UVA CS 6316/4501 – Fall 2016 Machine Learning

Lecture 7: Feature Selection

Dr. Yanjun Qi

University of Virginia

Department of Computer Science

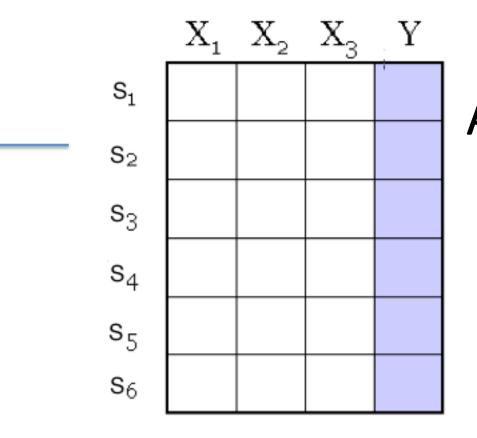
Where are we ? Five major sections of this course

- □ Regression (supervised)
- □ Classification (supervised)
- Unsupervised models
- **L**earning theory
- Graphical models

Today 🗲

Regression (supervised)

- Four ways to train / perform optimization for linear regression models
 - Normal Equation
 - Gradient Descent (GD)
 - Stochastic GD
 - Newton's method
- □Supervised regression models
 - Linear regression (LR)
 - LR with non-linear basis functions
 - □Locally weighted LR
 - **LR** with Regularizations
- **Feature selection**



A labeled Dataset $f: [X] \longrightarrow [Y]$

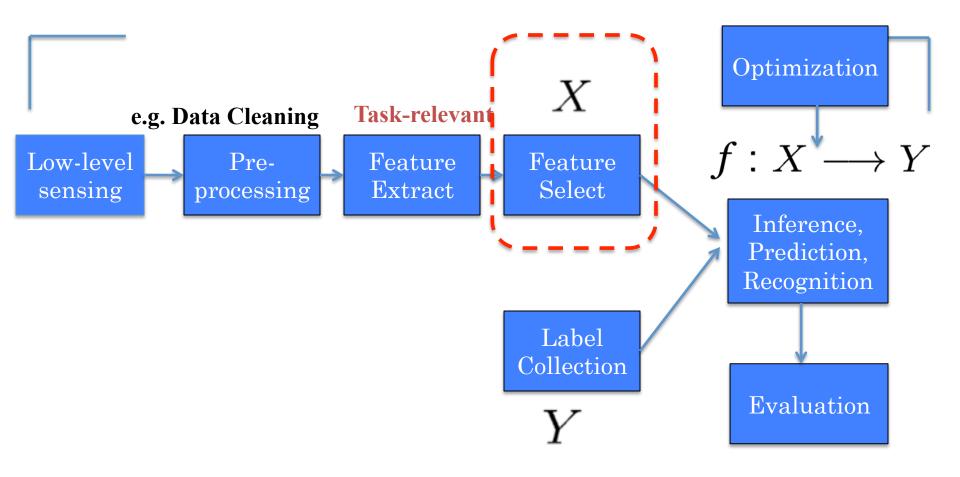
- Data/points/instances/examples/samples/records: [rows]
- **Features**/attributes/dimensions/independent variables/covariates/ predictors/regressors: [columns, except the last]
- Target/outcome/response/label/dependent variable: special column to be predicted [last column]

Today

Feature Selection (supervised)

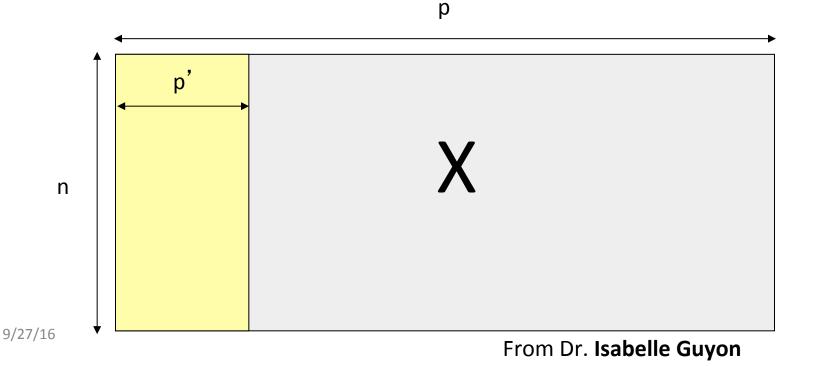
- Filtering approach
- Wrapper approach
- Embedded methods

A Typical Machine Learning Pipeline



Feature Selection

 Thousands to millions of low level features: select the most relevant ones to build better, faster, and easier to understand learning machines.

