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ABSTRACT
*
 

 Protection of information confidentiality can 

result in obstruction of legitimate access to necessary 

resources.  This paper explores the problem of pairing 

resource requestors and providers such that neither 

must sacrifice privacy.  While solutions to similar 

problems exist, these solutions are inadequate or 

inefficient in the context of private resource pairing.  

This work explores private resource-pairing solutions 

under two models of participant behavior:  honest but 

curious behavior and potentially malicious behavior.  

Without compromising security, the foundation of 

these solutions demonstrates significant performance 

benefits over the state-of-the-art solution to the 

similar private matching problem. 

 

1. INTRODUCTION 
 In privacy-critical scenarios, the need to protect 

information confidentiality can impede valid resource 

requests.  Resource providers may refuse to even 

confirm possession of a resource to requestors that 

have not demonstrated a need to access the resource.  

Such a scenario would force requestors to first reveal 

their queries accompanied by justifications.  As a 

request query alone may contain or imply 

confidential data, requestors need some assurance 

that a provider can satisfy a request before revelation 

of the request.  If both entities refuse to compromise 

privacy, a reasonable request could go unfulfilled.  

Private resource pairing links resource providers and 

legitimate requestors while preserving privacy.  

 

 Several recent papers have explored the similar 

private matching problem, in which operators of two 

separate databases wish to establish common entries 

without revealing non-matching elements [1, 8].  By 

treating request queries as single-entry databases and 

forcing providers to maintain databases of resource 

metadata, existing solutions to the private matching 

problem can, with minor modification, solve the 

private resource-pairing problem for honest but 

curious participants.  This paper presents schemes 

with two primary advantages over such a solution: 
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• Efficiency:  The unique constraints of the private 

resource-pairing problem allow for the use of 

pre-computation and other techniques that 

significantly decrease the computational costs of 

searches over the state-of-the-art private 

matching solution. 

• Security:  While a private matching solution 

exists that prevents participant dishonesty [8], its 

technique is incompatible with private resource 

pairing.  This paper proposes several methods for 

thwarting dishonest behavior. 

 

1.1 Motivating Scenarios 
Under a number of circumstances, a solution to 

the private resource-pairing problem would allow 

organizations to come closer to the ideal of precisely 

pairing entities with needed resources.  Two such 

scenarios arise in the medical and national 

intelligence domains. 

 

Medical Scenario:  Suppose that an incapacitated 

tourist with no identification arrives at a hospital.  

The safety of any treatment for the patient’s condition 

is highly dependent upon the patient’s medical 

history.  In addition, the patient’s condition, while 

serious, will not dramatically deteriorate during the 

time a doctor would require to review the patient’s 

record.  Further, assume that some biometric or 

combination of biometrics could allow unique, 

perfectly reproducible identification of any human.  

Prior to administering treatment, the hospital may 

wish to use the patient’s biometric to make an 

emergency request for relevant records from all 

health centers in the country or a particular region. 

 

 In the United States, no centralized repository 

exists for medical records, and security and medical 

data ownership issues presently preclude use of such 

a repository [13].  Therefore, a searching party would 

need to approach numerous medical centers and 

inquire as to whether those centers possess records 

related to the patient.  Given a reasonable alternative, 

most people would prefer not to disclose their 

hospital visits to unnecessary parties.  To comply 

with federal medical privacy standards, health centers 

are also unlikely to disclose lists of their patients [10].  

In this scenario, a system for privately pairing record 

requestors and record possessors would be desirable 

to protect patient privacy.  Such a system must 

enforce requestor need to know and prevent provider 

forgery of record possession. 
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National Intelligence Scenario:  Presume that a 

national security analyst is studying a region and 

determines that a particular national landmark may be 

at immediate risk.  Numerous agencies may possess 

classified intelligence related to the landmark or the 

threat.  To protect information confidentiality, 

agencies may have strict policies against revealing 

even metadata pertaining to resources they possess.  

For example, a national intelligence agency may have 

records of several communications related to a given 

threat, but the agency may wish to appear unaware of 

the threat by restricting access to both those resources 

and data regarding those resources.  Similarly, the 

analyst may be reluctant to reveal the metadata that 

interests her.  In this scenario, necessary privacy 

hampers equally necessary availability.  A private 

pairing method would be desirable to link the analyst 

with all resources essential to assess and respond to 

the threat. 

 

1.2 Paper Overview 
The remainder of this paper is organized as 

follows.  Section 2 presents existing work related to 

private resource pairing.  Section 3 provides a system 

for privately pairing resource requestors and 

providers given that entities are honest but curious.  

Section 4 extends the system to prevent malicious 

behavior.  Section 5 evaluates the theoretical cost, 

applied performance, and security of this paper’s 

private resource-pairing solution as compared to the 

state-of-the-art private matching solution.  Finally, 

section 6 presents a summary and recommendations 

for future work. 

 

Throughout this paper, assume that all sets are 

totally ordered, are transmitted in order, and are 

initially ordered by element insertion time. 

 

2. RELATED WORK 

2.1 Private Matching 
 In 2003, Agrawal, Evfimievski, and Srikant 

presented the notion of minimal information sharing 

across private databases [1].  Their paper establishes 

protocols to allow two entities maintaining separate 

databases to determine query results across both 

databases without revealing information beyond the 

result.  A trusted third party solution to this problem 

is unreasonable, as it would require both entities to 

completely trust the third party.  Agrawal et al. 

address not only intersection queries but also 

intersection size, equijoin, and equijoin size queries.  

