
 1

Private Resource Pairing
Joseph A. Calandrino

*
 and Alfred C. Weaver

University of Virginia

Department of Computer Science

{jac4dt, acw}@cs.virginia.edu

ABSTRACT
*

 Protection of information confidentiality can

result in obstruction of legitimate access to necessary

resources. This paper explores the problem of pairing

resource requestors and providers such that neither

must sacrifice privacy. While solutions to similar

problems exist, these solutions are inadequate or

inefficient in the context of private resource pairing.

This work explores private resource-pairing solutions

under two models of participant behavior: honest but

curious behavior and potentially malicious behavior.

Without compromising security, the foundation of

these solutions demonstrates significant performance

benefits over the state-of-the-art solution to the

similar private matching problem.

1. INTRODUCTION
 In privacy-critical scenarios, the need to protect

information confidentiality can impede valid resource

requests. Resource providers may refuse to even

confirm possession of a resource to requestors that

have not demonstrated a need to access the resource.

Such a scenario would force requestors to first reveal

their queries accompanied by justifications. As a

request query alone may contain or imply

confidential data, requestors need some assurance

that a provider can satisfy a request before revelation

of the request. If both entities refuse to compromise

privacy, a reasonable request could go unfulfilled.

Private resource pairing links resource providers and

legitimate requestors while preserving privacy.

 Several recent papers have explored the similar

private matching problem, in which operators of two

separate databases wish to establish common entries

without revealing non-matching elements [1, 8]. By

treating request queries as single-entry databases and

forcing providers to maintain databases of resource

metadata, existing solutions to the private matching

problem can, with minor modification, solve the

private resource-pairing problem for honest but

curious participants. This paper presents schemes

with two primary advantages over such a solution:

*
 This research was performed in part while on appointment as a
U.S. Department of Homeland Security (DHS) Fellow under the
DHS Scholarship and Fellowship Program, a program administered

by the Oak Ridge Institute for Science and Education (ORISE) for

DHS through an interagency agreement with the U.S Department
of Energy (DOE). ORISE is managed by Oak Ridge Associated

Universities under DOE contract number DE-AC05-00OR22750.

All opinions expressed in this paper are the author's and do not

necessarily reflect the policies and views of DHS, DOE, or ORISE.

• Efficiency: The unique constraints of the private

resource-pairing problem allow for the use of

pre-computation and other techniques that

significantly decrease the computational costs of

searches over the state-of-the-art private

matching solution.

• Security: While a private matching solution

exists that prevents participant dishonesty [8], its

technique is incompatible with private resource

pairing. This paper proposes several methods for

thwarting dishonest behavior.

1.1 Motivating Scenarios
Under a number of circumstances, a solution to

the private resource-pairing problem would allow

organizations to come closer to the ideal of precisely

pairing entities with needed resources. Two such

scenarios arise in the medical and national

intelligence domains.

Medical Scenario: Suppose that an incapacitated

tourist with no identification arrives at a hospital.

The safety of any treatment for the patient’s condition

is highly dependent upon the patient’s medical

history. In addition, the patient’s condition, while

serious, will not dramatically deteriorate during the

time a doctor would require to review the patient’s

record. Further, assume that some biometric or

combination of biometrics could allow unique,

perfectly reproducible identification of any human.

Prior to administering treatment, the hospital may

wish to use the patient’s biometric to make an

emergency request for relevant records from all

health centers in the country or a particular region.

 In the United States, no centralized repository

exists for medical records, and security and medical

data ownership issues presently preclude use of such

a repository [13]. Therefore, a searching party would

need to approach numerous medical centers and

inquire as to whether those centers possess records

related to the patient. Given a reasonable alternative,

most people would prefer not to disclose their

hospital visits to unnecessary parties. To comply

with federal medical privacy standards, health centers

are also unlikely to disclose lists of their patients [10].

In this scenario, a system for privately pairing record

requestors and record possessors would be desirable

to protect patient privacy. Such a system must

enforce requestor need to know and prevent provider

forgery of record possession.

 2

National Intelligence Scenario: Presume that a

national security analyst is studying a region and

determines that a particular national landmark may be

at immediate risk. Numerous agencies may possess

classified intelligence related to the landmark or the

threat. To protect information confidentiality,

agencies may have strict policies against revealing

even metadata pertaining to resources they possess.

For example, a national intelligence agency may have

records of several communications related to a given

threat, but the agency may wish to appear unaware of

the threat by restricting access to both those resources

and data regarding those resources. Similarly, the

analyst may be reluctant to reveal the metadata that

interests her. In this scenario, necessary privacy

hampers equally necessary availability. A private

pairing method would be desirable to link the analyst

with all resources essential to assess and respond to

the threat.

1.2 Paper Overview
The remainder of this paper is organized as

follows. Section 2 presents existing work related to

private resource pairing. Section 3 provides a system

for privately pairing resource requestors and

providers given that entities are honest but curious.

Section 4 extends the system to prevent malicious

behavior. Section 5 evaluates the theoretical cost,

applied performance, and security of this paper’s

private resource-pairing solution as compared to the

state-of-the-art private matching solution. Finally,

section 6 presents a summary and recommendations

for future work.

Throughout this paper, assume that all sets are

totally ordered, are transmitted in order, and are

initially ordered by element insertion time.

2. RELATED WORK

2.1 Private Matching
 In 2003, Agrawal, Evfimievski, and Srikant

presented the notion of minimal information sharing

across private databases [1]. Their paper establishes

protocols to allow two entities maintaining separate

databases to determine query results across both

databases without revealing information beyond the

result. A trusted third party solution to this problem

is unreasonable, as it would require both entities to

completely trust the third party. Agrawal et al.

address not only intersection queries but also

intersection size, equijoin, and equijoin size queries.

