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Where are we ? =»
Five major sections of this course

. Regression (supervised)
 Classification (supervised)
 Unsupervised models
 Learning theory

- Graphical models




Today =
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Regression (supervised)

regression models
J Normal Equation

1 Gradient Descent (GD)

1 Stochastic GD
] Newton’s method

J Supervised regression models
Linear regression (LR)

LR with non-linear

basis functions

dLocally weighted LR
LR with Regularizations
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J Four ways to train / perform optimization for linear \




Today

. Machine Learning Method in a nutshell

] Regression Models Beyond Linear
— LR with non-linear basis functions
— Locally weighted linear regression

— Regression trees and Multilinear
nterpolation (later)
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Traditional Programming

Data

-

Output

Program

Machine Learning
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Machine Learning in a Nutshell

Task

1

Representation

1

Score Function

1

Search/Optimization

1

Models,
Parameters
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ML grew out of
work in Al

Optimize a
performance criterion
using example data or
past experience,

Aiming to generalize to
unseen data
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(1) Multivariate Linear Regression

Task Regression
Represlentation Y= Welghled linear sum
1 : of X S
Score Function Sum of
1 i squared error
Searcthrtimization Linear algebra/ GD / SGD
Models, i Regression i
Parameters g coefficients 6 i -

o
i=f(x)=6 +6,x, +6,x




Today

. Machine Learning Method in a nutshell

] Regression Models Beyond Linear
— LR with non-linear basis functions
— Locally weighted linear regression

— Regression trees and Multilinear
nterpolation (later)
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LR with non-linear basis functions

* LR does not mean we can only deal with _‘

linear relationships
Y < 97?& - y=6 DN 9}@ 0" ¢p(x)
 We are free to design (non-linear) features
(e.g., basis function derived) under LR

where the @,(x) are fixed basis functions (also

define ¢,(x)=1). C B X)

* E.g.: polynomial regression:
5 T
o(x):= [1,x,x ]
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e.g. (1) polynomlgliregressmn

)@<

For example,

10+

\‘/

N

Yo 0, +0.X+
Y0.XE
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e.g. (1) polynomial regression

-_ B
2%

KEY: if the bases are given, the problem of
learning the parameters is still linear.
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Many Possible Basis functions

 There are many basis functions, e.g.: \
_ i 5 7 b
Polynomial qoj(x)=x” \ i 5() X ) X

} .e ‘

_ i i - X— M.
Radial basis functions 8,(x) = exp[—( . 21)2 ]

— Sigmoidal ¢j(x)zo.(x_ﬂj]

S

— Splines,

: | 1 IO [/77777
_ Fourlerl 0.5 \E\ /}/j 0.75 x‘\ \ ‘ (\/\K/ /\ \)/ /x 0.75 // / ////// /
— Wavelets, etc o | S L | s /\/\ WAL e | '] / /
05 ‘///:'5 0.2 /< /‘ ' / >\‘ X X 0.25 / / / / / / / /!"‘
9/12/16 _l—l -0.5 0 0.5 1 ()-1/ iv/{<<)u\ : %?{\\\1 l)-1 /-ﬁ///u/ %/ 1
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Many Possible Basis functlons
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e.g. (2) LR with radial-basis functions

* E.g.: LR with RBF regression:

y=6,+2, 09 (x)=0(x)'6

=1 ]
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RBF = radial-basis function: a function which depends
only on the radial distance from a centre point

( 2\
Gaussian RBB-) K/l (x,r)=exp (x—r)

—"_ 2

as distance from the center I increases, the
output of the RBF decreases [ MM J\{“:‘mc’j

2D case
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( (X—I”)Z\
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2
227

VAR e
y \
r
X —_—p
X = K. (x,r)=
r 1

74 2« 0.6065307

r 4+ ZA 0.1353353

r4 3& 0.0001234098
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e.g. another Linear regression wit
1D RBF basis functions
(assuming 3 predefined centres and width)

go(x):=[1,1g (x,r)K, (x.r)K, (x,rg)T

0* T -1 T —
=(¢ (p) v o k, (x.70)
. Wilel /(j”(;' A
1 P ¥ *F‘k“‘(x' )
3 *;1*44 o w‘% J((,,,\%(%,Y})
I —.
( Y. L 13 X
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e.g. a LR with 1D RBFs
(3 predefined centres and width)

+ 1D RBF | _‘

yest = [, ¢, ( X ) + + B3 ¢_?( X)

o After fit:

c;
X >

yst =) + 608 )+ 08p(%)

9/12/16
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e.g. 2D Good and Bad RBFs

Blue dots denote

* Agood 2D RBF gze

Sphere of
significant
influence of
center

e Two bad 2D RBFs

9/12/16
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TWO main issues:

* Learn the parameter \theta _‘
— Almost the same as LR, just =» X to (P(X)

— Linear combination of basis functions (that can be
non-linear)

* How to choose the model order, e.g. what
polynomial degree for polynomial regression

9/12/16 20
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Issue: Overfitting and underfitting

P & @

y=6,+6x y:6?0+6?1x+6’2x2 y= 2,0 .
(Generalisation: learn function /
hypothesis from past data in order K-fold Cross
to “explain”, “predict”, “model” o Validation !!!!