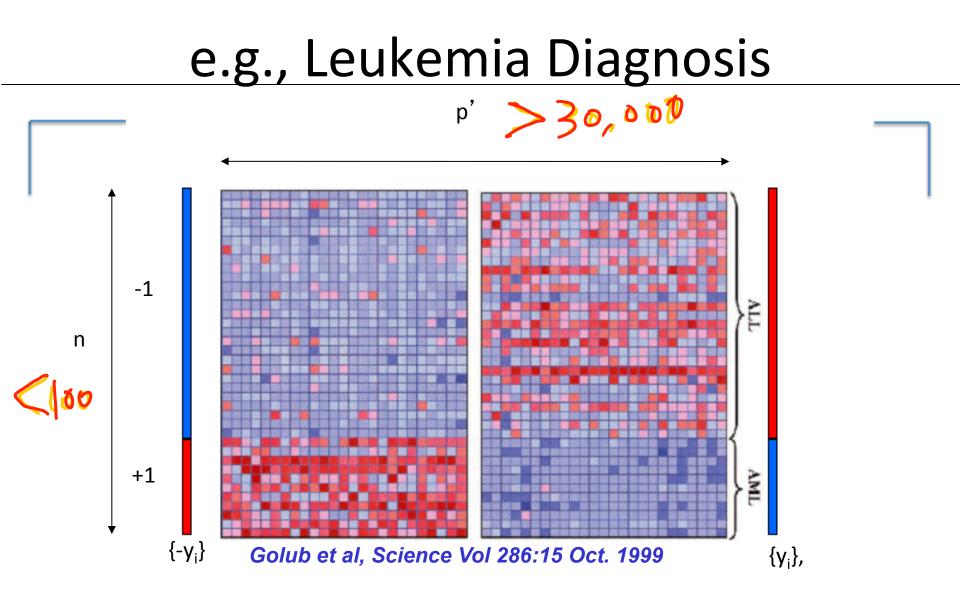


e.g., Movie Reviews and Revenues: An Experiment in Text Regression, Proceedings of HLT '10 (1.7k n / >3k features)

IV. Features e.g. counts of a ngram in								
l	Lexical n-grams (1,2,3)							
	Part-of-speech n-grams (1,2,3)							
	Dependency relations (nsubj,advmod,)							
Meta	U.S. origin, running time, budget (log), # of opening screens, genre, MPAA rating, holiday release (summer, Christmas, Memorial day,), star power (Oscar winners, high-grossing actors)							

 $| \approx | 100$

22010

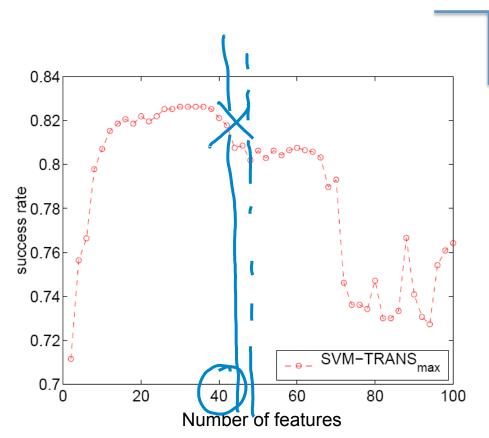


e.g., QSAR: Drug Screening

Binding to Thrombin (DuPont Pharmaceuticals)

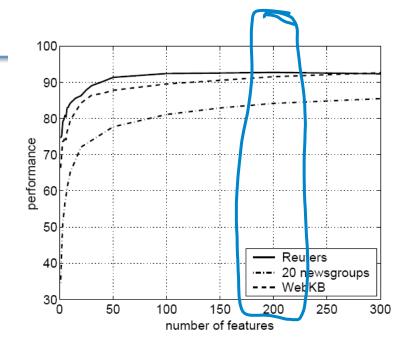
-2543 compounds tested for their ability to bind to a target site on thrombin, a key receptor in blood clotting; 192 "active" (bind well); the rest "inactive". Training set (1909 compounds) more depleted in active compounds.

- **139,351 binary features**, which describe three-dimensional properties of the molecule.



Weston et al, Bioinformatics, 2002

e.g., Text Categorization with feature Filtering



Reuters: 21578 news wire, 114 semantic categories.

20 newsgroups: 19997 articles, 20 categories.

WebKB: 8282 web pages, 7 categories. Bag-of-words: >100,000 features.

Top 3 words of some output Y categories:

- Alt.atheism: atheism, atheists, morality
- Comp.graphics: image, jpeg, graphics
- Sci.space: space, nasa, orbit
- Soc.religion.christian: god, church, sin
- Talk.politics.mideast: israel, armenian, turkish
- Talk.religion.misc: jesus, god, jehovah

Bekkerman et al, JMLR, 2003

Summary: Feature Selection

– Filtering approach:

ranks features or feature subsets independently of the predictor.

- ...using univariate methods: consider one variable at a time
- ...using multivariate methods: consider more than one variables at a time
- Wrapper approach:

uses a predictor to assess (many) features or feature subsets.

– Embedding approach:

uses a predictor to build a (single) model with a subset of features that are internally selected.

Nomenclature

- Univariate method: considers one variable (feature) at a time.
- Multivariate method: considers subsets of variables (features) together.
- Filter method: ranks features or feature subsets independently of the predictor.
- Wrapper method: uses a predictor to assess features or feature subsets.

