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Where are we ? =
Five major sections of this course
[ Regression (supervised)

] Classification (supervised)
J Unsupervised models

 Learning theory
1 Graphical models
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Today =
Regression (supervised)

 Four ways to train / perform optimization for linear \
regression models

1 Normal Equation

[ Gradient Descent (GD)
1 Stochastic GD
 Newton’s method

J Supervised regression models
dLinear regression (LR)
LR with non-linear basis functions
dLocally weighted LR
LR with Regularizations
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Today

Linear Regression Model with Regularizations
] Ridge Regression
J Lasso Regression
 Elastic net
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Review: Vector norms

A norm of a vector ||x|]| is informally a measure of

I—the “length” of the vector. —‘

n l/p
ol = (z )
1=1

— Common norms: L,, L, (Euclidean)

n
lelh =Dl el =Y a2
1=1 \ i=1

— I—infinity

7] 00 = max; | ;]
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Review: Vector Norm (L2, when p=2)
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Review: Normal equation for LR

'« Write the cost function in matrix form:

J(0) %ﬁ(xfe—yi)z
i=1

=%(X9—y)T(X0—y>

= %(HTXTXQ— 0" X -3 X0+ 7" y)

To minimize J(6), take derivative and set to

Zero:
= | X' X0=X"y

The normal equations

I
0" =(X"X) X'y

Vi

- X - |y 2
. yn
Assume
that B
invertible
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Comments on the normal equation
XY\"f Y\>>ﬂ>

* |n most situations of practical interest, the number of
data points M is larger than the dimensionality p of the
input space and the matrix X is of full column rank. If
this condition holds, then it is € easy to verify that X’X'is
necessarllv mvertlble

* that X' Xis invertible implies that Hve definite )
(= SSEGtrong convex)) thus the fritical point \ve have

found is a minimum. 0‘0&6 M/r\‘/\
dM 0
e What if X has less than full column ran

regularization (later).

N
.
[ ]
.
.
.
° °
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Review: Pagel7 of Linear-Algebra Handout

e A symmetric matrix A € S" is positive definite (PD) if for all non-zero vectors
x € R*, 2T Az > 0. This is usually denoted A > 0 (or just A > 0), and often times the
set of all positive definite matrices is denoted S}

e A symmetric matrix A € S" is positive semidefinite (PSD) if for all vectors z7 Az >
0. This is written A > 0 (or just A > 0), and the set of all positive semidefinite matrices
is often denoted S'}.

e Likewise, a symmetric matrix A € S" is negative definite (ND), denoted A < 0 (or
just A < 0) if for all non-zero z € R", z7 Az < 0.

positive definite and negative definite
W . nci, invertible. )

Finally, there is one type of positive definite matrix that comes up frequently, and so
deserves some iven any matrix A € R™*" (not_necessarily symmetric or
even square), (sometimes called a Gram matriz))is always positive
>n—{armd we assuine 1or convenience tha& is full rank), then
= AT A is posmve definite.
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For any matrix A € R™*", it turns out that the column rank of A is equal to the row
rank of A (though we will not prove this), and so both quantities are referred to collectively
as the rank of A, denoted as rank(A). The following are some basic properties of the rank:

e For A € Rmxn,@lk(fl) < min(m,n)\_ If rank(A) = min(m,n), then A is said to be
full rank.

e For A € R™*", rank(A) = rank(A7T).
Pagell Of
e For Ac R™" B¢ R"XP,Enk(AB) < min(rank(A),rank(B))j@ Handout

e For A, B € R™" rank(A + B) < rank(A) + rank(B).

XK, vk @) wk @b

K \,\/\«w -

can 'S (g2) <P
4 Wb\
U sluplav/net ins
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Ridge Regression/ L2

-‘ If not invertible, a solutlon is to add a small element_‘

to diagonal
Y= ,le L ‘|‘,B X Basic Model,
1 :
B =(X"X+{1) XTy o] :
— O invevtiLlg s ” 'g”z

HW2

* The ridge estimator is solution from =&
p = argmin(y - XB)' (v~ X ) +

to minimize, take derivative and set to zero “>d@g¢

* Equivalently ﬁridge —argmm(y X3 (v - XB) S5t

D) —
subject to B <s, C‘/
{ By convention, the bias/intercept term is typically not regularized. ] 11