The intersection query problem is also known as the

private matching problem [8]. Assuming Alice

wishes to determine the intersection between her

database and Bob’s database, the Agrawal,

Evfimievski, and Srikant private matching solution

(AgES) works as follows:

1. Alice and Bob agree on a commutative

encryption function, f, and select secret keys

appropriate to the function, eA ∈ keyF and eB ∈

keyF. Note that, for a commutative encryption

function,))(())((xffxff
ABBA eeee = given x

∈ domF, eA ∈ keyF, and eB ∈ keyF.

2. Alice and Bob, using a common one-way

collision resistant hash function [8] from

domD (the domain of potential database entries)

to domF, compute hashes of all entries in their

databases: Ah = {h(a) | a ∈ A} and Bh = {h(b) |

b ∈ B}.

3. Alice and Bob encrypt the elements in Ah and

Bh, producing }|)({ hhhee AaafA
AA

∈= and

}|)({ hhhee BbbfB
BB

∈= then reorder
Ae

A

and
Be

B lexicographically. Alice maintains

the dataset }|)))((,{(Aaahfa
Ae

∈ .

4. Alice and Bob exchange
Ae

A and
Be

B .

5. Alice computes the set

}|)({, BBBAAB eeeeee BbbfB ∈=

}|)))((({ Bbbhff
BA ee ∈= . Bob computes the

set }|)({, AAABBA eeeeee AaafA ∈=

(}|)))((({ Aaahff
BA ee ∈=) and uses the

result to create the set

}|))))((()),(({(Aaahffahf
BAA eee ∈ .

6. Bob returns the set

}|))))((()),(({(Aaahffahf
BAA eee ∈ to Alice.

7. Alice joins the sets }|)))((,{(Aaahfa
Ae

∈ and

}|))))((()),(({(Aaahffahf
BAA eee ∈ on

))((ahf
Ae

to get }|))))(((,{(Aaahffa
BA ee ∈ .

8. Alice extracts all a ∈ A such that the

corresponding)))(((ahff
BA ee in

}|))))(((,{(Aaahffa
BA ee ∈ matches some

value in
AB eeB , . These a values comprise the

subset of A that intersects with B.

 Agrawal et al. demonstrate the computation and

communication benefits of their protocols over a

solution based on secure multi-party communication.

 AgES assumes semi-honest, or honest but

curious, behavior of both entities participating in the

protocol. This assumption means that entities will

adhere to the protocol during the query process, but

they may store and analyze intermediate results to

derive additional information [1, 6]. For example,

neither Alice nor Bob will falsely claim to possess

elements, but Alice may scrutinize
Be

B in an attempt

to learn more about Bob’s data set. While many

organizations may demonstrate semi-honesty at

minimum to protect their reputations, a lack of

tangible protection measures is insufficient in the

case of sensitive data. In addition, entities may prefer

a protocol in which they cannot lie to protect

 3

themselves against damaging false accusations of

impropriety. For example, if two countries, Atlantis

and Babylon, have an agreement to share intelligence

data and their relations sour, Babylon may accuse

Atlantis of bogus data possession claims. To refute

the accusation, Atlantis would need to demonstrate

data possession, potentially revealing sensitive

information in the process. If Atlantis chose not to

refute the allegation, the country’s reputation could

be damaged irreparably.

 Li, Tygar, and Hellerstein offer a comprehensive

exploration of solutions to the private matching

problem under both a semi-honest and a malicious

model [8]. A malicious model assumes that entities

may choose to lie given the opportunity. To prevent

bogus data possession claims, Li et al. propose the

use of data ownership certificates. However, as [8]

proposes them, data ownership certificates are not

directly applicable to the private resource-pairing

problem. Since a requestor may not possess the

desired resource, the requestor would not have an

ownership certificate for that resource. Li et al.’s

model requires both entities to have ownership

certificates to verify each other’s.
1
 For the private

matching problem, this property is desirable: Bob

has no legitimate reason to verify possession of data

he does not also possess. An alternate solution to the

resource possession problem is necessary for private

resource pairing.

 Li et al. present a hash-based alternative to AgES,

but this alternative fails to ensure privacy without

their data ownership certificates. Assume Alice and

Bob agree on a hash function and trade hashed

database elements. From that point on, Alice can

guess and check for any element she desires,

regardless of whether she possesses that element, in

Bob’s hashed set.

 Devious parties also may choose not to disclose

possessions. Li et al. leave this problem to future

work. Allowance of nondisclosure is actually

desirable under certain circumstances but not under

others. This paper presents a method that allows

individuals to periodically ensure that their resources

are available (see section 4.2), a compromise that

may be sufficient in some situations.

1 As part of the certified hash protocol and certified AgES

protocol, Bob provides Alice with σ = {b||B}sk for each

value b he possesses. Alice must possess pk to verify σ (the

verification method is VERIFY(pk, b||B, σ)). If everyone
knew pk, the only unknown is b. If the domain of b is small

and Bob is honest, a malicious party could attempt a brute

force attack, running VERIFY for all possible values of b

given a σ value until VERIFY returns true. When VERIFY

returns true, a malicious party can be confident that it found

the entry corresponding to the given σ value in Bob’s
database. Repeating this process for all of Bob’s σ values

yields all values in Bob’s database.

 Li et al. consider threats that parties, including

protocol participants, are curious, are dishonest,

terminate the protocol early, or collude [8].

Malicious parties may mount additional attacks, such

as denial-of-service attacks, against protocol

participants or the implementation infrastructure,

however. While a more efficient solution may be

more resistant to denial-of-service attacks, this paper

does not explicitly consider such additional threats.