(I) Filtering

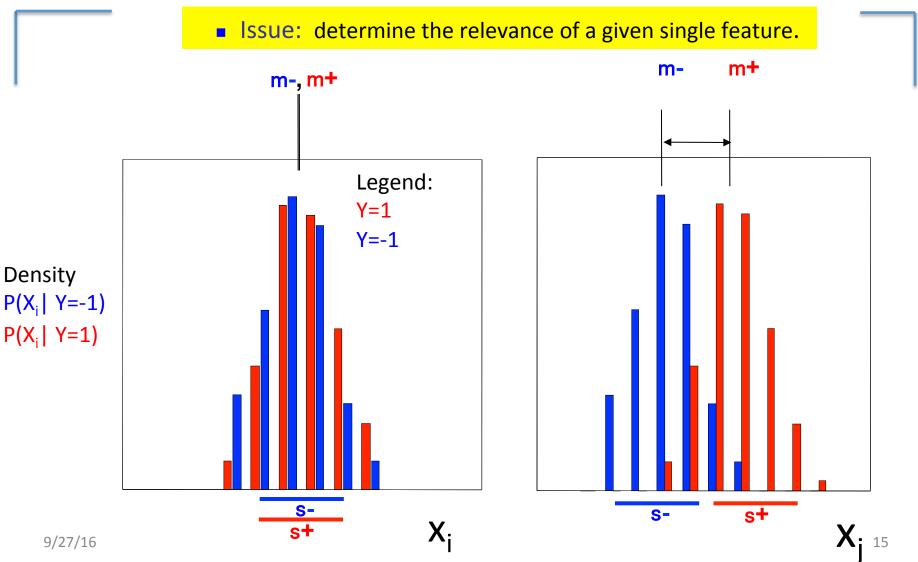
– Filtering approach:

ranks features or feature subsets independently of the predictor.

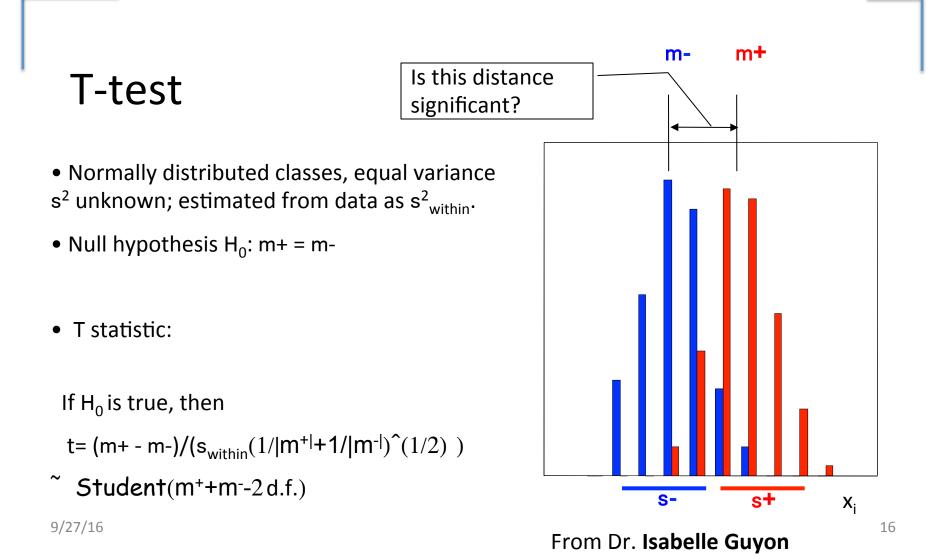
- ...using univariate methods: consider one variable at a time
- ...using multivariate methods: consider more than one variables at a time

Dr. Yanjun Qi / UVA CS 6316 / f16

(I) Filtering : univariate filtering approach, e.g. T-test



(I) Filtering : univariate filtering approach , e.g. T-test



(I) Filtering: Univariate: e.g., Pearson Correlation

Pearson correlation coefficient

$$s(x, y) = \frac{\sum_{i=1}^{p} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{p} (x_i - \bar{x})^2 \times \sum_{i=1}^{p} (y_i - \bar{y})^2}}$$

where
$$\overline{x} = \frac{1}{p} \sum_{i=1}^{p} x_i$$
 and $\overline{y} = \frac{1}{p} \sum_{i=1}^{p} y_i$.

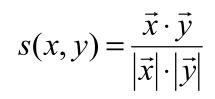
1 /

$$|s(x, y)| \le 1$$

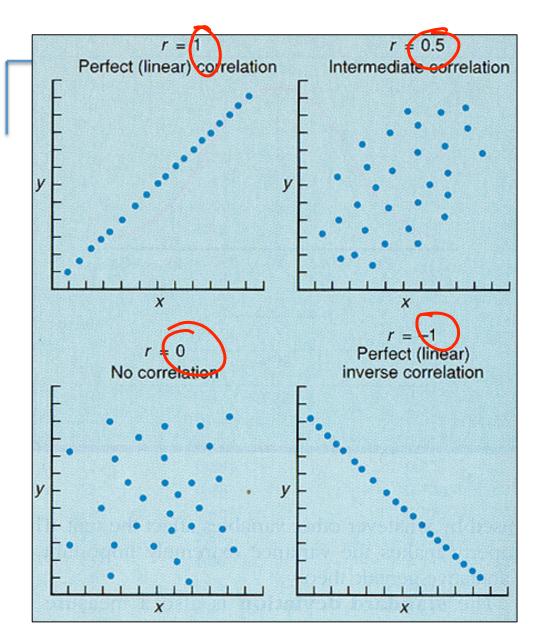
Correlation is unit independent

• Special case: cosine distance $s(x, y) = \frac{x \cdot y}{|\vec{x}| \cdot |\vec{y}|}$

giving a value between +1 and -1inclusive, where 1 is total positive correlation, 0 is no correlation, and -1 is total negative **correlation**.



