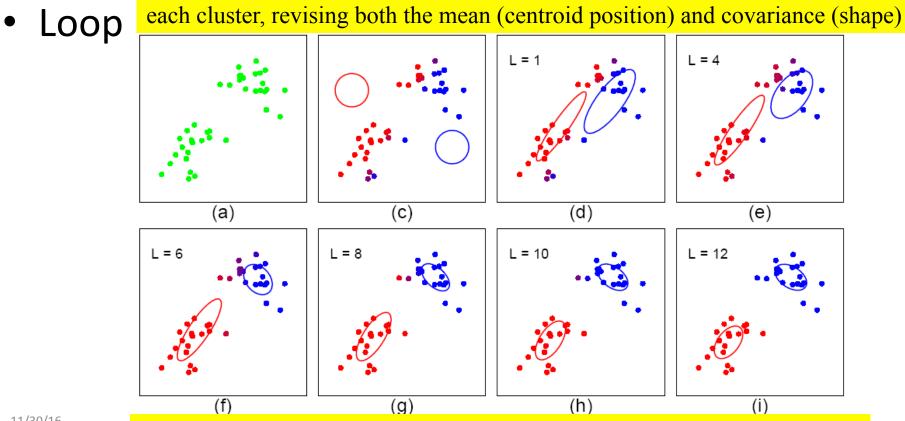


(3) GMM Clustering



Expectation-Maximization for training GMM • Start:

– "Guess" the centroid m_k and covariance S_k of each of the K clusters

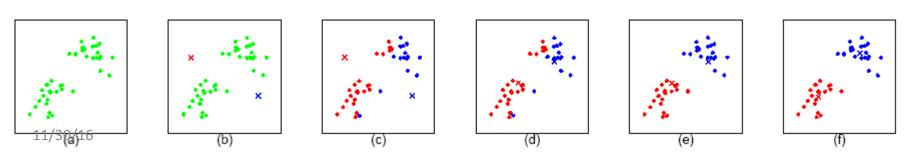


11/30/16

For each point, revising its proportions belonging to each of the K clusters

Compare: K-means

- The EM algorithm for mixtures of Gaussians is like a "soft version" of the K-means algorithm.
- In the K-means "E-step" we do hard assignment:
- In the K-means "M-step" we update the means as the weighted sum of the data, but now the weights are 0 or 1:



Today

Review of ML methods covered so far Regression (supervised) Classification (supervised) Unsupervised models Learning theory

□ Review of Assignments covered so far

What we have covered (IV)

Learning theory / Model selection

- K-folds cross validation
- Expected prediction error
- Bias and variance tradeoff

CV-based Model Selection^{Dr. Yanjun Qi / UVA CS 6316 / f16} We're trying to decide which algorithm / hyperparameter to use.

• We train each model and make a table...

i	f _i	TRAINERR	10-FOLD-CV-ERR	Choice
1	<i>f</i> ₁			
2	<i>f</i> ₂			
3	<i>f</i> ₃			\checkmark
4	<i>f</i> ₄			
5	f ₅			
6	f ₆			

Hyperparameter tuning

Which kind of cross-validation ?

	Downside	Upside
Test-set	Variance: unreliable estimate of future performance	Cheap
Leave- one-out	Expensive. Has some weird behavior	Doesn't waste data
10-fold	Wastes 10% of the data. 10 times more expensive than test set	Only wastes 10%. Only 10 times more expensive instead of R times.
3-fold	Wastier than 10-fold. Expensivier than test set	Slightly better than test- set
	Identical to Leave-one-out	

What we have covered (IV)

Learning theory / Model selection

- K-folds cross validation
- Expected prediction error
- Bias and variance tradeoff

Statistical Decision Theory

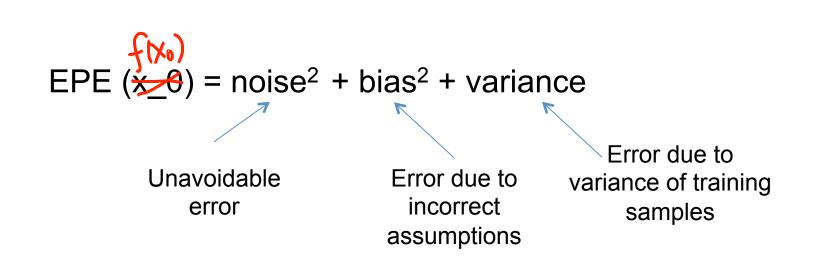
- Random input vector: X
- Random output variable: Y
- Joint distribution: Pr(X, Y)
- Loss function L(Y, f(X))
- Expected prediction error (EPE):

• EPE(f) = E(L(Y, f(X))) = $\int L(y, f(x)) \Pr(dx, dy)$ e.g. = $\int (y - f(x))^2 \Pr(dx, dy)$

Consider population distribution

e.g. Squared error loss (also called L2 loss)