2.2 Additional Work
 Private information retrieval (PIR) seeks to allow

parties to retrieve database entries without disclosing

information about the entries they desire [5].

Unfortunately, PIR does not offer any assurance that

parties accessing a database need to know the

information that they privately retrieve. Nonetheless,

an efficient implementation of PIR would be useful to

this paper’s private pairing solutions (see sections 3

and 4).

 Waters, Balfanz, Durfee, and Smetters present a

method to allow searches on encrypted audit logs [16].

The scheme could protect provider privacy and

enforce need to know for resource requestors.

Requestors would need to reveal search strings to a

third party, however, potentially providing the third

party with confidential information.

 Song, Wagner, and Perrig present a means of

searching on encrypted data [15]. Their work allows

the use of encrypted queries to search encrypted data

on untrusted servers. Unfortunately, to make an

encrypted query, the entity that originally encrypted

the data (or a third party) must learn the query and

provide the ability to search. In the private resource-

pairing problem, providers would therefore need to

learn the requestors’ searches. To hide queries from

providers, a commutative encryption based scheme

similar to that of private matching may be a necessary

addition to their work.

 Zero-knowledge proofs allow a prover to

demonstrate to a verifier that the prover possesses a

given piece of information without revealing that

information. For example, a prover could

demonstrate possession of Alice’s unique identity-

confirming key without revealing the key itself [12].

Although a prover does not need to reveal the

information itself, it must reveal to the verifier what

piece of information it possesses. In the example, the

verifier must know that the prover is demonstrating

possession of Alice’s, not Bob’s, key. While such

proofs may enable demonstration that a requestor has

a legitimate need for a resource or a provider has a

resource, they would require one party to publicly

reveal the requested or possessed resource, violating a

requirement of private resource pairing.

 4

3. SEMI-HONEST CASE SOLUTION
 This paper first presents a protocol for private

resource pairing under a semi-honest behavior model.

As with private matching, this assumption is

somewhat unrealistic in practice. Section 4 presents

extensions to the semi-honest protocol that allow

enforcement of need to know and proof of resource

possession.

3.1 Basic Scheme
A one-time setup process is necessary for

participants in this private resource pairing protocol.

Resource requestors and providers, which may be

overlapping sets, agree on a common commutative

encryption scheme and hash function. Resource

providers choose random encryption keys and then

hash and encrypt metadata pertaining to their

resources. Finally, providers publish the encryptions

to potential requestors directly or to host servers. By

maintaining constant keys and publishing encryptions

a single time, providers can more efficiently handle

requestor searches later.

 When a requestor wishes to search for and

acquire resources tagged with a given piece of

metadata, the requestor chooses a random

encryption/decryption key pair and hashes then

encrypts the metadata. The requestor gives the

ciphertext to the provider, who encrypts the

ciphertext again using its encryption key and returns

the result. The requestor decrypts the ciphertext and

matches the result to provider-published records. If

the requestor finds a match, it approaches the

provider and openly requests resources related to the

metadata. By decrypting the single item of search

metadata rather than re-encrypting every published

piece of provider metadata, requestors significantly

lighten their computation load. A more rigorous

explanation follows shortly.

3.2 Assumptions
 This protocol makes several assumptions

necessary to the scheme’s security. First, a resource

requestor’s identity alone must imply nothing

confidential to providers or servers. Second, resource

providers must publish encrypted metadata all at once,

or providers must be able to assume that other entities

cannot draw undesirable conclusions from metadata

publication order, modification, or removal. If

providers use host servers, requestors must download

all data from any given server. Private information

retrieval is unreasonable since even a successful

search will require requestors to download half of a

server’s data on average. If a requestor did not take

this precaution, a server could infer whether and on

what piece of encrypted data a search is satisfied and

use this information to uncover search patterns. Also,

servers must be unable to collude to determine which

servers a requestor checks. If servers colluded, they

could identify the provider that satisfied a request or

determine whether the request went unsatisfied.

Finally, this solution assumes that resource metadata

is in no way “fuzzy.”

3.3 Detailed Process
 This paper’s protocol for private resource pairing

under the semi-honest model requires a setup process

and a search and acquisition process.

 For the remainder of this paper, shPRP denotes

this semi-honest private resource pairing solution.

Setup: The setup process for a resource provider, P,

with resource metadata MP ⊆ M, where M is the set of

all possible metadata, is:

1. P, all other providers, and all potential

requestors agree on a commutative encryption

function, f, and a common one-way collision

resistant hash function, h, that maps from

domM to domF.

2. P selects a random encryption key, eP, such

that eP ∈ keyF.

3. P computes hashes of its resource metadata:

Ph = {h(mP) | mP ∈ MP}.

4. P encrypts the elements in Ph, producing

}|)({ hhhee PppfP
PP

∈= .

5. P reorders
Pe

P lexicographically if others

could infer private information from MP’s

order.

6. P publishes
Pe

P to potential requestors, host

servers, or both.

 If an escrow service is desirable, P may publish

eP, the corresponding decryption key, or both to the

escrow service during step two. In addition, if P

publishes metadata to host servers, P must choose a

signature scheme and accompany each published item

with a signature.

Search and Acquisition: The following process

allows a resource requestor, R, to obtain access to P’s

resources with metadata m (see Figure 1):

1. R generates a random encryption key, eR ∈

keyF, and the corresponding decryption key, dR.

• R must generate a new random key pair

each time it enters the pairing process with

a potential provider. If R reuses a key,

providers could look at previous requests

and determine that R seeks the same value,

even if they don’t know what the value is.

• If R is also a provider, R must choose a

different key from its provider encryption

key. Otherwise, other providers could

look at R’s published values to determine

whether R possesses a resource with the

metadata it seeks.