(I) Filtering: Univariate: e.g., Pearson Correlation



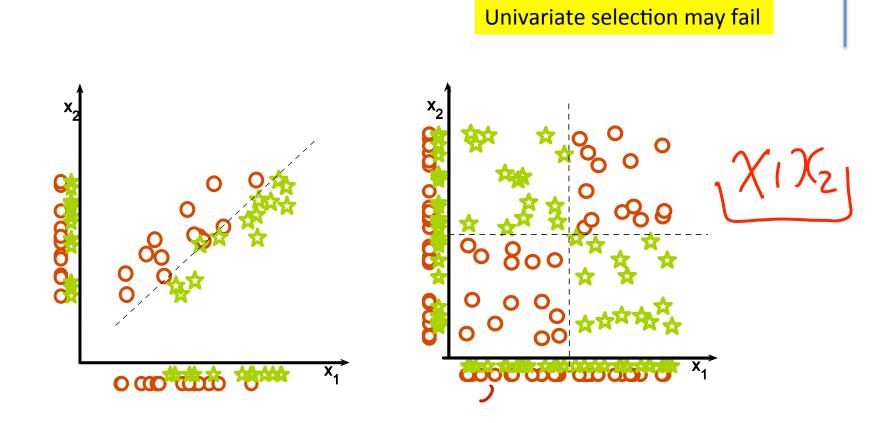
can only detect linear dependencies between variable and target THOUGH

→ E.g. Mutual information filter to get nonlinear dependencies

(I) Filtering : univariate filtering, (many other criteria)

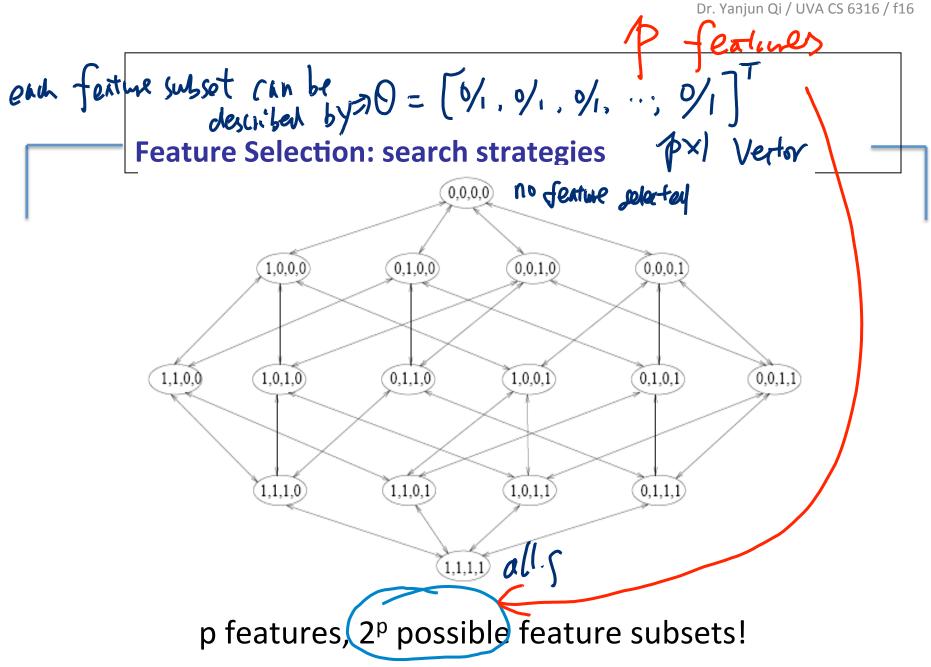
	Method			:	X		Y		Comments	Ī
	Name	B M C B M C								
	Bayesian accuracy Balanced accuracy	Eq. Eq.	3.1 3.4	+++		++++			Theoretically the golden standard, rescaled Bayesian relevance Eq. 3.2. Average of sensitivity and specificity; used for unbalanced dataset, same as AUC for binary targets.	
C	Bi-normal separation F-measure Odds ratio	Eq.	3.5 3.7 3.6	$\left +\right $	s	++++++	s s s		Used in information retrieval. Harmonic of recall and precision, popular in information retrieval. Popular in information retrieval.	
C	Means separation T-statistics Pearson correlation Group correlation χ^2 Relief Separability Split Value	Eq. Eq. Eq. Eq. Eq.		+ + + +	i - i - s - s -	+ + + + + +	i s s	+	 Based on two class means, related to Fisher's criterion. Based also on the means separation. Linear correlation, significance test Eq. 3.12, or a permutation test. Pearson's coefficient for subset of features. Results depend on the number of samples m. Family of methods, the formula is for a simplified version ReliefX, captures local correlations and feature interactions. Decision tree index. 	
	Bayesian measure Kullback-Leibler divergence	Eq. Eq. Eq. Eq. Eq. Eq. Eq. Eq. Eq.	3.16 3.20 3.22 3.22 3.22 3.32 3.32 3.32 3.35 3.36	+++++++++++++++++++++++++++++++++++++++	s - s - s - s - s - s - s - s - s -		s s s s s s s s s	+++++++	Difference between ont and product probabilities. Same as Vajda entropy Eq. 3.23 and Gini Eq. 3.39. Equivalent to mutual information. Rarely used but worth trying. Used for symbolic data in similarity-based methods, and symbolic feature-feature correlations. Equivalent to information gain Eq. 3.30. Information gain divided by feature entropy, stable evaluation. Low bias for multivalued features. Measures information provided by a logical rule. So far rarely used. Low bias for multivalued features.	-