The intersection query problem is also known as the 

private matching problem [8].  Assuming Alice 

wishes to determine the intersection between her 

database and Bob’s database, the Agrawal, 

Evfimievski, and Srikant private matching solution 

(AgES) works as follows: 

1. Alice and Bob agree on a commutative 

encryption function, f, and select secret keys 

appropriate to the function, eA ∈ keyF and eB ∈ 

keyF.  Note that, for a commutative encryption 

function, ))(())(( xffxff
ABBA eeee =  given x 

∈ domF, eA ∈ keyF, and eB ∈ keyF. 

2. Alice and Bob, using a common one-way 

collision resistant hash function [8] from 

domD (the domain of potential database entries) 

to domF, compute hashes of all entries in their 

databases:  Ah = {h(a) | a ∈ A} and Bh = {h(b) | 

b ∈ B}. 

3. Alice and Bob encrypt the elements in Ah and 

Bh, producing }|)({ hhhee AaafA
AA

∈=  and 

}|)({ hhhee BbbfB
BB

∈=  then reorder 
Ae

A  

and 
Be

B  lexicographically.  Alice maintains 

the dataset }|)))((,{( Aaahfa
Ae

∈ . 

4. Alice and Bob exchange 
Ae

A  and 
Be

B . 

5. Alice computes the set 

}|)({, BBBAAB eeeeee BbbfB ∈=

}|)))((({ Bbbhff
BA ee ∈= .  Bob computes the 

set  }|)({, AAABBA eeeeee AaafA ∈=  

( }|)))((({ Aaahff
BA ee ∈= ) and uses the 

result to create the set 

}|))))((()),(({( Aaahffahf
BAA eee ∈ . 

6. Bob returns the set 

}|))))((()),(({( Aaahffahf
BAA eee ∈  to Alice. 

7. Alice joins the sets }|)))((,{( Aaahfa
Ae

∈  and 

}|))))((()),(({( Aaahffahf
BAA eee ∈  on 

))(( ahf
Ae

to get }|))))(((,{( Aaahffa
BA ee ∈ . 

8. Alice extracts all a ∈ A such that the 

corresponding )))((( ahff
BA ee  in 

}|))))(((,{( Aaahffa
BA ee ∈  matches some 

value in 
AB eeB , .  These a values comprise the 

subset of A that intersects with B. 

 

 Agrawal et al. demonstrate the computation and 

communication benefits of their protocols over a 

solution based on secure multi-party communication. 

 

 AgES assumes semi-honest, or honest but 

curious, behavior of both entities participating in the 

protocol.  This assumption means that entities will 

adhere to the protocol during the query process, but 

they may store and analyze intermediate results to 

derive additional information [1, 6].  For example, 

neither Alice nor Bob will falsely claim to possess 

elements, but Alice may scrutinize 
Be

B  in an attempt 

to learn more about Bob’s data set.  While many 

organizations may demonstrate semi-honesty at 

minimum to protect their reputations, a lack of 

tangible protection measures is insufficient in the 

case of sensitive data.  In addition, entities may prefer 

a protocol in which they cannot lie to protect 
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themselves against damaging false accusations of 

impropriety.  For example, if two countries, Atlantis 

and Babylon, have an agreement to share intelligence 

data and their relations sour, Babylon may accuse 

Atlantis of bogus data possession claims.  To refute 

the accusation, Atlantis would need to demonstrate 

data possession, potentially revealing sensitive 

information in the process.  If Atlantis chose not to 

refute the allegation, the country’s reputation could 

be damaged irreparably. 

 

 Li, Tygar, and Hellerstein offer a comprehensive 

exploration of solutions to the private matching 

problem under both a semi-honest and a malicious 

model [8].  A malicious model assumes that entities 

may choose to lie given the opportunity.  To prevent 

bogus data possession claims, Li et al. propose the 

use of data ownership certificates.  However, as [8] 

proposes them, data ownership certificates are not 

directly applicable to the private resource-pairing 

problem.  Since a requestor may not possess the 

desired resource, the requestor would not have an 

ownership certificate for that resource.  Li et al.’s 

model requires both entities to have ownership 

certificates to verify each other’s.
1
  For the private 

matching problem, this property is desirable:  Bob 

has no legitimate reason to verify possession of data 

he does not also possess.   An alternate solution to the 

resource possession problem is necessary for private 

resource pairing. 

 

 Li et al. present a hash-based alternative to AgES, 

but this alternative fails to ensure privacy without 

their data ownership certificates.  Assume Alice and 

Bob agree on a hash function and trade hashed 

database elements.  From that point on, Alice can 

guess and check for any element she desires, 

regardless of whether she possesses that element, in 

Bob’s hashed set. 

 

 Devious parties also may choose not to disclose 

possessions.  Li et al. leave this problem to future 

work.  Allowance of nondisclosure is actually 

desirable under certain circumstances but not under 

others.  This paper presents a method that allows 

individuals to periodically ensure that their resources 

are available (see section 4.2), a compromise that 

may be sufficient in some situations. 

                                                           
1 As part of the certified hash protocol and certified AgES 

protocol, Bob provides Alice with σ = {b||B}sk for each 

value b he possesses.  Alice must possess pk to verify σ (the 

verification method is VERIFY(pk, b||B, σ)).  If everyone 
knew pk, the only unknown is b.  If the domain of b is small 

and Bob is honest, a malicious party could attempt a brute 

force attack, running VERIFY for all possible values of b 

given a σ value until VERIFY returns true.  When VERIFY 

returns true, a malicious party can be confident that it found 

the entry corresponding to the given σ value in Bob’s 
database.  Repeating this process for all of Bob’s σ values 

yields all values in Bob’s database. 

 Li et al. consider threats that parties, including 

protocol participants, are curious, are dishonest, 

terminate the protocol early, or collude [8].  