2. R computes the hash of m: mh = h(m).

 5

3. R encrypts mh:)(hee mfm
RR

= .

4. R presents
Re

m to P.

5. P encrypts
Re

m :)(, RPPR eeee mfm =

))(())((heehee mffmff
PRRP

== .

6. P returns
PR eem , to R.

7. R decrypts
PR eem , :)(, PRRP eede mfm =

)()))(((heheed mfmfff
PPRR

== .

8. If P hosts its data on a server, R downloads

Pe
P , the accompanying signature data, and any

additional items necessary to verify P’s

signatures (public key, etc.).

9. R searches
Pe

P for a match to
Pe

m .

• If R finds a match and
Pe

P is from a

server, R may verify the corresponding

signature.

• If R finds no match and
Pe

P is from a

server, R may verify signatures to ensure

that the server did not remove data.

10. If R finds a match, R approaches P and asks

for resources with metadata m.

4. MALICIOUS CASE SOLUTION
 A malicious case solution seeks to prevent two

forms of potential participant dishonesty. First,

dishonest requestors could request either metadata

searches for or direct access to resources for which

they have no valid need. Providers can eliminate this

issue by forcing requestors to prove their need to

search for metadata and access resources. Second,

dishonest providers could falsely claim possession of

resources to coax requestors to reveal secret search

metadata. By forcing providers to prove possession

of resources related to metadata, the protocol can

prevent this issue.

 Note that the modified protocol retains all

assumptions of section 3.2.

4.1 Proving Need to Know
 To prevent superfluous searches and resource

accesses, resource providers must have the ability to

verify the legitimacy of requests. To demonstrate the

need to perform a search or to access a given resource,

requestors present tickets to potential providers in

steps four and ten of the shPRP search and

acquisition process (see section 3.3). In step four, the

ticket only verifies the right to search for the

encrypted metadata,
Re

m ; it does not reveal the

metadata. In step ten, the ticket contains plaintext

metadata, since the provider cannot confirm that
Re

m

represents m. Note that, to generate tickets

containing
Re

m and m, the ticket supplier must

receive both items and confirm that
Re

m represents m.

 The processes by which a requestor, R, may

acquire tickets from a supplier, S, is as follows:

1. R presents m and
Re

m to S.

2. S verifies that
Re

m represents m:

a. S generates a random encryption key, eS

∈ keyF for the common

requestor/provider commutative

encryption function.

b. Using the common hash function, S

computes the hash of m: mh = h(m).

c. S encrypts mh:)(hee mfm
SS

= .

d. S presents
Se

m to R.

e. R encrypts
Se

m :)(, SRRS eeee mfm =

))(())((heehee mffmff
RSSR

== .

f. R returns
RS eem , to S.

g. S encrypts
Re

m :)(, RSSR eeee mfm =

())((hee mff
RS

= if
Re

m is valid).

h. S checks that
SR eem , matches

RS eem , .

Figure 1: shPRP search and acquisition process. Commutative encryption allows requestors to get

provider encryptions of data without revealing the data to the provider. See section 3.3 for details.

 6

3. S verifies R’s right to search for and acquire

resources with metadata m (implementation

specific verification process).

4. S returns tickets for m and
Re

m .

 The order of steps two and three is arbitrary.

They may occur in opposite order or in parallel.

 Tickets can be universal or restricted to a subset

of potential providers if circumstances warrant only a

limited search. A network of trust must connect

ticket suppliers so providers can confirm the validity

of tickets from any supplier. Various models exist for

establishing trust, including direct, hierarchical, and

distributed trust models [9]. This choice is

implementation-specific; the use of any model is

acceptable for private pairing.

 Two ticket supplier models exist: internal and

external. Both models assume that ticket suppliers

will not collude with malicious requestors to allow

illicit access to data or resources. In addition, ticket

suppliers should be unable to initiate searches.

Otherwise, a rogue supplier could access unlimited

resources. An internal supplier model assumes that

potential requestors are part of larger organizations

and that requestors may reveal their searches to

ticket-granting parties in their organizations. The

ticket-granting party verifies that present conditions

warrant a search for resources.

 In the medical scenario, a set of trained hospital

administrators could be on-call for search verification.

When a doctor explains the situation, the verifier can

make a determination, based on established standards,

whether the situation warrants a search. If the verifier

concludes that it does, she can provide the doctor

with appropriately constrained tickets. This solution

presumes the existence of robust audit mechanisms

and severe penalties to deter and detect collusion.

 In the event that no impartial party exists inside a

requestor’s organization, requestors and providers

could form agreements, contractual or otherwise, with

impartial external parties to verify the need to search.

In this case, requestors must fully trust the

verification party with their search metadata, and

providers must trust the verification party not to

collude with dishonest requestors. External

verification is appropriate for cases such as business

agreements in which parties agree to limited resource

sharing. Members of either business may possess

bias in interpretation of the agreement, creating the

need for an impartial arbitrator.

4.2 Proving Resource Possession
 As with proving need to know, this section

presents two models for proving resource possession.

In one model, all resources described by a piece of

metadata have a clear owner. The metadata therefore

implies an owner in a manner obvious to providers

and requestors alike. For example, a patient with a

unique biometric would have legal control over the

distribution of medical records tied to her biometric

[10], making her the effective owner of those records.

Under the second model, metadata either does not

imply an owner or implies numerous owners. For

example, the keyword “explosives” may be

applicable to many intelligence resources, but the

word alone does not imply a clear owner of those

resources. A solution under the second model is also

applicable to the first scenario, since entities can

ignore implied ownership. A solution for the first

scenario is preferable when applicable, however, as it

allows owners to better control their resources. This

paper’s solutions in both cases rely on the use of

identity-based signature systems.