(I) Filtering : multivariate approach



Guyon-Elisseeff, JMLR 2004; Springer 2006

multivariate approach



(I) Filtering : Feature Subset Selection

- You need:
 - a measure for assessing the goodness of a feature subset (scoring function)

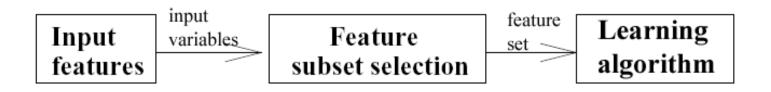
a strategy to search the space of possible feature subsets

Finding a minimal optimal feature set for an arbitrary target concept is NP-hard
 => Good heuristics are needed!

(I) Filtering : Feature Subset Selection

Filter Methods

• Select subsets of variables as a pre-processing step, independently of the used classifier!!



(I) Filtering : Feature Subset Selection

Filter Methods

- usually fast
- provide generic selection of features, not tuned by given learner (universal)
- this is also often criticised (feature set not optimized for used learner)
- sometimes used as a preprocessing step for other methods

(2) Wrapper

Wrapper approach: uses a predictor to assess (many) features or feature subsets.

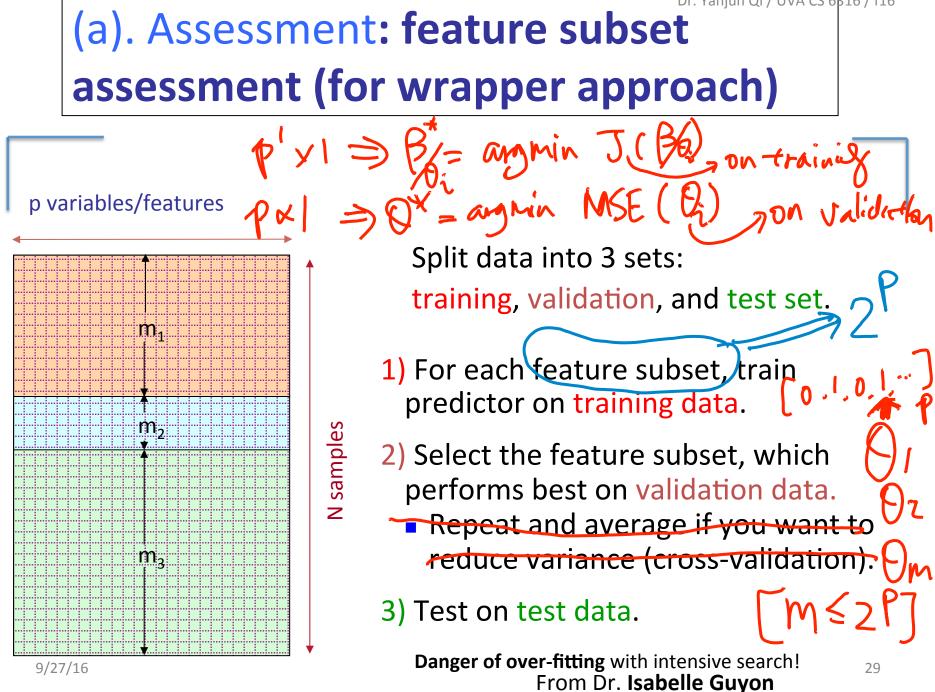
(2) Wrapper : Feature Subset Selection

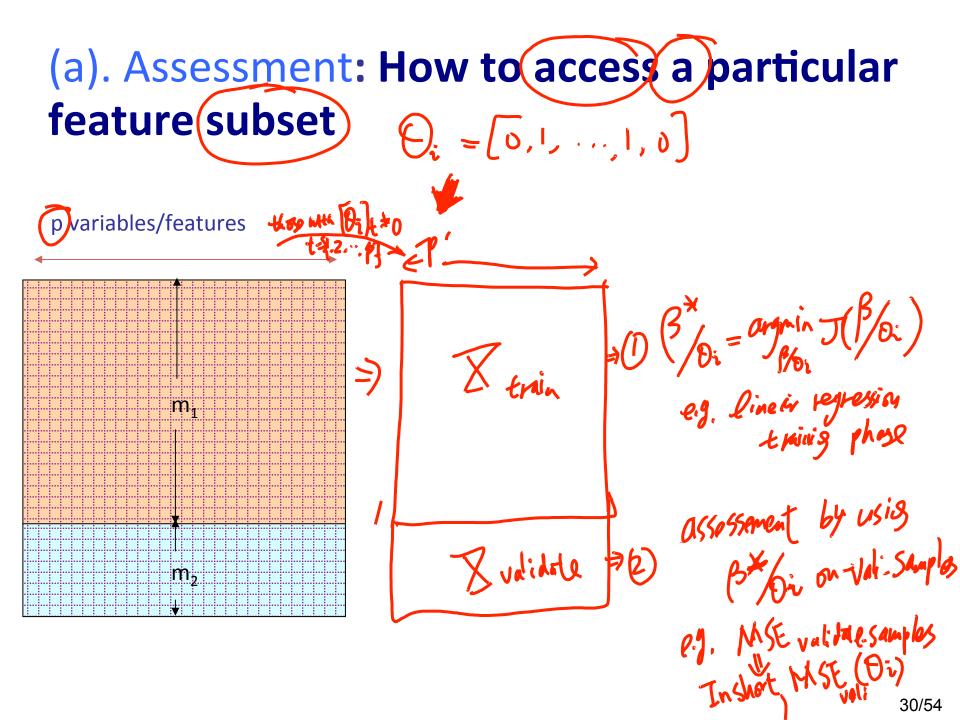
Wrapper Methods

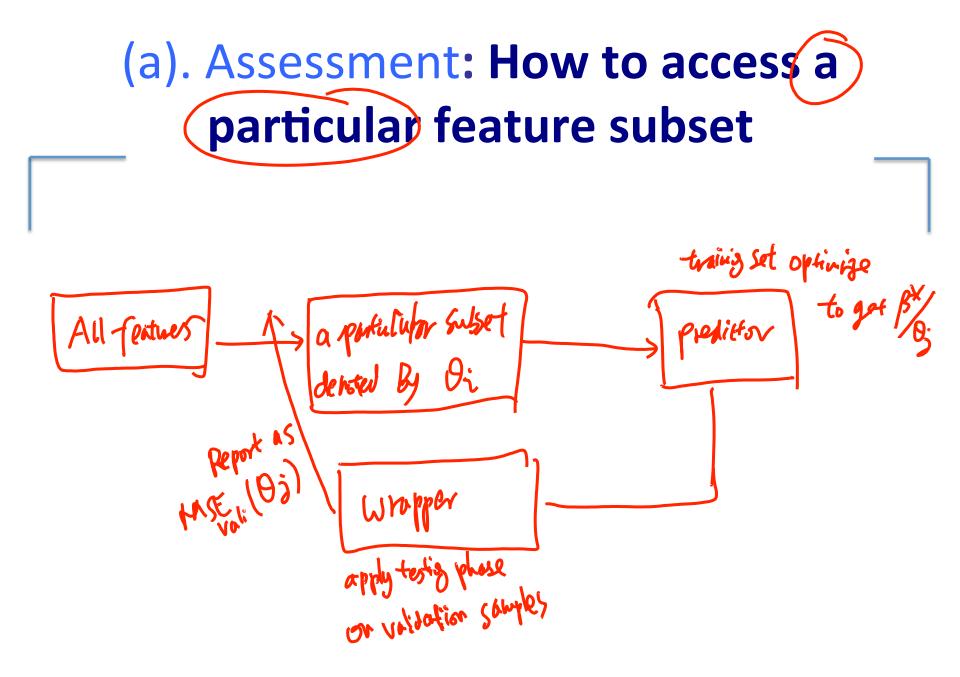
- Learner is considered a black-box
- Interface of the black-box is used to score subsets of variables according to the predictive power of the learner when using the subsets.
- Results vary for different learners
- One needs to define:
 - (a) how to search the space of all possible variable subsets ?
 - (b) how to assess the prediction performance of a learner ?

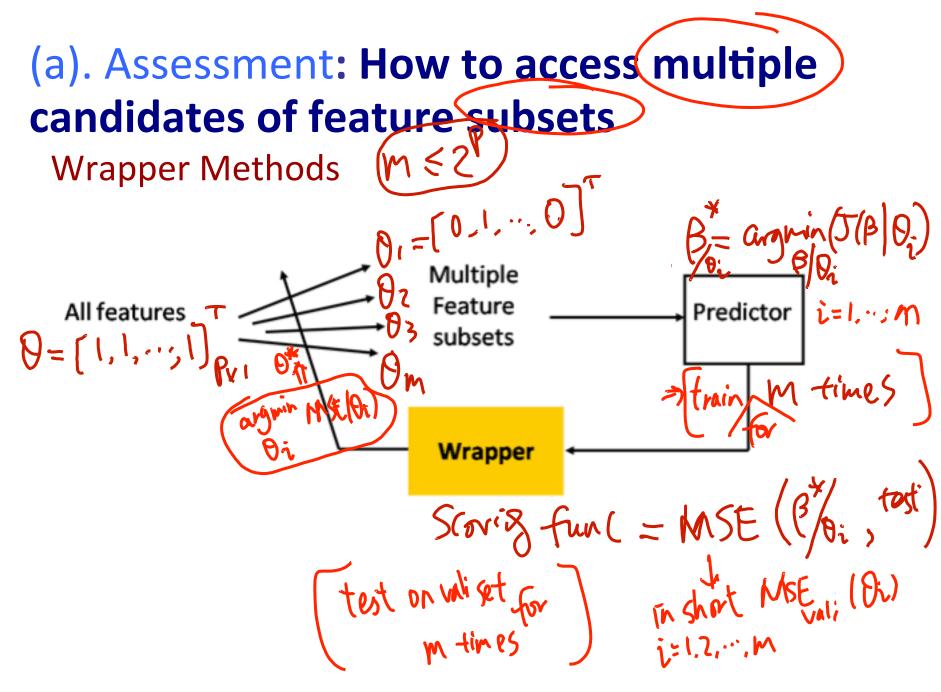
(2) Wrapper : Feature Subset

- Two major questions to answer:
 - (a) Assessment: How to asses performance of a learner that uses a particular feature subset ?
 - (b) Search: How to search the space of all feature subsets ?