.14 control” new data examples

21
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(2) Multivariate Linear Regression with basis Expansion

Task Regression
1 : Y= i hled linear su
Representation . /of (X baslls expansion)) |
Score Function | SSE
Searcthi:timization Linear algebra
Models, Regression
Parameters g coefficients

y=6,+2, 00, (x)=p(x)'6

9/12/16




Today

. Machine Learning Method in a nutshell

] Regression Models Beyond Linear
— LR with non-linear basis functions
— Locally weighted linear regression

— Regression trees and Multilinear
nterpolation (later)
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Locally weighted regression

* aka locally weighted regression, local _‘
linear regression, LOESS

Y

linear_func(x)->y
->

To represent
only the neighbor
region of x_0

Use RBF function to

‘ pick out/emphasize

! . .

1 the neighbor region

( ofx 0> K, (x;,X,)
7

Figure 2: Inlocally weighted regressron, points are weighted by proximity to the current X in question using
9/12/16
a kernel A regression 1s then computed using the weighted pomnts.




Locally weighted linear regression

Instead of minimizing
1 n
JO)=52,(x 0-y)" SSE
i=1

now we fit to minimize QL

J(0) = %gwi(xfﬁ _y)? Wsst

(x,—x,)°
w =K (X,X )=exp| — Y
where x_0 is the query point for
which we'd like to know its

corresponding y




Locally weighted linear regression

We fit \theta to minimize J(H) _ %iwi (XiTH _ yi)2
i=1

Where do w,'s come from?
(x,-%,)
w =K (x,x )= exp(— 2/120
* x 0isthe query point for which we'd like to know its corresponding y

— Essentially we put higher weights on (those errors
from) training examples that are close to the query
point x_0 (than those that are further away from the
qguery point )
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Locally weighted linear regression

e The width of RBF matters ! —‘

' kernel too wide — includes nonlinear region

f—//’kernel just right
kernel too narrow — excludes some of linear reg

Figure 3: The estimator vantance 15 mininized when the kernel includes as many traiming points as can be

accomrilzo?ated by the model. Here the inear LOESS model 15 shown. Too large a kernel includes pomts that

degracie the fit; too small a kernel neglects points that increase confidence in the fit.
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Locally weighted linear regression

| « =»Separate weighted least squares at each _‘

target point x,: o 0
o ¥
Tin n 3 Kf =6, 6 )-6, 0y T
= NOZ) Qo(ggl(xo); (X )0y, =8, (x) =6, (x, )x,]
— _ )

= 179/5—(&55 F(x,)=6, (x,)+0,(x,)x, J(O)

9/12/16 28
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LEARNING of Locally weighted

training
dataset

9/12/16

linear regression
target,

}

- model

learn

?

X0

-

F(x,)=6, (x,)+6,(x,)x,

=>» Separate weighted least squares

at each target point x,
A

2N — )

29




Locally weighted linear or Yar| ¢.g. when for

only one

reg reSS|On AU‘ Wé(‘%? jk(j feature variable

b@~ﬂxm
| "0-(glon), T
)

o b(x)T—(],x);

« B: Nx2 regression matrix with ith row b(x)T;

W (%) = diag (K, (xg, x) )i =1,..., N

¢ _ T T 1 T v
LWR J(xy)=b(x,) \(B W(x,)B) B W(x,)y , 9

e

<:> LR () =(x) 6 =(x) (X"X) X5

9/12/16 "
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More =» Local Weighted Polynomial
Regression

* Local polynomial fits of any degreed _‘

d
min KZ(XO,XZ-) yi_a(xo)_Eﬁj(xO)xi]
j=1

a(x0), B, (x0)rj =1 L2

Blue: true Lf(x())(:é?(xo) +_Zj=1 'Bj (% )Xé J

Green: estimated

Local Linear in Interior Local Quadratic in Interior

— -

c (o Z T
o] © f{ro) | ad %, 7l 5
3 2
27 3
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Parametric vs. non-parametric

* Locally weighted linear regression is a non-parametric

algorithm. f()()_—.-XZQ*

* The (unweighted) linear regression algorithm that we saw
earlier is known as a parametric learning algorithm ﬁ
which

— because it has a fixed, finite number of parameters (the
are fit to the data;

— Once we've fit the \theta and stored them away, we no longer need
to keep the training data around to make future predictions.

— In contrast, to make predictions using locally weighted linear
regression, we need to keep the entire training set around.

 The term "non-parametric" (roughly) refers to the fact that the
amount of knowledge we need to keep, in order to represent
the hypothesis grows with linearly the size of the tralnlng set.

- £(X2) = X1 © (X?)
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(3) Locally Weighted / Kernel Linear Regression

_______________________________________________

Task Regression
1 . Y= Welghled linear sur
Represlentatlon | olf X' s /
Score Function Weighted SSE

Searcthi:timization i Linear algebra

Models,

Local Regression
Parameters

coefficients
(conditioned on
each test point)

Jnin. )ZK (Xo:x)y “a)— Bl I
f(xo) Of(xo)+,3(x0)x0 33




Today Recap

. Machine Learning Method in a nutshell

] Regression Models Beyond Linear

R with non-linear basis functions
L ocally weighted linear regression
Regression trees and Multilinear

nterpolation (later)
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Probabilistic Interpretation of
Linear Regression (LATER)

Let us assume that the target variable and the inputs are
related by the equation:

—x,

Y, = 6’Txl. + &,
where £ is an error term of unmodeled effects or random noise

Now assume that € follows a Gaussian N(0,0), then we

have: —
Many more variations

of LR from this
perspective, e.g.
] binomial / poisson
(LATER)

1 —0x,)?
P30 = Jero exp[— . ZO-zXZ)

By iid (among samples) assumption:

) . " (3, —67x,)?
L(H):Hp(yixi;e):( 21 )exp[_ZZl(y x) ]

9/12/16 no
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