Identity-Based Signatures: Identity-based signature

systems, first proposed by Shamir, allow the use of

one’s identity as their public key [14]. For example,

Alice may sign her messages using a private key

associated with her unique identity

(“alice@virginia.edu”). To verify her signature, Bob

can simply pass the message, the signature, and

“alice@virginia.edu” to a verification method. Bob

does not need to acquire Alice’s public key to verify

her signatures. Alice needs to obtain her private key

from a private key generator, however, unless she

possesses the system’s master secret, which allows

the generation of private keys for all identities.

Key Privacy: Bellare, Boldyreva, Desai, and

Pointcheval first formalized the property of key

privacy in public-key cryptosystems. Given this

property, an adversary that possesses a piece of

ciphertext can gain no more than a negligible

advantage in determining which public key out of a

given set produced the ciphertext [2]. For example,

RSA lacks key privacy because an adversary can gain

an advantage based on the publicly known modulus

[2]. When metadata implies an owner, the security of

this paper’s possession scheme relies on a principle

similar to key privacy.

Metadata Implies an Owner: Assume the scenario

in which metadata implies an owner of resources

associated with the metadata. In this case, proof of

possession relies on the use of identity-based

signature systems with the novel property of system

privacy, similar to key privacy.

 Suppose that multiple instantiations of an

identity-based signature scheme exist. Each

instantiation has a different master secret, but other

parameters may match across instantiations. The use

of different master secrets means that each

instantiation will produce a different mapping

between identities and private keys. Now assume

that an adversary chooses an identity, and an arbitrary

 7

instantiation produces that identity’s signature for a

nonce. The adversary receives a copy of the

signature but not the nonce. If, given some

parameters, the adversary is unable to gain more than

a negligible advantage in determining the

instantiation that produced the signature, this

signature scheme provides system privacy under

those parameters. For example, Shamir’s original

identity-based signature scheme lacks system privacy.

Each instantiation must use a different, publicly

available value of n, and part of the signature is the

result of a value modulo n [14]. Thus, the same

technique for distinguishing between public keys in

RSA systems is applicable to this identity-based

signature scheme.

 To allow proof of resource possession, some

setup is mandatory. Owners must agree on a

common identity-based signature scheme along with

any parameters necessary to provide system privacy.

Each owner then generates a unique instantiation of

the scheme under the established constraints. Owners

publish public parameters necessary to verify

signatures that they produce. Either requestors and

providers or public repositories must maintain lists of

owner identities with their public parameters. If a

repository maintains the data, private information

retrieval or total repository downloads must be

efficiently possible so that repository operators

cannot infer which owner’s resources a requestor

seeks. Given a large number of non-colluding servers,

PIR may be feasible, as requestors will seek a

relatively small amount of data at a predetermined

index, the owner’s identity.

 To demonstrate possession, additional steps are

necessary between steps four and five of the shPRP

setup process (see section 3.3). For each piece of

metadata mP ∈ MP:

1. P determines the owner, O, that mP implies.

2. P presents mP and the corresponding value

Pe
p ∈

Pe
P to O.

3. O verifies that
Pe

p represents mP:

a. O generates a random encryption key,

eO ∈ keyF for the common

requestor/provider commutative

encryption function.

b. Using the common hash function, O

computes the hash of mP: mh = h(mP).

c. O encrypts mh:)(hee mfm
OO

= .

d. O presents
Oe

m to P.

e. P encrypts
Oe

m :)(, OPPO eeee mfm =

))(())((heehee mffmff
POOP

== .

f. P returns
PO eem , to O.

g. O encrypts
Pe

p :)(, POOP eeee pfp =

())((hee mff
PO

= if
Pe

p is valid).

h. O checks that
OP eep , matches

PO eem , .

4. O verifies that P possesses resources related

to metadata mP (implementation specific

verification process).

5. O signs
Pe

p using its identity-based

signature scheme instantiation and the

private key associated with P’s identity.

6. O returns the signature of
Pe

p to P.

7. P downloads the public parameters for O’s

identity-based signature scheme instantiation.

8. P verifies the signature of
Pe

p using P’s

identity as the public key.

 The order of steps three and four is arbitrary.

They may occur in opposite order or in parallel.

 Signing with the private key associated with the

provider’s identity prevents two providers from using

the same commutative encryption keys and sharing

signed values. Because values in
Pe

P are

indistinguishable from random values in polynomial

time [1] and owners use system private signature

schemes, an adversary will have at most a negligible

advantage in determining the owner that produced

any given signature.

 Following acquisition of signatures, P can

reorder the signatures lexicographically and publish

the signed data. If P reordered by the original

encryptions rather than signatures, adversaries could

estimate the pre-signed data ranges to gain an

advantage in guessing the signing instantiations.

 If owners can privately retrieve data from servers,

they can verify at any time that the servers continue

to host their data, preventing providers from

removing data without permission.

 Because only an owner possesses its master

secret, only it can produce private keys and generate

signatures. Owners can delegate signing

responsibilities to a trusted third party, such as a

contracted service. Owners also can provide master

secrets to an escrow system if desired. If one

resource owner’s master secret is compromised, only

that owner’s data is compromised. Generating a new

master secret and replacing associated published

signatures would be straightforward, though this

procedure could present a problem if others could

infer confidential information from the update

process. If an owner updates its public parameters at

nearly the same time several providers update their

published data, an adversary can infer that the

providers published metadata related to the owner’s

resources. This paper leaves resolution of update

issues to future work.

 8

 With two exceptions, the search and acquisition

process remains the same for resource requestors as

under shPRP. First, a requestor must obtain the

owner’s public parameters. Second, using the

provider’s identity as a public key, the requestor must

attempt to verify provider-published values as the

signature of
Pe

m in step nine of the shPRP search

process. If a value verifies, the provider possesses a

desired resource.