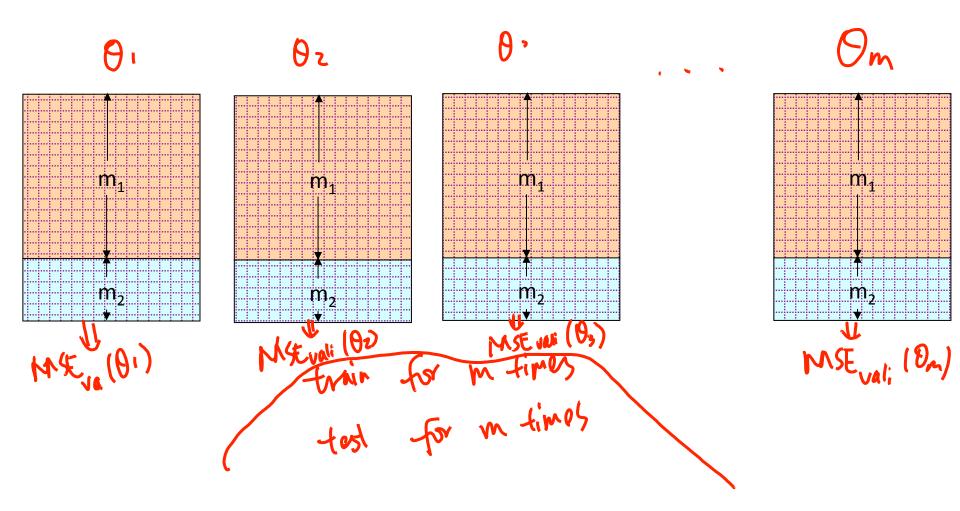






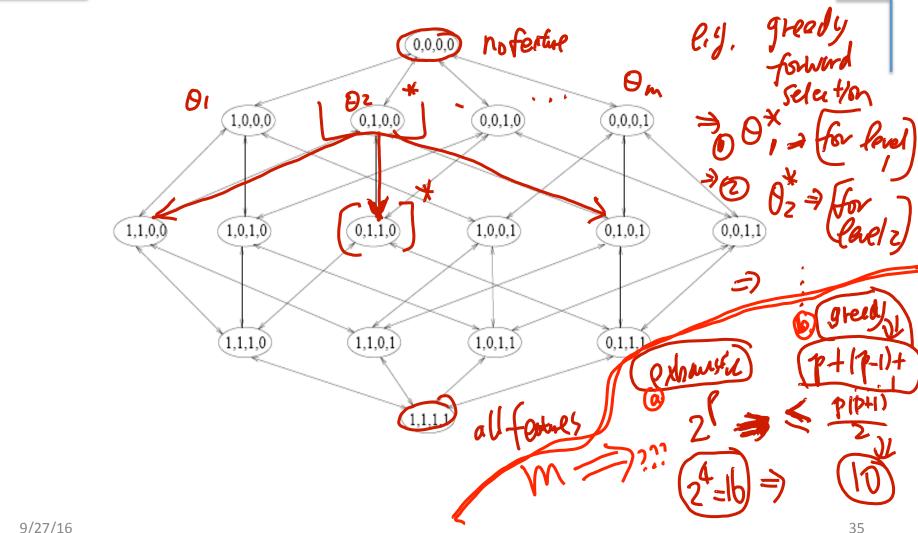


(a). Assessment: How to access multiple candidates of feature subsets



Wrapper fearine selection three set of labeled samples $(D \quad \theta_{p\times l}^{\star} = [O, 1, 0, 0, \dots, 1] =) Validation$ to get best 0*BX = arghin J(B Di) = training px1 bi B for each Di, get best pt/2: (2)B× P×I => testing biter | Check the generalization performme of Best Sealure subset/Best B. (3)

(b). Search: How to search the space of all feature subsets ?



(b). Search: How to search the space of all feature subsets ?

Wrapper Methods

- The problem of finding the optimal subset is NP-hard!
- A wide range of heuristic search strategies can be used. Two different classes:
 - Forward selection (start with empty feature set and add features at each step)
 - Backward elimination (start with full feature set and discard features at each step)
- predictive power is usually measured on a validation set or by cross-validation
- By using the learner as a black box wrappers are universal and simple!
- Criticism: a large amount of computation is required.

(b). Search: even more search strategies for selecting feature subset $\begin{array}{c} & & \\ & & \\ \end{array} \end{array}$ $\begin{array}{c} & & \\ & & \\ \end{array} \end{array}$ $\begin{array}{c} & & \\ & & \\ \end{array} \end{array}$ Forward selection or backward elimination.