Malicious parties may mount additional attacks, such 

as denial-of-service attacks, against protocol 

participants or the implementation infrastructure, 

however.  While a more efficient solution may be 

more resistant to denial-of-service attacks, this paper 

does not explicitly consider such additional threats. 

 

2.2 Additional Work 
 Private information retrieval (PIR) seeks to allow 

parties to retrieve database entries without disclosing 

information about the entries they desire [5].  

Unfortunately, PIR does not offer any assurance that 

parties accessing a database need to know the 

information that they privately retrieve.  Nonetheless, 

an efficient implementation of PIR would be useful to 

this paper’s private pairing solutions (see sections 3 

and 4). 

 

 Waters, Balfanz, Durfee, and Smetters present a 

method to allow searches on encrypted audit logs [16].  

The scheme could protect provider privacy and 

enforce need to know for resource requestors.  

Requestors would need to reveal search strings to a 

third party, however, potentially providing the third 

party with confidential information. 

 

 Song, Wagner, and Perrig present a means of 

searching on encrypted data [15].  Their work allows 

the use of encrypted queries to search encrypted data 

on untrusted servers.  Unfortunately, to make an 

encrypted query, the entity that originally encrypted 

the data (or a third party) must learn the query and 

provide the ability to search.  In the private resource-

pairing problem, providers would therefore need to 

learn the requestors’ searches.  To hide queries from 

providers, a commutative encryption based scheme 

similar to that of private matching may be a necessary 

addition to their work. 

 

 Zero-knowledge proofs allow a prover to 

demonstrate to a verifier that the prover possesses a 

given piece of information without revealing that 

information.  For example, a prover could 

demonstrate possession of Alice’s unique identity-

confirming key without revealing the key itself [12].  

Although a prover does not need to reveal the 

information itself, it must reveal to the verifier what 

piece of information it possesses.  In the example, the 

verifier must know that the prover is demonstrating 

possession of Alice’s, not Bob’s, key.  While such 

proofs may enable demonstration that a requestor has 

a legitimate need for a resource or a provider has a 

resource, they would require one party to publicly 

reveal the requested or possessed resource, violating a 

requirement of private resource pairing. 
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3. SEMI-HONEST CASE SOLUTION 
 This paper first presents a protocol for private 

resource pairing under a semi-honest behavior model.  

As with private matching, this assumption is 

somewhat unrealistic in practice.  Section 4 presents 

extensions to the semi-honest protocol that allow 

enforcement of need to know and proof of resource 

possession. 

 

3.1 Basic Scheme 
A one-time setup process is necessary for 

participants in this private resource pairing protocol.  

Resource requestors and providers, which may be 

overlapping sets, agree on a common commutative 

encryption scheme and hash function.  Resource 

providers choose random encryption keys and then 

hash and encrypt metadata pertaining to their 

resources.  Finally, providers publish the encryptions 

to potential requestors directly or to host servers.  By 

maintaining constant keys and publishing encryptions 

a single time, providers can more efficiently handle 

requestor searches later. 

 

 When a requestor wishes to search for and 

acquire resources tagged with a given piece of 

metadata, the requestor chooses a random 

encryption/decryption key pair and hashes then 

encrypts the metadata.  The requestor gives the 

ciphertext to the provider, who encrypts the 

ciphertext again using its encryption key and returns 

the result.  The requestor decrypts the ciphertext and 

matches the result to provider-published records.  If 

the requestor finds a match, it approaches the 

provider and openly requests resources related to the 

metadata.  By decrypting the single item of search 

metadata rather than re-encrypting every published 

piece of provider metadata, requestors significantly 

lighten their computation load.  A more rigorous 

explanation follows shortly. 

 

3.2 Assumptions 
 This protocol makes several assumptions 

necessary to the scheme’s security.  First, a resource 

requestor’s identity alone must imply nothing 

confidential to providers or servers.  Second, resource 

providers must publish encrypted metadata all at once, 

or providers must be able to assume that other entities 

cannot draw undesirable conclusions from metadata 

publication order, modification, or removal.  If 

providers use host servers, requestors must download 

all data from any given server.  Private information 

retrieval is unreasonable since even a successful 

search will require requestors to download half of a 

server’s data on average.  If a requestor did not take 

this precaution, a server could infer whether and on 

what piece of encrypted data a search is satisfied and 

use this information to uncover search patterns.  Also, 

servers must be unable to collude to determine which 

servers a requestor checks.  If servers colluded, they 

could identify the provider that satisfied a request or 

determine whether the request went unsatisfied.  

Finally, this solution assumes that resource metadata 

is in no way “fuzzy.” 

 

3.3 Detailed Process 
 This paper’s protocol for private resource pairing 

under the semi-honest model requires a setup process 

and a search and acquisition process. 

 

 For the remainder of this paper, shPRP denotes 

this semi-honest private resource pairing solution. 

 
Setup:  The setup process for a resource provider, P, 

with resource metadata MP ⊆ M, where M is the set of 

all possible metadata, is: 

1. P, all other providers, and all potential 

requestors agree on a commutative encryption 

function, f, and a common one-way collision 

resistant hash function, h, that maps from 

domM to domF. 

2. P selects a random encryption key, eP, such 

that eP ∈ keyF. 

3. P computes hashes of its resource metadata:  

Ph = {h(mP) | mP ∈ MP}. 

4. P encrypts the elements in Ph, producing 

}|)({ hhhee PppfP
PP

∈= . 

5. P reorders 
Pe

P  lexicographically if others 

could infer private information from MP’s 

order. 

6. P publishes 
Pe

P  to potential requestors, host 

servers, or both. 

