UVA CS 6316/4501 - Fall 2016 Machine Learning

Lecture 5: Non-Linear Regression Models

Dr. Yanjun Qi

University of Virginia

Department of Computer Science

Where are we? Five major sections of this course

- ☐ Regression (supervised)
- ☐ Classification (supervised)
- ☐ Unsupervised models
- ☐ Learning theory
- ☐ Graphical models

Today →

Regression (supervised)

- ☐ Supervised regression models
 - ☐ Linear regression (LR)
 - ☐ LR with non-linear basis functions
 - ☐ Locally weighted LR
 - ☐ LR with Regularizations

Today

- Machine Learning Method in a nutshell
- ☐ Regression Models Beyond Linear
 - LR with non-linear basis functions
 - Locally weighted linear regression
 - Regression trees and MultilinearInterpolation (later)

Traditional Programming

Machine Learning

Machine Learning in a Nutshell

ML grew out of work in Al

Optimize a performance criterion using example data or past experience,

Aiming to generalize to unseen data

(1) Multivariate Linear Regression

Today

- ☐ Machine Learning Method in a nutshell
- □ Regression Models Beyond Linear
 - LR with non-linear basis functions
 - Locally weighted linear regression
 - Regression trees and MultilinearInterpolation (later)

LR with non-linear basis functions

 LR does not mean we can only deal with linear relationships

$$y = \theta_0 + \sum_{j=1}^m \theta_j \varphi_j(x) = \theta^T \varphi(x)$$

 We are free to design (non-linear) features (e.g., basis function derived) under LR

where the $\varphi_j(x)$ are fixed basis functions (also define $\varphi_0(x)=1$).

• E.g.: polynomial regression:

on:

$$\varphi(x) := \left[1, x, x^2\right]^T$$

e.g. (1) polynomial regression

For example,

e.g. (1) polynomial regression

KEY: if the bases are given, the problem of learning the parameters is still linear.

Many Possible Basis functions

- There are many basis functions, e.g.:
 - Polynomial

$$\varphi_{j}(x) = x^{j-1}$$

Radial basis functions

$$\phi_j(x) = \exp\left(-\frac{\left(x - \mu_j\right)^2}{2s^2}\right)$$

- Sigmoidal
$$\phi_j(x) = \sigma \left(\frac{x - \mu_j}{s} \right)$$

- Splines,
- Fourier,
- Wavelets, etc

Many Possible Basis functions

e.g. (2) LR with radial-basis functions

• E.g.: LR with RBF regression:

$$\hat{y} = \theta_0 + \sum_{j=1}^m \theta_j \varphi_j(x) = \varphi(x)^T \theta$$

$$\varphi(x) := \left[1, K_{\lambda_1}(x, r_1), K_{\lambda_2}(x, r_2), K_{\lambda_3}(x, r_3), K_{\lambda_4}(x, r_4)\right]^T$$

$$\boldsymbol{\theta}^* = \left(\boldsymbol{\varphi}^T \boldsymbol{\varphi}\right)^{-1} \boldsymbol{\varphi}^T \vec{\mathbf{y}}$$

RBF = radial-basis function: a function which depends only on the radial distance from a centre point

Gaussian RBF
$$K_{\lambda}(x,r) = \exp\left(-\frac{(x-r)^2}{2\lambda^2}\right)$$

as distance from the center r increases, the output of the RBF decreases

1D case

Dr. Yanjun Qi / UVA CS 6316 / f16

$$K_{\lambda}(x,r) = \exp\left(-\frac{(x-r)^2}{2\lambda^2}\right)$$

X =	$K_{\lambda}(x,r)=$
r	1
$r+\lambda$	0.6065307
$r+2\lambda$	0.1353353
$r+3\lambda$	0.0001234098

e.g. another Linear regression with 1D RBF basis functions (assuming 3 predefined centres and width)

e.g. a LR with 1D RBFs (3 predefined centres and width)

1D RBF

$$y^{est} = \beta_1 \phi_1(x) + \beta_2 \phi_2(x) + \beta_3 \phi_3(x)$$

• After fit:

$$y^{est} = 2\phi_1(x) + 6.05\phi_2(x) + 0.5\phi_3(x)$$

e.g. 2D Good and Bad RBFs

A good 2D RBF
 Blue dots denote coordinates of input vectors

 X_2

Two bad 2D RBFs

Two main issues:

- Learn the parameter \theta
 - Almost the same as LR, just \rightarrow X to $\varphi(x)$
 - Linear combination of basis functions (that can be non-linear)

 How to choose the model order, e.g. what polynomial degree for polynomial regression

Issue: Overfitting and underfitting

Generalisation: learn function / hypothesis from past data in order to "explain", "predict", "model" or "control" new data examples

K-fold Cross Validation !!!!