Beam search: keep k best path at each step.

GSFS: generalized sequential forward selection – when (n-k) features are left try all subsets of g features. More trainings at each step, but fewer steps.

PTA(I,r): plus I, take away r – at each step, run SFS I times then SBS r times.

• **Floating search**: One step of SFS (resp. SBS), then SBS (resp. SFS) as long as we find better subsets than those of the same size obtained so far.

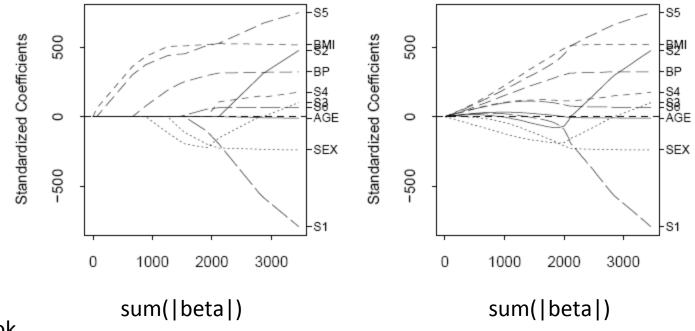
(3) Embedded

–Embedding approach: uses a predictor to build a (single) model with a subset of features that are internally selected.

(3) Embedded: e.g. Feature Selection via Embedded Methods: e.g., L₁-regularization

 $\begin{array}{l} l_1 \text{ penalty: } y \sim Model(X\beta) + \lambda \sum |\beta_i| \text{ (lasso)} \\ l_2 \text{ penalty: } y \sim Model(X\beta) + \lambda \sum \beta_i^2 \text{ (ridge regression)} \end{array}$

Ridge Regression



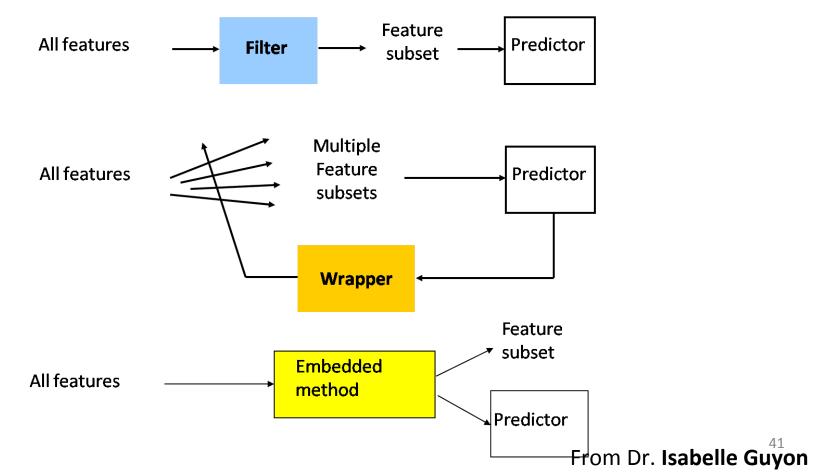
(3) Embedded: Feature Subset Selection

Embedded Methods

- Specific to a given learning machine!
- Performs variable selection (implicitly) in the process of training
- Just train a (single) model

Summary: filters vs. wrappers vs. embedding

• Main goal: rank subsets of useful features



9/27/16

In practice...

- No method is universally better:
 - wide variety of types of variables, data distributions, learning machines, and objectives.
- Feature selection is not always necessary to achieve good performance.

NIPS 2003 and WCCI 2006 challenges : <u>http://clopinet.com/challenges</u>

Vs. Dimensionality Reduction (Later)

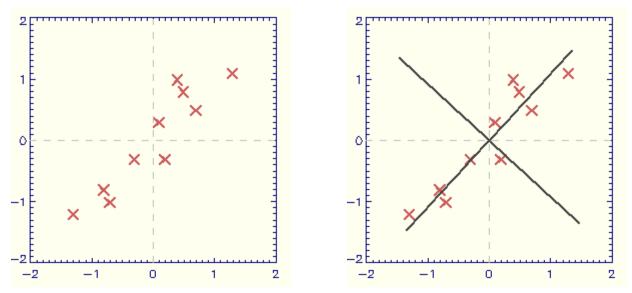
In the presence of many of features, select the most relevant subset of (weighted) combinations of features.

Feature Selection:
$$X_1, \dots, X_p \to X_{k1}, \dots, X_{kp}$$

Dimensionality Reduction: $X_1, \ldots, X_m \to f_1(X_1, \ldots, X_m), \ldots, f_p(X_1, \ldots, X_m)$

Dimensionality Reduction: e.g., (Linear) Principal Components Analysis

 PCA finds a *linear* mapping of dataset X to a dataset X' of lower dimensionality. The variance of X that is remained in X' is maximal.



Dataset X is mapped to dataset X', here of the same dimensionality. The first dimension in X' (= the first principal component) is the direction of maximal variance. The second principal component is orthogonal to the first.

References

- Prof. Andrew Moore's slides
- Hastie, Trevor, et al. The elements of statistical learning. Vol. 2. No. 1. New York: Springer, 2009.
- Dr. Isabelle Guyon's feature selection tutorials