 

 If an escrow service is desirable, P may publish 

eP, the corresponding decryption key, or both to the 

escrow service during step two.  In addition, if P 

publishes metadata to host servers, P must choose a 

signature scheme and accompany each published item 

with a signature. 

 

Search and Acquisition:  The following process 

allows a resource requestor, R, to obtain access to P’s 

resources with metadata m (see Figure 1): 

1. R generates a random encryption key, eR ∈ 

keyF, and the corresponding decryption key, dR. 

• R must generate a new random key pair 

each time it enters the pairing process with 

a potential provider.  If R reuses a key, 

providers could look at previous requests 

and determine that R seeks the same value, 

even if they don’t know what the value is. 

• If R is also a provider, R must choose a 

different key from its provider encryption 

key.  Otherwise, other providers could 

look at R’s published values to determine 

whether R possesses a resource with the 

metadata it seeks. 

2. R computes the hash of m:  mh = h(m). 
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3. R encrypts mh:  )( hee mfm
RR

= . 

4. R presents 
Re

m  to P. 

5. P encrypts 
Re

m :  )(, RPPR eeee mfm =  

))(())(( heehee mffmff
PRRP

== . 

6. P returns 
PR eem ,  to R. 

7. R decrypts 
PR eem , :  )( , PRRP eede mfm =  

)()))((( heheed mfmfff
PPRR

== . 

8. If P hosts its data on a server, R downloads 

Pe
P , the accompanying signature data, and any 

additional items necessary to verify P’s 

signatures (public key, etc.). 

9. R searches 
Pe

P  for a match to 
Pe

m . 

• If R finds a match and 
Pe

P  is from a 

server, R may verify the corresponding 

signature. 

• If R finds no match and 
Pe

P  is from a 

server, R may verify signatures to ensure 

that the server did not remove data. 

10. If R finds a match, R approaches P and asks 

for resources with metadata m. 

 

4. MALICIOUS CASE SOLUTION 
 A malicious case solution seeks to prevent two 

forms of potential participant dishonesty.  First, 

dishonest requestors could request either metadata 

searches for or direct access to resources for which 

they have no valid need.  Providers can eliminate this 

issue by forcing requestors to prove their need to 

search for metadata and access resources.  Second, 

dishonest providers could falsely claim possession of 

resources to coax requestors to reveal secret search 

metadata.  By forcing providers to prove possession 

of resources related to metadata, the protocol can 

prevent this issue. 

 

 Note that the modified protocol retains all 

assumptions of section 3.2. 

4.1 Proving Need to Know 
 To prevent superfluous searches and resource 

accesses, resource providers must have the ability to 

verify the legitimacy of requests.  To demonstrate the 

need to perform a search or to access a given resource, 

requestors present tickets to potential providers in 

steps four and ten of the shPRP search and 

acquisition process (see section 3.3).  In step four, the 

ticket only verifies the right to search for the 

encrypted metadata, 
Re

m ; it does not reveal the 

metadata.  In step ten, the ticket contains plaintext 

metadata, since the provider cannot confirm that 
Re

m  

represents m.  Note that, to generate tickets 

containing 
Re

m  and m, the ticket supplier must 

receive both items and confirm that 
Re

m  represents m. 

 

 The processes by which a requestor, R, may 

acquire tickets from a supplier, S, is as follows: 

1. R presents m and 
Re

m  to S. 

2. S verifies that 
Re

m  represents m: 

a. S generates a random encryption key, eS 

∈ keyF for the common 

requestor/provider commutative 

encryption function. 

b. Using the common hash function, S 

computes the hash of m:  mh = h(m). 

c. S encrypts mh:  )( hee mfm
SS

= . 

d. S presents 
Se

m  to R. 

e. R encrypts 
Se

m :  )(, SRRS eeee mfm =  

))(())(( heehee mffmff
RSSR

== . 

f. R returns 
RS eem ,  to S. 

g. S encrypts 
Re

m :  )(, RSSR eeee mfm =  

( ))(( hee mff
RS

=  if 
Re

m  is valid). 

h. S checks that 
SR eem ,  matches 

RS eem , . 

 

Figure 1:  shPRP search and acquisition process.  Commutative encryption allows requestors to get 

provider encryptions of data without revealing the data to the provider.  See section 3.3 for details. 
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3. S verifies R’s right to search for and acquire 

resources with metadata m (implementation 

specific verification process). 

4. S returns tickets for m and 
Re

m . 

 

 The order of steps two and three is arbitrary.  

They may occur in opposite order or in parallel. 

 

 Tickets can be universal or restricted to a subset 

of potential providers if circumstances warrant only a 

limited search.  A network of trust must connect 

ticket suppliers so providers can confirm the validity 

of tickets from any supplier.  Various models exist for 

establishing trust, including direct, hierarchical, and 

distributed trust models [9].  This choice is 

implementation-specific; the use of any model is 

acceptable for private pairing. 

 

 Two ticket supplier models exist:  internal and 

external.  Both models assume that ticket suppliers 

will not collude with malicious requestors to allow 

illicit access to data or resources.  In addition, ticket 

suppliers should be unable to initiate searches.  

Otherwise, a rogue supplier could access unlimited 

resources.  An internal supplier model assumes that 

potential requestors are part of larger organizations 

and that requestors may reveal their searches to 

ticket-granting parties in their organizations.  The 

ticket-granting party verifies that present conditions 

warrant a search for resources. 

 

 In the medical scenario, a set of trained hospital 

administrators could be on-call for search verification.  