(2) Multivariate Linear Regression with basis Expansion

$$\hat{y} = \theta_0 + \sum_{j=1}^m \theta_j \varphi_j(x) = \varphi(x)^T \theta$$

Today

- ☐ Machine Learning Method in a nutshell
- ☐ Regression Models Beyond Linear
 - LR with non-linear basis functions
 - Locally weighted linear regression
 - Regression trees and Multilinear
 Interpolation (later)

Locally weighted regression

 aka locally weighted regression, local linear regression, LOESS, ...

Figure 2: In locally weighted regression, points are weighted by proximity to the current x in question using a kernel. A regression is then computed using the weighted points.

Instead of minimizing

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \theta - y_{i})^{2} \qquad \text{SSE}$$

now we fit to minimize

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} w_i (\mathbf{x}_i^T \theta - y_i)^2$$

$$w_i = K_{\lambda}(\mathbf{x}_i, \mathbf{x}_0) = \exp\left(-\frac{(\mathbf{x}_i - \mathbf{x}_0)^2}{2\lambda^2}\right)$$

where **x_0** is the query point for which we'd like to know its corresponding **y**

We fit \theta to minimize
$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} w_i (\mathbf{x}_i^T \theta - y_i)^2$$

Where do w_i 's come from?

$$W_i = K_{\lambda}(\mathbf{x}_i, \mathbf{x}_0) = \exp\left(-\frac{(\mathbf{x}_i - \mathbf{x}_0)^2}{2\lambda^2}\right)$$

- x 0 is the query point for which we'd like to know its corresponding y
- → Essentially we put higher weights on (those errors from) training examples that are close to the query point x_0 (than those that are further away from the query point)

• The width of RBF matters!

Figure 3: The estimator variance is minimized when the kernel includes as many training points as can be accommodated by the model. Here the linear LOESS model is shown. Too large a kernel includes points that degrade the fit; too small a kernel neglects points that increase confidence in the fit.

Separate weighted least squares at each

LEARNING of Locally weighted linear regression

→ Separate weighted least squares

at each target point x₀

e.g. when for only one feature variable

Locally weighted linear regression and polyred feature variable
$$(x, y)^{T} = (1, x, y)$$

$$(x_0) = (x_0)^{T} =$$

B: Nx2 regression matrix with *i*-th row b(x)^T;

$$W_{N\times N}(x_0) = diag(K_{\lambda}(x_0, x_i)), i = 1,...,N$$

$$\hat{f}(x_0) = b(x_0)^T (B^T W(x_0) B)^{-1} B^T W(x_0) y$$

LR
$$\hat{f}(x_q) = (x_q)^T \theta^* = (x_q)^T (X^T X)^{-1} X^T \vec{y}$$

More - Local Weighted Polynomial Regression

Local polynomial fits of any degree d

$$\min_{\substack{\alpha(x_0),\beta_j(x_0),j=1,...,d\\ \text{de}\\ \text{estimated}}} \sum_{i=1}^N K_{\lambda}(x_0,x_i) \left[y_i - \alpha(x_0) - \sum_{j=1}^d \beta_j(x_0) x_i^j \right]^2$$

Blue: true

Green: estimated

Parametric vs. non-parametric

- Locally weighted linear regression is a non-parametric algorithm. $f(x_i) = \chi_{i}^{7} \Theta^{*}$
- The (unweighted) linear regression algorithm that we saw earlier is known as a parametric learning algorithm
 - because it has a fixed, finite number of parameters (the θ), which are fit to the data;
 - Once we've fit the \theta and stored them away, we no longer need to keep the training data around to make future predictions.
 - In contrast, to make predictions using locally weighted linear regression, we need to keep the entire training set around.
- The term "non-parametric" (roughly) refers to the fact that the amount of knowledge we need to keep, in order to represent the hypothesis grows with linearly the size of the training set.

 $f(X_i) = X_i \partial_x(X_i)$

(3) Locally Weighted / Kernel Linear Regression

Today Recap

- ☐ Machine Learning Method in a nutshell
- ☐ Regression Models Beyond Linear
 - LR with non-linear basis functions
 - Locally weighted linear regression
 - Regression trees and MultilinearInterpolation (later)

Probabilistic Interpretation of Linear Regression (LATER)

Many more variations of LR from this

perspective, e.g.

binomial / poisson

(LATER)

 Let us assume that the target variable and the inputs are related by the equation:

$$y_i = \boldsymbol{\theta}^T \mathbf{x}_i + \boldsymbol{\varepsilon}_i$$

where ε is an error term of unmodeled effects or random noise

• Now assume that ε follows a Gaussian $N(0,\sigma)$, then we have:

$$p(y_i | x_i; \theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y_i - \theta^T \mathbf{x}_i)^2}{2\sigma^2}\right)$$

By iid (among samples) assumption:

$$L(\theta) = \prod_{i=1}^{n} p(y_i \mid x_i; \theta) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \exp\left(-\frac{\sum_{i=1}^{n} (y_i - \theta^T \mathbf{x}_i)^2}{2\sigma^2}\right)$$

References

- Big thanks to Prof. Eric Xing @ CMU for allowing me to reuse some of his slides
- ☐ Prof. Nando de Freitas's tutorial slide