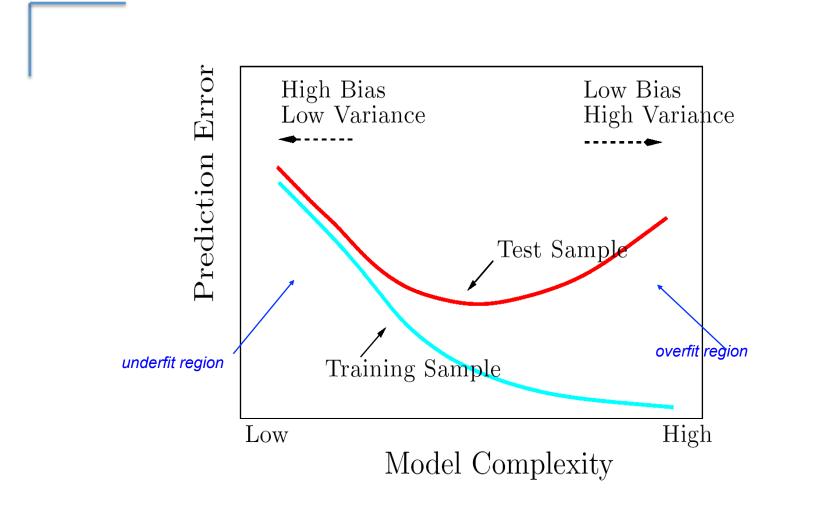
Bias-Variance Trade-off for EPE:



11/30/16

Dr. Yanjun Qi / UVA CS 6316 / f16

Bias-Variance Tradeoff / Model Selection



68

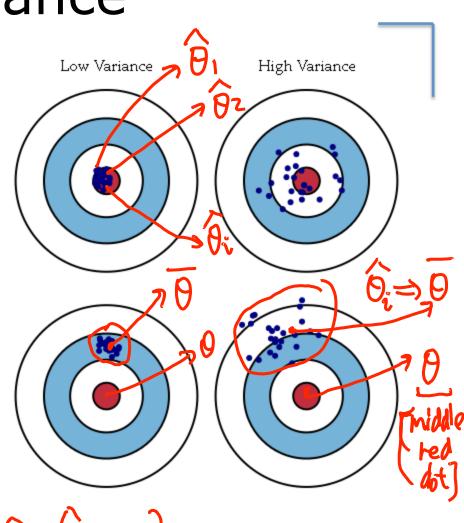
Model "bias" & Model "variance"

Low Bias

High Bias

- Middle RED:
 - TRUE function (middle ted)
- Error due to bias: lacksquare
 - How far off in general from the middle red

- Error due to variance:
 - How wildly the blue points spread



need to make assumptions that are able to generalize

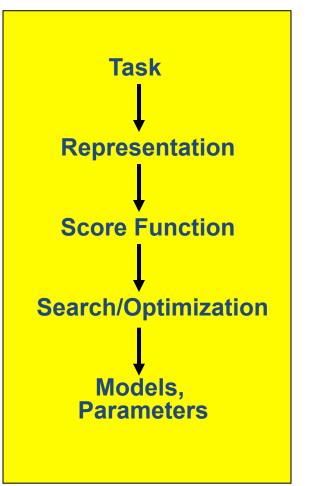
- Components of generalization error
 - Bias: how much the average model over all training sets differ from the true model?
 - Error due to inaccurate assumptions/simplifications made by the model
 - Variance: how much models estimated from different training sets differ from each other
- **Underfitting:** model is too "simple" to represent all the relevant class characteristics
 - High bias and low variance
 - High training error and high test error
- **Overfitting:** model is too "complex" and fits irrelevant characteristics (noise) in the data
 - Low bias and high variance
- $_{11/30/\overline{16}}$ Low training error and high test error

Today

Review of ML methods covered so far Regression (supervised) Classification (supervised) Unsupervised models Learning theory

□ Review of Assignments covered so far

Machine Learning in a Nutshell



ML grew out of work in AI

Optimize a performance criterion using example data or past experience,

Aiming to generalize to unseen data

What we have covered for each Or. Yanjin Qi / UVA CS 6316 / f16 component

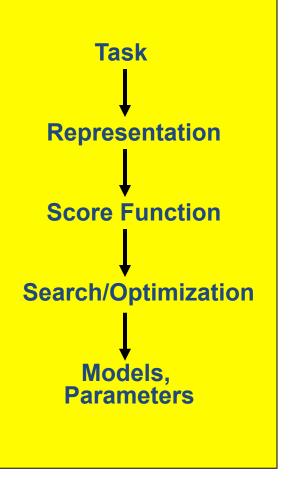
Task	Regression, classification, clustering, dimen-reduction
Representation	Linear func, nonlinear function (e.g. polynomial expansion), local linear, logistic function (e.g. p(c x)), tree, multi-layer, prob-density family (e.g. Bernoulli, multinomial, Gaussian, mixture of Gaussians), local func smoothness, kernel matrix, local smoothness, partition of feature space,
Score Function	MSE, Margin, log-likelihood, EPE (e.g. L2 loss for KNN, 0-1 loss for Bayes classifier), cross-entropy, cluster points distance to centers, variance, conditional log-likelihood, complete data-likelihood, regularized loss func (e.g. L1, L2),
Search/ Optimization	Normal equation, gradient descent, stochastic GD, Newton, Linear programming, Quadratic programming (quadratic objective with linear constraints), greedy, EM, asyn-SGD, eigenDecomp, backprop
Models, Parameters	Linear weight vector, basis weight vector, local weight vector, dual weights, training samples, tree-dendrogram, multi-layer weights, principle components, member (soft/hard) assignment, cluster centroid, cluster covariance (shape),