When a doctor explains the situation, the verifier can 

make a determination, based on established standards, 

whether the situation warrants a search.  If the verifier 

concludes that it does, she can provide the doctor 

with appropriately constrained tickets.  This solution 

presumes the existence of robust audit mechanisms 

and severe penalties to deter and detect collusion. 

 

 In the event that no impartial party exists inside a 

requestor’s organization, requestors and providers 

could form agreements, contractual or otherwise, with 

impartial external parties to verify the need to search.  

In this case, requestors must fully trust the 

verification party with their search metadata, and 

providers must trust the verification party not to 

collude with dishonest requestors.  External 

verification is appropriate for cases such as business 

agreements in which parties agree to limited resource 

sharing.  Members of either business may possess 

bias in interpretation of the agreement, creating the 

need for an impartial arbitrator.  

 

4.2 Proving Resource Possession 
 As with proving need to know, this section 

presents two models for proving resource possession.  

In one model, all resources described by a piece of 

metadata have a clear owner.  The metadata therefore 

implies an owner in a manner obvious to providers 

and requestors alike.  For example, a patient with a 

unique biometric would have legal control over the 

distribution of medical records tied to her biometric 

[10], making her the effective owner of those records.  

Under the second model, metadata either does not 

imply an owner or implies numerous owners.  For 

example, the keyword “explosives” may be 

applicable to many intelligence resources, but the 

word alone does not imply a clear owner of those 

resources.  A solution under the second model is also 

applicable to the first scenario, since entities can 

ignore implied ownership.  A solution for the first 

scenario is preferable when applicable, however, as it 

allows owners to better control their resources.  This 

paper’s solutions in both cases rely on the use of 

identity-based signature systems. 

 

Identity-Based Signatures:  Identity-based signature 

systems, first proposed by Shamir, allow the use of 

one’s identity as their public key [14].  For example, 

Alice may sign her messages using a private key 

associated with her unique identity 

(“alice@virginia.edu”).  To verify her signature, Bob 

can simply pass the message, the signature, and 

“alice@virginia.edu” to a verification method.  Bob 

does not need to acquire Alice’s public key to verify 

her signatures.  Alice needs to obtain her private key 

from a private key generator, however, unless she 

possesses the system’s master secret, which allows 

the generation of private keys for all identities. 

 
Key Privacy:  Bellare, Boldyreva, Desai, and 

Pointcheval first formalized the property of key 

privacy in public-key cryptosystems.  Given this 

property, an adversary that possesses a piece of 

ciphertext can gain no more than a negligible 

advantage in determining which public key out of a 

given set produced the ciphertext [2].  For example, 

RSA lacks key privacy because an adversary can gain 

an advantage based on the publicly known modulus 

[2].  When metadata implies an owner, the security of 

this paper’s possession scheme relies on a principle 

similar to key privacy. 

 

Metadata Implies an Owner:  Assume the scenario 

in which metadata implies an owner of resources 

associated with the metadata.  In this case, proof of 

possession relies on the use of identity-based 

signature systems with the novel property of system 

privacy, similar to key privacy. 

 

 Suppose that multiple instantiations of an 

identity-based signature scheme exist.  Each 

instantiation has a different master secret, but other 

parameters may match across instantiations.  The use 

of different master secrets means that each 

instantiation will produce a different mapping 

between identities and private keys.  Now assume 

that an adversary chooses an identity, and an arbitrary 
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instantiation produces that identity’s signature for a 

nonce.  The adversary receives a copy of the 

signature but not the nonce.  If, given some 

parameters, the adversary is unable to gain more than 

a negligible advantage in determining the 

instantiation that produced the signature, this 

signature scheme provides system privacy under 

those parameters.  For example, Shamir’s original 

identity-based signature scheme lacks system privacy.  

Each instantiation must use a different, publicly 

available value of n, and part of the signature is the 

result of a value modulo n [14].  Thus, the same 

technique for distinguishing between public keys in 

RSA systems is applicable to this identity-based 

signature scheme. 

 

 To allow proof of resource possession, some 

setup is mandatory.  Owners must agree on a 

common identity-based signature scheme along with 

any parameters necessary to provide system privacy.  

Each owner then generates a unique instantiation of 

the scheme under the established constraints.  Owners 

publish public parameters necessary to verify 

signatures that they produce.  Either requestors and 

providers or public repositories must maintain lists of 

owner identities with their public parameters.  If a 

repository maintains the data, private information 

retrieval or total repository downloads must be 

efficiently possible so that repository operators 

cannot infer which owner’s resources a requestor 

seeks.  Given a large number of non-colluding servers, 

PIR may be feasible, as requestors will seek a 

relatively small amount of data at a predetermined 

index, the owner’s identity. 

 

 To demonstrate possession, additional steps are 

necessary between steps four and five of the shPRP 

setup process (see section 3.3).  For each piece of 

metadata mP ∈ MP: 

1. P determines the owner, O, that mP implies. 

2. P presents mP and the corresponding value 

Pe
p ∈

Pe
P  to O. 

3. O verifies that 
Pe

p  represents mP: 

a. O generates a random encryption key, 

eO ∈ keyF for the common 

requestor/provider commutative 

encryption function. 

b. Using the common hash function, O 

computes the hash of mP:  mh = h(mP). 

c. O encrypts mh:  )( hee mfm
OO

= . 

d. O presents 
Oe

m  to P. 

e. P encrypts 
Oe

m :  )(, OPPO eeee mfm =  

))(())(( heehee mffmff
POOP

== . 

f. P returns 
PO eem ,  to O. 

g. O encrypts 
Pe

p :  )(, POOP eeee pfp =  

( ))(( hee mff
PO

=  if 
Pe

p  is valid). 

h. O checks that 
OP eep ,  matches 

PO eem , . 