Here we assume data has been centered ... therefore no bias term
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Objective Function’s Contour lines
from Ridge Regression

B, ¢

VU Ridge | N

Regression Least
Square

solution
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Review: from L3
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(1) Ridge Regression / L2

The parameterA > 0 penalizes ,Bj (mext gkde ) _‘

Solutionis 3 —(x" x +@)—1 X7y

where | is the identity matrix. \‘ (nexe "g"ﬁ;’: Ae)

Note / = O gives the least squares estimator;

if 4 —> o0 then S — 0
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Shrinkage ?

uhe- XY+ ] —‘

e S gy

B, =(X"X+AI) X"y pe PR

14 T+ | Fets

When )< )(" 1 =) ERJ l"') Fol;g"[\imk%j

—
when XX §erore( oo, s ao\m«uA any 5@

Page65 of ESL book @ http://statweb.stanford.edu/~tibs/
ElemStatLearn/printings/ESLII_print10.pdf
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Two forms of Ridge Regression

T AR R
* Totally equivalent( Q MN'\S(Q) ST (9(3< —‘

\oth Goluon (3 s Y\w\é ( nees Wﬂw)

Ao
L

= f?ga) 9)— 0 J® Sl‘z(ﬁ?j)
Z@ 3 = (l 2@“

\\)\\0/\ XTX':"S ) ( ) 0
>\ _ =6 >SK Na
S

http://stats.stackexchange.com/questions/

190993 /how-to-find-regression-coefficients-
10/5/16 17
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Positive Definiteness

* One important property of positive definite _‘
and negative definite matrices is that they are
always full rank, and hence, invertible.

e A symmetric matrix A € S" is positive definite (PD) if for all non-zero vectors
z € R", 27 Az > 0. This is usually denoted A > 0 (or just A > 0), and often times the
set of all positive definite matrices is denoted S, . .

e A symmetric matrix A € S" is positive semidefinite (PSD) if for all vectors 2 Az >
0. This is written A > 0 (or just A > 0), and the set of all positive semidefinite matrices
is often denoted S
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Vox0, adAazd 5 A =0
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0 & && ’ff()?dc %j;\%) (X4) :\\Xa”
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Today

Linear Regression Model with Regularizations
] Ridge Regression

J Lasso Regression
] Elastic net
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(2) Lasso (least absolute shrinkage
and selection operator) / L1

* The lasso is a shrinkage method like ridge,
but acts in a nonlinear manner on the
outcome y.

* The lasso is defined by

B = argmin(y - XB)" (y-Xp)

{ By convention, the bias/intercept term is typically not regularized. } 21
Here we assume data has been centered ... therefore no bias term
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Lasso (least absolute shrinkage
and selection operator)

 Notice that ridge penalty 21312 is replaced_‘
by 18]

* Due to the nature of the constraint, if tuning
parameter is chosen small enough, then the
lasso will set some coefficients exactly to zero.
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Lasso (least absolute
shrinkage and selection

5]z SSO . 1 "I | / £ \ & .
‘ Jld.... . al‘g;lllll{ 5 Zl (yz- — '.3() — Z Lij "'3j ) 2 — A Zl ‘3] ‘ } \
[ 1=

Suppose in 2 dimension
B= (B, , B,) ﬂ:\

| B, |+]| B, |=const

| B, |+]|-B,|=const

* | -B, |+]| B, |=const

* | -B; [+] -B, |=const ' s B

10/5/16
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Lasso Ridge
Estimator Regress lon

Bt S A S 6.t ne

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |Bi| + |B2| < t and 87 + B35 < t2, respectively,
while the red ellipses are the contours of the least squares error function.



Today

Linear Regression Model with Regularizations
] Ridge Regression
J Lasso Regression

] Elastic net
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(3) Hybrid of Ridge and Lasso

Elastic Net regularization' T

B = argmﬁinlly—XﬁIV+/\z||ﬁ||§+>\1||ﬁ||1

° Theof the penalty generates a(Sparse|model. {2'5,

p' =0 Sl
e The quadratic part of the penalty J

— Removes the limitation on the number of selected variables;
— Encourages grouping effect;

— Stabilizes the ¢; regularization path.