Today

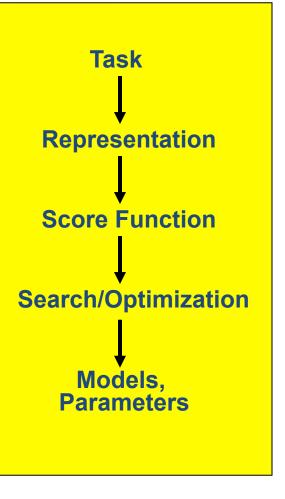
Review of ML methods covered so far

- **Regression** (supervised)
- □ Classification (supervised)
- Unsupervised models
- Learning theory

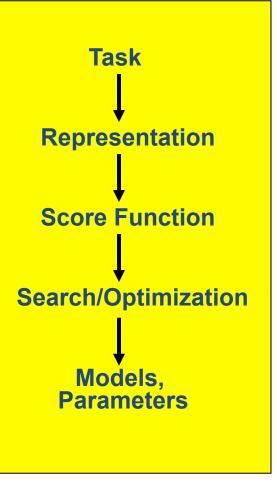
Review of Assignments covered so far



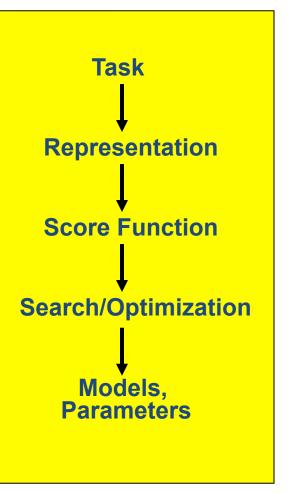
- Q1: Linear algebra review
- Q2: Linear regression + LOOCV
 - Regression
 - Evaluation pipeline
- Q3: Machine learning pipeline practice
 - Basic pipeline
 - GUI Toolbox
 - Evaluation



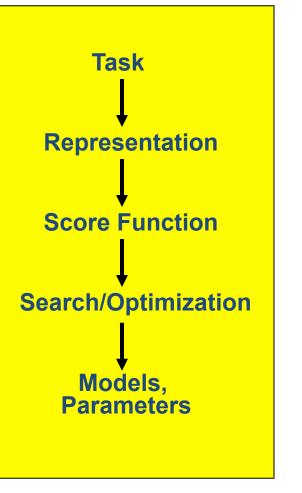
- Q1: Linear regression model fitting
 - Data loading
 - Basic linear regression
 - Three ways to train : Normal equation / SGD / Batch GD
 - Polynomial regression
- Q2: Ridge regression
 - Math derivation of ridge
 - Understand why/how Ridge
 - Model selection of Ridge with K-CV



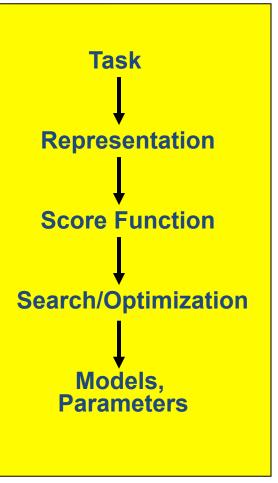
- Q1: Support Vector Machines with Scikit-Learn
 - Data preprocessing
 - How to use SVM package
 - Model selection for SVM
 - Model selection pipeline with train-vali, or train-CV; then test



- Q1: Naive Bayes Classifier for Text-base Movie Review Classification
 - Preprocessing of text samples
 - BOW Document Representation
 - Multinomial Naive Bayes
 Classifier
 - BOW way
 - Language model way
 - Multivariate Bernoulli Naive
 Bayes Classifier



- Q1: Neural Network Tensorflow Playground
 - Interactive learning of MLP
 - Feature engineering vs.
 - Feature learning
- Q2: Image Classification
 - Tool using
 - DT / KNN / SVM
 - PCA effect for image classification



- Q3: Unsupervised Clustering of audio data and consensus data
 - Data loading
 - K-mean clustering
 - GMM clustering
 - How to find K: knee-finding plot
 - How to measure clustering: purityMetric

References

- Hastie, Trevor, et al. The elements of statistical learning. Vol. 2. No. 1. New York: Springer, 2009.
- □ Prof. M.A. Papalaskar's slides
- Prof. Andrew Ng's slides