4. O verifies that P possesses resources related 

to metadata mP (implementation specific 

verification process). 

5. O signs 
Pe

p  using its identity-based 

signature scheme instantiation and the 

private key associated with P’s identity. 

6. O returns the signature of 
Pe

p  to P. 

7. P downloads the public parameters for O’s 

identity-based signature scheme instantiation. 

8. P verifies the signature of 
Pe

p  using P’s 

identity as the public key. 

 

 The order of steps three and four is arbitrary.  

They may occur in opposite order or in parallel. 

 

 Signing with the private key associated with the 

provider’s identity prevents two providers from using 

the same commutative encryption keys and sharing 

signed values.  Because values in 
Pe

P  are 

indistinguishable from random values in polynomial 

time [1] and owners use system private signature 

schemes, an adversary will have at most a negligible 

advantage in determining the owner that produced 

any given signature. 

 

 Following acquisition of signatures, P can 

reorder the signatures lexicographically and publish 

the signed data.  If P reordered by the original 

encryptions rather than signatures, adversaries could 

estimate the pre-signed data ranges to gain an 

advantage in guessing the signing instantiations. 

 

 If owners can privately retrieve data from servers, 

they can verify at any time that the servers continue 

to host their data, preventing providers from 

removing data without permission. 

 

 Because only an owner possesses its master 

secret, only it can produce private keys and generate 

signatures.  Owners can delegate signing 

responsibilities to a trusted third party, such as a 

contracted service.  Owners also can provide master 

secrets to an escrow system if desired.  If one 

resource owner’s master secret is compromised, only 

that owner’s data is compromised.  Generating a new 

master secret and replacing associated published 

signatures would be straightforward, though this 

procedure could present a problem if others could 

infer confidential information from the update 

process.  If an owner updates its public parameters at 

nearly the same time several providers update their 

published data, an adversary can infer that the 

providers published metadata related to the owner’s 

resources.  This paper leaves resolution of update 

issues to future work. 
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 With two exceptions, the search and acquisition 

process remains the same for resource requestors as 

under shPRP.  First, a requestor must obtain the 

owner’s public parameters.  Second, using the 

provider’s identity as a public key, the requestor must 

attempt to verify provider-published values as the 

signature of 
Pe

m  in step nine of the shPRP search 

process.  If a value verifies, the provider possesses a 

desired resource. 

 

 In the medical scenario, patients could serve as 

owners of their medical records for the purpose of 

proving resource possession.  Whenever a patient 

receives medical care, she could provide her unique 

identifier to the medical center and authorize a 

delegated service to sign the encrypted hash of her 

identifier.  If a hospital needs to retrieve the patient’s 

records later, it could use her identifier to retrieve the 

public parameters of her signature scheme 

instantiation and verify published signatures.  

Because medical centers would retain possession of 

records, such a system deliberately sidesteps 

disagreements over medical data ownership [13]. 

 

Metadata Does Not Imply an Owner:  Assume that 

metadata does not imply a single owner of associated 

resources.  Because metadata is not irrefutably linked 

to owners, no party has a legitimate right to confirm 

or deny possession of resources associated with 

metadata.  For requestors to accept claims of 

possession, a trusted third party, centralized or 

distributed, seems necessary to validate provider 

possession based on established rules.  Requestors 

can later verify provider possession without the 

intervention of a third party, however, preventing the 

third party from collecting request data.  The third 

party acts as a universal resource owner and 

maintains an identity-based signature system. 

 

 In this scenario, the publication process is 

exactly the same as when metadata implies an owner, 

except the owner is always the trusted third party.  

The search and acquisition process is also the same, 

but requestors can store the single signature system’s 

parameters rather than retrieving parameters during 

each search.  This scheme suffers from an issue 

common to identity-based cryptosystems:  the key 

revocation problem.  If any private key is 

compromised, the universal owner has two options: 

• Publish a potentially huge exception list.  In this 

case, the third party must maintain backup 

system(s) for the exceptions.  Requestors would 

need to either store exception lists or have the 

ability to privately check the exception list. 

• Scrap all keys and move to a new master secret.  

As this option would entail reproducing all 

signatures, it is impractical.  Gradual migration 

to a new master secret may be acceptable, 

however.  For example, if the private key for 

“provider” is compromised, the third party could 

immediately migrate all keys starting with ‘p’ 

and publish a schedule for migrating other keys. 

 

 Fortunately, because the third party need not 

reveal or store private keys, private keys are nearly as 

difficult to compromise as the master secret. 

 

5. EVALUATION 
 The AgES protocol offers the closest match to 

this paper’s private resource pairing solutions, 

making AgES the most logical comparison for 

theoretical cost, actual performance, and security.  In 

a private resource-pairing scenario, AgES treats 

requestors as operators of one-entry databases 

containing the desired metadata.  To fairly compare 

the protocols, several assumptions are necessary: 

• Providers and requestors have settled on 

commutative encryption and hash functions prior 

to entering the protocol. 

• Private resource pairing occurs under the semi-

honest model, as AgES has no comparable 

scheme for a malicious model.  Thus, the 

comparison is AgES versus shPRP. 

• Even if shPRP uses host servers, it does not 

create signatures.  Signature costs would be 

dependent on implementation decisions. 

• Once finished, the AgES protocol performs step 

ten of the shPRP search process. 

• Providers publish lexicographically ordered 

encryptions. 

 

shPRP has an inherent advantage over AgES 

because shPRP is a custom solution to the private 

resource-pairing problem.  Due to the requirements of 

the private matching problem, AgES does not use 

pre-computation, for example.  Nevertheless, as the 

leading existing solution for the private matching 

problem, AgES provides the most appropriate 

comparison. 