Normally x and y have been centered, therefore no bias term needed in above !
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Geometry of elastic net

2-dimensional illustration o« = 0.5
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Movie Reviews and Revenues: An Experiment in Text Regression,
Proceedings of HLT '10 Human Language Technologies:

11l. Model

\/

% Linear regression with the elastic net (Zou

and Hastie, 2‘?/35)

A 1
@ = argmin — (yz = -
0=(0,8) 2 ; L~
~ p

Use linear regression to directly predict the opening weekend gross

earnings, denoted y, based on features x extracted from the movie
metadata and/or the text of the reviews.
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More: A family of shrinkage
estimators

B=argming ¥ " (y,—x/ B)’ _‘
subject to Y |B|" <s

» for g >=0, contours of constant value of Y |5,
are shown for the case of two inputs.

_ (rmveEX
/q=4 q=2 g=1 \ (q:O.S q=0.1W
|

Here assume x and y have been centered (normally), therefore no bias term needed in above !
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Summary:
Regularized multivariate linear regression

Model: =Bt B+t 8,5 f T

"’7 S.L m‘kzq {QV“’\
e LR estimation: arg man(Y — Y)
O )
n ) p
e LASSO estimation: arg minz Y-Y | + )«2 ,Bj
=1\ J | A
n ( ) p
e Ridge regression estimation: arg minz Y-Y | + AZ ﬁjz
- / ‘—’jﬂ 30/54

Error on data +§Regu|arization f
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Regularized multivariate linear regression

_______________________________________________

Task Regression
Represlentation Y= Weighled linear sum
| of X's

1 -
Score I[unctlon ﬁeﬂgﬁfﬁ% P( %>

Searcthrtimization Linear algebra / GD q 17
Models, ; _
Parameters i Regression
i coefficients
(constrained)
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Regularization

path of
a Ridge

Regression

Whow, =
2317 )

Ridge |
Regression — |
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an example
(ESL Fig3.8),

Ridge
Regression

when varying

4, how 5, 2 —> o0 3 =
VCI?' leS . - A lncreases
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Regularization

path of a Lasso
rRegression :
‘§ o

when varying 4, how f; varies.
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an example
(ESL Fig3.10),

N P

Blassu = arg;n1nZ(y, — B() — Zziﬂs
i=1 =1

P
subject to z 18;| < t.

=1

10/5/16
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FIGURE 3.10. Profiles of lasso coefficients, as the tuning parameter t is varied.
Coefficients are plotied versus s =t/ Y} |8;|. A vertical line is draun at s = 0.36,
the value chosen by cross-validation. Compare Figure 3.8 on page 65; the lasso
profiles hit zero, while those for ridge do not. The profiles are piece-wise linear,
and so are computed only at the points displayed; see Section 3.4.4 for details.
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Lasso when p>n

e Prediction accuracy and model interpretation are two important
aspects of regression models.

e LASSO does shrinkage and variable selection simultaneously for
better prediction and model interpretation.

Disadvantage:
-In p>n case, lasso selects at most n variable before it saturates

-If there is a group of variables among which the pairwise
correlations are very high, then lasso select one from the group

10/5/16 39
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Bias/Intercept Term is not Shrinked

e |f the data is not centered, there exists bias te;‘

— http://stats.stackexchange.com/questions/86991/
reason-for-not-shrinking-the-bias-intercept-term-in-

. R l > =
regression For viept, in b4,
1 N p p j*‘StS?fﬁel/lS
olasso .. - - =) ... . 2_¢_ A. y
3 = dlg;lllll{ 5 Z (yi — Bo — Z rii3i)" + A Z 13; } (-mo![;-#d sy
‘ =1 =1 =1 a0 ade -

i1
* We normally assume we centered x and y. If this—

is true, no need to have bias term, e.g., for lasso,

. | £ ridg
B = argminlly — Xg|* + A |5 2
10/5/16 g | | (‘_'/\\\ &‘)240
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Today Recap

Linear Regression Model with Regularizations
] Ridge Regression

[ why invertible (next class)

J Lasso Regression
1 Extra: how to perform training (next class)

] Elastic net
d Extra: how to perform training (next class)
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