 In the medical scenario, patients could serve as

owners of their medical records for the purpose of

proving resource possession. Whenever a patient

receives medical care, she could provide her unique

identifier to the medical center and authorize a

delegated service to sign the encrypted hash of her

identifier. If a hospital needs to retrieve the patient’s

records later, it could use her identifier to retrieve the

public parameters of her signature scheme

instantiation and verify published signatures.

Because medical centers would retain possession of

records, such a system deliberately sidesteps

disagreements over medical data ownership [13].

Metadata Does Not Imply an Owner: Assume that

metadata does not imply a single owner of associated

resources. Because metadata is not irrefutably linked

to owners, no party has a legitimate right to confirm

or deny possession of resources associated with

metadata. For requestors to accept claims of

possession, a trusted third party, centralized or

distributed, seems necessary to validate provider

possession based on established rules. Requestors

can later verify provider possession without the

intervention of a third party, however, preventing the

third party from collecting request data. The third

party acts as a universal resource owner and

maintains an identity-based signature system.

 In this scenario, the publication process is

exactly the same as when metadata implies an owner,

except the owner is always the trusted third party.

The search and acquisition process is also the same,

but requestors can store the single signature system’s

parameters rather than retrieving parameters during

each search. This scheme suffers from an issue

common to identity-based cryptosystems: the key

revocation problem. If any private key is

compromised, the universal owner has two options:

• Publish a potentially huge exception list. In this

case, the third party must maintain backup

system(s) for the exceptions. Requestors would

need to either store exception lists or have the

ability to privately check the exception list.

• Scrap all keys and move to a new master secret.

As this option would entail reproducing all

signatures, it is impractical. Gradual migration

to a new master secret may be acceptable,

however. For example, if the private key for

“provider” is compromised, the third party could

immediately migrate all keys starting with ‘p’

and publish a schedule for migrating other keys.

 Fortunately, because the third party need not

reveal or store private keys, private keys are nearly as

difficult to compromise as the master secret.

5. EVALUATION
 The AgES protocol offers the closest match to

this paper’s private resource pairing solutions,

making AgES the most logical comparison for

theoretical cost, actual performance, and security. In

a private resource-pairing scenario, AgES treats

requestors as operators of one-entry databases

containing the desired metadata. To fairly compare

the protocols, several assumptions are necessary:

• Providers and requestors have settled on

commutative encryption and hash functions prior

to entering the protocol.

• Private resource pairing occurs under the semi-

honest model, as AgES has no comparable

scheme for a malicious model. Thus, the

comparison is AgES versus shPRP.

• Even if shPRP uses host servers, it does not

create signatures. Signature costs would be

dependent on implementation decisions.

• Once finished, the AgES protocol performs step

ten of the shPRP search process.

• Providers publish lexicographically ordered

encryptions.

shPRP has an inherent advantage over AgES

because shPRP is a custom solution to the private

resource-pairing problem. Due to the requirements of

the private matching problem, AgES does not use

pre-computation, for example. Nevertheless, as the

leading existing solution for the private matching

problem, AgES provides the most appropriate

comparison.

5.1 Theoretical Costs
 Assume that

eg
C ,

dg
C , Ce, and Cd are the costs

of generating public keys, generating private keys,

encrypting, and decrypting respectively for the

chosen commutative encryption scheme. Ch is the

cost of generating a hash with the chosen hash

function. m is the length of the desired metadata,

while c is the metadata ciphertext length. A provider

has p items of metadata.

 Under AgES, no setup procedure is necessary.

For the search and acquisition process, the total

computational cost is

ppppCCC ehge
+++++ log)1)(2(2 , while the

communication cost is mcp ++)2(. Note that, with

AgES, requestors and providers generate new private

keys each time they enter the search and acquisition

process. The setup process for shPRP has a total

 9

computational cost of pppCCC ehge
log)(+++ ,

while the communication cost is pc . The

computational cost for the search and acquisition

process is pCCCCC dehgg de
log2 +++++ . If

requestors download metadata from a server, the

communication cost is mcp ++)2(. Otherwise, the

communication cost is mc +2 . Tables 1 and 2

summarize these results in greater detail.

 After the initial setup, shPRP significantly

lightens the computational cost for both requestors

and providers while producing equivalent or better

communication costs. Provider computational cost

during the search and acquisition process is critical,

as a reduction in cost allows providers to handle more

requests per given time. The importance of reducing

this cost underscores the value of performing pre-

computation during the setup process. These

theoretical results also suggest an improvement to the

AgES private matching protocol. If, in the protocol

of section 2.1, Alice has a smaller dataset than Bob

and de CC ≈ , she should not encrypt Bob’s set in

step five. She should instead decrypt her

)))(((ahff
BA ee values between steps seven and eight

and match those against Bob’s set.

5.2 Actual Performance

 A series of tests compared the performance of

AgES to shPRP. Java-based implementations of

shPRP and portions of the AgES protocol allowed

direct comparisons. SHA-1 and Pohlig-Hellman with

a common modulus served as the hash function and

commutative encryption scheme respectively. The

sorting algorithm was a modified mergesort with

guaranteed nlogn performance [7]. For the tests,

providers maintained 10,000 items of metadata. To

achieve a fair comparison, the AgES implementation

contained an obvious optimization: requestors do not

immediately encrypt all provider-published data but

instead encrypt provider data line-by-line, attempting

to match each result to the re-encryption of the

desired metadata. When a match exists, this

optimization reduces requestor encryptions by

approximately 50% on average. All tests ran on a 3.2

GHz Pentium 4 with 512 MB of RAM. Table 3

shows the results of these tests.