 

5.1 Theoretical Costs 
 Assume that 

eg
C ,

dg
C , Ce, and Cd are the costs 

of generating public keys, generating private keys, 

encrypting, and decrypting respectively for the 

chosen commutative encryption scheme.  Ch is the 

cost of generating a hash with the chosen hash 

function.  m is the length of the desired metadata, 

while c is the metadata ciphertext length.  A provider 

has p items of metadata. 

 

 Under AgES, no setup procedure is necessary.  

For the search and acquisition process, the total 

computational cost is 

ppppCCC ehge
+++++ log)1)(2(2 , while the 

communication cost is mcp ++ )2( .  Note that, with 

AgES, requestors and providers generate new private 

keys each time they enter the search and acquisition 

process.  The setup process for shPRP has a total 
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computational cost of pppCCC ehge
log)( +++ , 

while the communication cost is pc .  The 

computational cost for the search and acquisition 

process is pCCCCC dehgg de
log2 +++++ .  If 

requestors download metadata from a server, the 

communication cost is mcp ++ )2( .  Otherwise, the 

communication cost is mc +2 .  Tables 1 and 2 

summarize these results in greater detail. 

 

 After the initial setup, shPRP significantly 

lightens the computational cost for both requestors 

and providers while producing equivalent or better 

communication costs.  Provider computational cost 

during the search and acquisition process is critical, 

as a reduction in cost allows providers to handle more 

requests per given time.  The importance of reducing 

this cost underscores the value of performing pre-

computation during the setup process.  These 

theoretical results also suggest an improvement to the 

AgES private matching protocol.  If, in the protocol 

of section 2.1, Alice has a smaller dataset than Bob 

and de CC ≈ , she should not encrypt Bob’s set in 

step five.  She should instead decrypt her 

)))((( ahff
BA ee  values between steps seven and eight 

and match those against Bob’s set. 

 

5.2 Actual Performance 

 A series of tests compared the performance of 

AgES to shPRP.  Java-based implementations of 

shPRP and portions of the AgES protocol allowed 

direct comparisons.  SHA-1 and Pohlig-Hellman with 

a common modulus served as the hash function and 

commutative encryption scheme respectively.  The 

sorting algorithm was a modified mergesort with 

guaranteed nlogn performance [7].  For the tests, 

providers maintained 10,000 items of metadata.  To 

achieve a fair comparison, the AgES implementation 

contained an obvious optimization:  requestors do not 

immediately encrypt all provider-published data but 

instead encrypt provider data line-by-line, attempting 

to match each result to the re-encryption of the 

desired metadata.  When a match exists, this 

optimization reduces requestor encryptions by 

approximately 50% on average.  All tests ran on a 3.2 

GHz Pentium 4 with 512 MB of RAM.  Table 3 

shows the results of these tests. 

 

 Only shPRP providers have a setup process.  

Therefore, the setup duration for requestors and 

AgES providers is trivially zero.  Fourteen trials, with 

the two highest and two lowest results excluded, 

established the average setup duration of shPRP 

providers.  An equivalent procedure assessed shPRP 

  AgES shPRP Speedup 

Provider - 50,514 ms - 

Requestor - - - Setup 

Total - 50,514 ms - 

Provider 50,530 ms 16 ms 3158 

Requestor 40,059 ms 116 ms 345 Search and Acquisition 

Total 90,589 ms 132 ms 686 

Table 3:  Actual computational costs of AgES and shPRP.  See section 5.2 for implementation details. 

shPRP 
 AgES 

w/ Host Server w/o Host Server 

Setup - pc  pc  

Search and Acquisition mcp ++ )2(  mcp ++ )2(  mc +2  

Table 2:  Communication costs of AgES and shPRP.  See section 5.1 for variable definitions. 

  AgES shPRP 

Provider - pppCCC ehge
log)( +++  

Requestor - - Setup 

Total - pppCCC ehge
log)( +++  

Provider pppCpCC ehge
log)1( ++++  

eC  

Requestor ppCCC ehge
++++ )1(  pCCCCC dehgg de

log+++++  Search and 

Acquisition 

Total ppppCCC ehge
+++++ log)1)(2(2  pCCCCC dehgg de

log2 +++++  

Table 1:  Computational costs of AgES and shPRP.  See section 5.1 for variable definitions. 
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provider performance during the search and 

acquisition process.  In AgES, providers are active at 

two points during the search process:  to supply 

encrypted metadata and to encrypt requestor metadata.  

These tasks precisely correspond to the shPRP 

provider setup and search processes.  Thus, the AgES 

provider average is the sum of the shPRP averages 

for each task.  AgES and shPRP requestors 

underwent two rounds of testing.  In the first round, 

requestors performed fourteen searches for existing 

metadata.  In the second round, requestors searched 

for fourteen nonexistent metadata items.  The overall 

average was the mean of all results, excluding the two 

highest and two lowest results from each round.  

Results do not include time waiting on providers or 

downloading data. 

 

 These results demonstrate a strong performance 

benefit for shPRP.  After the setup process, requestor 

computation time decreases by 99.7%, and provider 

computation time almost entirely disappears.  Also 

note that shPRP scales better than AgES (see Table 1). 

 

 These results also demonstrate the practicality of 

shPRP.  Providers in shPRP always perform a single 

encryption during the search process, so a provider’s 

expected computational cost is a constant, reasonable 

16 ms for any number of published encryptions.  The 

quantity of encryptions has a marginal impact on 

requestor computational costs, as requestors search an 

ordered list of the encryptions.  This cost grows 

logarithmically with the number of published 

encryptions and averages only 116 ms for 10,000 

metadata items, so shPRP is also computationally 

viable for requestors.  A requestor’s work is highly 

parallelizable, making shPRP even more practical.  

Search communication costs are also negligible if a 

requestor stores all provider-published data.  With 

host servers, however, communications costs can 

become a constraining factor for large quantities of 

published encryptions. 

 

5.3 Security 
 Because shPRP is a modification of AgES, its 

security may rest on the security of AgES as 

demonstrated in [1] and [8] provided that, under the 

assumptions of section 3.2, the modifications do not 

adversely impact security.  The modifications of 

interest are: 

• Providers publicly reveal encrypted metadata. 

• Providers maintain a constant encryption key, 

potentially through multiple pairing processes. 

• Providers may publish to host servers. 

• Requestors decrypt the re-encrypted data they 

receive rather than re-encrypting provider data. 

 

 Through public revelation of metadata, a 

provider allows any curious entity to acquire and 

analyze the provider’s encrypted metadata hashes.  

This set of encrypted hashes is equivalent to the set 

that a curious party, C, with metadata set MC = ∅ 

would receive if it approached the provider, P, with 

metadata set MP and entered the AgES protocol 

(given that the provider used the same encryption key 

in both cases).  Agrawal et al. demonstrate that C can 

learn only |MP| and MC ∩ MP = ∅ from this data [1].  

Similarly, C would gain no advantage in performing 

cryptanalysis from shPRP’s use of constant provider 

encryption keys.  C could store and perform 

cryptanalysis on the equivalent set of encrypted 

hashes it receives from P under the AgES protocol.  

In both cases, security against cryptanalysis is 

dependent on choice of commutative encryption 

function, hash function, and key length. 

 

 The use of constant provider encryption keys 

means that the encryption of any piece of metadata 

will remain constant.  Because encryptions remain 

constant and providers publicly disclose encrypted 

data, curious parties may observe and draw inferences 

from the publication time of data if providers do not 

publish data all at once.  Also, a curious party could 

trivially observe modification or removal of 

encryptions.  To avoid issues with publication, 

modification, and removal, section 3.2 states that 

either providers must publish all data in unison or 

inferences must reveal no confidential data.  Future 

work may establish a more satisfactory solution to 

this problem. 

 

 Provider signatures and the assumptions of 

section 3.2 prevent host servers from imperceptibly 

modifying data or drawing undesirable inferences.  

Beyond attacks that this paper explicitly does not 

consider (see section 2.1), host servers introduce no 

additional known weaknesses. 

 

 Finally, a requestor’s choice to decrypt data 

rather than re-encrypt it has no impact on security.  

Nothing prevents entities from decrypting 

legitimately acquired data from the AgES protocol. 

 

6. CONCLUSION 

 A chief concern of many privacy-critical 

organizations is protection of information against 

illegitimate access.  This emphasis can result in 

restrictive systems that successfully thwart 

objectionable parties.  Unfortunately, these systems 

can also deter privacy-constrained requestors with 

valid claims.  Private resource pairing attempts to 

connect such resource requestors and providers 

without violating privacy.  While existing work 

addresses similar issues, no known prior work 

directly addresses this issue in a satisfactory manner.  

Research on private resource pairing uncovered 

several interesting topics warranting further research, 

including weaknesses in the present system, 

extensions that would make the present system more 

useful, and issues of relevance beyond private 

resource pairing. 
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 Several weaknesses exist in the present private 

resource pairing model.  During the search process, 

requestors receive indefinite search capabilities for a 

given piece of metadata.  While tickets may expire, a 

provider’s encrypted metadata is constant as long as 

its encryption key remains constant.  During that 

period, a provider may publish additional metadata 

that the requestor has no right to search.  In addition, 

the present private resource-pairing scheme would 

allow curious parties to make numerous undesirable 

inferences if a provider modifies its metadata set or 

an owner updates its key.  Means of better 

constraining search capabilities and of preventing 

unwanted inferences are desirable. 

 

 Additional research could also lead to a more 

useful system.  For example, in some cases, entities 

partition resources by classification levels.  Parties 

with high-level clearances might have an entitlement 

to search low-level resources but not vice versa.  If 

providers use different encryption keys for different 

clearance levels and verification tickets include the 

requestor’s clearance level, solutions in this paper are 

applicable to multi-level secrecy.  A more elegant 

solution may be possible, however.  Also, as 

organizations may have valid reasons for not sharing 

metadata or for only revealing a subset of resources 

related to a given piece of metadata, attacks such as 

hiding attacks are particularly tricky.  A means of 

ensuring that providers publish all appropriate data 

and reveal all appropriate resources would be helpful, 

particularly if owners either do not exist or are unable 

to monitor metadata related to their resources.  

Finally, future projects may wish to examine cases 

where a requestor’s identity is confidential, where 

host servers may collude, or where metadata is fuzzy. 

 

 The concept of system privacy may be of 

importance beyond private resource pairing.  This 

paper presents system privacy exclusively with 

regards to identity-based signature systems.  A more 

comprehensive exploration of that concept in terms of 

both signature systems and general identity-based 

cryptosystems would be useful.  For example, several 

businesses may wish to maintain separate master 

secrets, but they may want to prevent adversaries 

from determining the business destinations of 

encrypted messages. 

 

 This paper presents a practical semi-honest 

solution that, under the unique constraints of private 

resource pairing, offers a 686-time computational 

speedup over the similar AgES protocol without 

compromising security.  In addition, this work offers 

a means of preventing malicious participant behavior.  

The shPRP protocol and its extensions for preventing 

malicious behavior provide a concrete basis for future 

work in private resource pairing. 
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