 Only shPRP providers have a setup process.

Therefore, the setup duration for requestors and

AgES providers is trivially zero. Fourteen trials, with

the two highest and two lowest results excluded,

established the average setup duration of shPRP

providers. An equivalent procedure assessed shPRP

 AgES shPRP Speedup

Provider - 50,514 ms -

Requestor - - - Setup

Total - 50,514 ms -

Provider 50,530 ms 16 ms 3158

Requestor 40,059 ms 116 ms 345 Search and Acquisition

Total 90,589 ms 132 ms 686

Table 3: Actual computational costs of AgES and shPRP. See section 5.2 for implementation details.

shPRP
 AgES

w/ Host Server w/o Host Server

Setup - pc pc

Search and Acquisition mcp ++)2(mcp ++)2(mc +2

Table 2: Communication costs of AgES and shPRP. See section 5.1 for variable definitions.

 AgES shPRP

Provider - pppCCC ehge
log)(+++

Requestor - - Setup

Total - pppCCC ehge
log)(+++

Provider pppCpCC ehge
log)1(++++

eC

Requestor ppCCC ehge
++++)1(pCCCCC dehgg de

log+++++ Search and

Acquisition

Total ppppCCC ehge
+++++ log)1)(2(2 pCCCCC dehgg de

log2 +++++

Table 1: Computational costs of AgES and shPRP. See section 5.1 for variable definitions.

 10

provider performance during the search and

acquisition process. In AgES, providers are active at

two points during the search process: to supply

encrypted metadata and to encrypt requestor metadata.

These tasks precisely correspond to the shPRP

provider setup and search processes. Thus, the AgES

provider average is the sum of the shPRP averages

for each task. AgES and shPRP requestors

underwent two rounds of testing. In the first round,

requestors performed fourteen searches for existing

metadata. In the second round, requestors searched

for fourteen nonexistent metadata items. The overall

average was the mean of all results, excluding the two

highest and two lowest results from each round.

Results do not include time waiting on providers or

downloading data.

 These results demonstrate a strong performance

benefit for shPRP. After the setup process, requestor

computation time decreases by 99.7%, and provider

computation time almost entirely disappears. Also

note that shPRP scales better than AgES (see Table 1).

 These results also demonstrate the practicality of

shPRP. Providers in shPRP always perform a single

encryption during the search process, so a provider’s

expected computational cost is a constant, reasonable

16 ms for any number of published encryptions. The

quantity of encryptions has a marginal impact on

requestor computational costs, as requestors search an

ordered list of the encryptions. This cost grows

logarithmically with the number of published

encryptions and averages only 116 ms for 10,000

metadata items, so shPRP is also computationally

viable for requestors. A requestor’s work is highly

parallelizable, making shPRP even more practical.

Search communication costs are also negligible if a

requestor stores all provider-published data. With

host servers, however, communications costs can

become a constraining factor for large quantities of

published encryptions.

5.3 Security
 Because shPRP is a modification of AgES, its

security may rest on the security of AgES as

demonstrated in [1] and [8] provided that, under the

assumptions of section 3.2, the modifications do not

adversely impact security. The modifications of

interest are:

• Providers publicly reveal encrypted metadata.

• Providers maintain a constant encryption key,

potentially through multiple pairing processes.

• Providers may publish to host servers.

• Requestors decrypt the re-encrypted data they

receive rather than re-encrypting provider data.

 Through public revelation of metadata, a

provider allows any curious entity to acquire and

analyze the provider’s encrypted metadata hashes.

This set of encrypted hashes is equivalent to the set

that a curious party, C, with metadata set MC = ∅

would receive if it approached the provider, P, with

metadata set MP and entered the AgES protocol

(given that the provider used the same encryption key

in both cases). Agrawal et al. demonstrate that C can

learn only |MP| and MC ∩ MP = ∅ from this data [1].

Similarly, C would gain no advantage in performing

cryptanalysis from shPRP’s use of constant provider

encryption keys. C could store and perform

cryptanalysis on the equivalent set of encrypted

hashes it receives from P under the AgES protocol.

In both cases, security against cryptanalysis is

dependent on choice of commutative encryption

function, hash function, and key length.

 The use of constant provider encryption keys

means that the encryption of any piece of metadata

will remain constant. Because encryptions remain

constant and providers publicly disclose encrypted

data, curious parties may observe and draw inferences

from the publication time of data if providers do not

publish data all at once. Also, a curious party could

trivially observe modification or removal of

encryptions. To avoid issues with publication,

modification, and removal, section 3.2 states that

either providers must publish all data in unison or

inferences must reveal no confidential data. Future

work may establish a more satisfactory solution to

this problem.

 Provider signatures and the assumptions of

section 3.2 prevent host servers from imperceptibly

modifying data or drawing undesirable inferences.

Beyond attacks that this paper explicitly does not

consider (see section 2.1), host servers introduce no

additional known weaknesses.

 Finally, a requestor’s choice to decrypt data

rather than re-encrypt it has no impact on security.

Nothing prevents entities from decrypting

legitimately acquired data from the AgES protocol.

6. CONCLUSION

 A chief concern of many privacy-critical

organizations is protection of information against

illegitimate access. This emphasis can result in

restrictive systems that successfully thwart

objectionable parties. Unfortunately, these systems

can also deter privacy-constrained requestors with

valid claims. Private resource pairing attempts to

connect such resource requestors and providers

without violating privacy. While existing work

addresses similar issues, no known prior work

directly addresses this issue in a satisfactory manner.

Research on private resource pairing uncovered

several interesting topics warranting further research,

including weaknesses in the present system,

extensions that would make the present system more

useful, and issues of relevance beyond private

resource pairing.

 11

 Several weaknesses exist in the present private

resource pairing model. During the search process,

requestors receive indefinite search capabilities for a

given piece of metadata. While tickets may expire, a

provider’s encrypted metadata is constant as long as

its encryption key remains constant. During that

period, a provider may publish additional metadata

that the requestor has no right to search. In addition,

the present private resource-pairing scheme would

allow curious parties to make numerous undesirable

inferences if a provider modifies its metadata set or

an owner updates its key. Means of better

constraining search capabilities and of preventing

unwanted inferences are desirable.

 Additional research could also lead to a more

useful system. For example, in some cases, entities

partition resources by classification levels. Parties

with high-level clearances might have an entitlement

to search low-level resources but not vice versa. If

providers use different encryption keys for different

clearance levels and verification tickets include the

requestor’s clearance level, solutions in this paper are

applicable to multi-level secrecy. A more elegant

solution may be possible, however. Also, as

organizations may have valid reasons for not sharing

metadata or for only revealing a subset of resources

related to a given piece of metadata, attacks such as

hiding attacks are particularly tricky. A means of

ensuring that providers publish all appropriate data

and reveal all appropriate resources would be helpful,

particularly if owners either do not exist or are unable

to monitor metadata related to their resources.

Finally, future projects may wish to examine cases

where a requestor’s identity is confidential, where

host servers may collude, or where metadata is fuzzy.

 The concept of system privacy may be of

importance beyond private resource pairing. This

paper presents system privacy exclusively with

regards to identity-based signature systems. A more

comprehensive exploration of that concept in terms of

both signature systems and general identity-based

cryptosystems would be useful. For example, several

businesses may wish to maintain separate master

secrets, but they may want to prevent adversaries

from determining the business destinations of

encrypted messages.

 This paper presents a practical semi-honest

solution that, under the unique constraints of private

resource pairing, offers a 686-time computational

speedup over the similar AgES protocol without

compromising security. In addition, this work offers

a means of preventing malicious participant behavior.

The shPRP protocol and its extensions for preventing

malicious behavior provide a concrete basis for future

work in private resource pairing.

7. ACKNOWLEDGEMENTS

 We thank the Department of Homeland Security

for providing funding for this effort. We would like

to thank David Evans for his assistance in the

discovery of related work as well as his helpful

comments on this paper. We thank Alexandre

Evfimievski for his clarification of the performance

of the AgES protocol. We also thank Brent Waters

for his useful advice during the early stages of this

research.

REFERENCES

 [1] R. Agrawal, A. Evfimievski, R. Srikant.

Information sharing across private databases.

In Proceedings of the 2003 ACM SIGMOD

International Conference on Management of

Data, pages 86-97. ACM Press, 2003.

 [2] M. Bellare, A. Boldyreva, A. Desai, D.

Pointcheval. Key-privacy in public-key

encryption. In Proc. of Advances in

Cryptology – ASIACRYPT ’01. Springer-

Verlag, 2001. LNCS 2248.

 [3] D. Boneh, G. Di Crescenzo, R. Ostrovsky, G.

Persiano. Public key encryption with keyword

search. In Proc. of EUROCRYPT 2004, pages

506-522. Springer-Verlag, 2004. LNCS 3027.

 [4] D. Boneh, M. Franklin. Identity-based

encryption from the Weil pairing. In Proc. of

CRYPTO 2001, pages 213-229. Springer-

Verlag, 2001. LNCS 2248.

 [5] B. Chor, O. Goldreich, E. Kushilevitz, M.

Sudan. Private information retrieval. In

Journal of the ACM, Vol. 45, No. 6, pages

965-982. ACM Press, 1998.

 [6] O. Goldreich. Secure multi-party computation.

Manuscript, version 1.4. 2002. Available at

http://www.wisdom.weizmann.ac.il/~oded/pp.

html

 [7] Java 2 Platform Standard Edition 5.0 API

Specification. 2004. Available at

http://java.sun.com/j2se/1.5.0/docs/api/

 [8] Y. Li, J. D. Tygar, J. M. Hellerstein. Private

matching. In Computer Security in the 21st

Century, pages 25-50. Springer, 2005.

 [9] Liberty Alliance Project. Liberty Trust

Models Guidelines. Version 1.0. 2003.

Available at

http://www.projectliberty.org/specs/liberty-

trust-models-guidelines-v1.0.pdf

 12

 [10] Office for Civil Rights, U.S. Department of

Health and Human Services. Health Insurance

Portability and Accountability Act (HIPAA).

Available at http://www.hhs.gov/ocr/hipaa/

 [11] S. C. Pohlig, M. E. Hellman. An improved

algorithm for computing logarithms over GF(p)

and its cryptographic significance. In IEEE

Transactions on Information Theory, IT-24,

pages 106-110. 1978.

 [12] B. Schneier. Applied Cryptography:

Protocols, Algorithms, and Source Code in C.

John Wiley & Sons, 1994.

 [13] R. Schoenberg, C. Safran. Internet based

repository of medical records that retains

patient confidentiality. In British Medical

Journal, Volume 321, pages 1199-1203. 11

November 2000.

 [14] A. Shamir. Identity-based cryptosystems and

signature schemes. In Proc. of CRYPTO ’84,

pages 47-53. Springer-Verlag, 1985. LNCS

196.

 [15] D. X. Song, D. Wagner, A. Perrig. Practical

techniques for searches on encrypted data. In

Proc. of 2000 IEEE Symposium on Security

and Privacy. 2000.

 [16] B. R. Waters, D. Balfanz, G. Durfee, D. K.

Smetters. Building an encrypted and

searchable audit log. In Proc. of 11
th
 Annual

Network and Distributed System Security

Symposium. 2004.

