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Abstract
Wide-area parallel processing systems will soon be
available to researchers to solve a range of problems. In
these systems, it is certain that host failures and other
faults will be a common occurrence. Unfortunately, most
parallel processing systems have not been designed with
fault-tolerance in mind. Mentat is a high-performance
object-oriented parallel processing system that is based
on an extension of the data-flow model. The functional
nature of data-flow enables both parallelism and fault-
tolerance. In this paper, we exploit the data-flow
underpinning of Mentat to provide easy-to-use and
transparent fault-tolerance. We present results on both a
small-scale network and a wide-area heterogeneous
environment that consists of three sites: the National
Center for Supercomputing Applications, the University
of Virginia and the NASA Langley Research Center.

1. Introduction
Recent advances in network technology promise to

make gigabit-per-second bandwidth between remote hosts
a reality in the near future. This increase in bandwidth
paves the way for increased exploitation of distributed
computing resources. Coupled with advances in
distributed memory parallel compiler technology, there is
strong reason to believe that wide-area distributed parallel
processing will be an increasingly popular and important
programming paradigm. Parallelizing and distributing
program sub-tasks has the potential of increasing
performance for many applications while also improving
the overall utilization of system resources. Unfortunately,
there is a downside. When a program is partitioned into

sub-tasks, each sub-task may be distributed among
different processors. As the number of processors
employed by an application increases, so does the chance
that the application will fail due to a host failure.

At the University of Virginia, we have first hand
experience the problems caused by host failures in
distributed systems while developing and using a
prototype for the Legion project [12][13] (information on
Legion is available on the WWW at
http://www.cs.virginia.edu/~legion). The objective of
Legion is to construct the software environment to enable
a nation-wide or world-wide virtual computer capable of
supporting distributed and parallel applications. Our
current prototype, that we call the Campus-Wide Virtual
Computer (CWVC), contains a mix of over 90
workstations and an IBM SP-2 multicomputer. Even in
this relatively small environment, we are frequently
experiencing host failures. On the scale of the envisioned
nation-wide system, host failures will simply be a fact of
life and must be dealt with accordingly. User applications,
especially those that are critical or are composed of many
distributed components, must be resilient to host failures.
Fortunately developing fault tolerant parallel applications
does not need to be difficult.

In this paper we show that by developing applications
using the data-flow model of parallel computation there is
a simple method for providing fault-tolerance. The key to
our approach is in exploiting the functional nature of data-
flow programs in the fault-tolerance mechanisms. Recall
that data-flow computations are modeled by actors, arcs,
and tokens. Actors are computation primitives, tokens
carry data or control information, and arcs are used to
model the dependencies between actors. The



distinguishing feature of actors in terms of fault tolerance
is their idempotent nature: an actor presented with the
same tokens will always produce the same result. Thus,
fault-tolerance can be easily achieved through actor
replication, i.e. replicate an actor k times and use the first
available result (discard later arriving results).

In an earlier paper [18], we implemented actor
replication and showed its performance and resource
consumption characteristics using a synthetic pipeline
application on a small homogeneous network of
workstations. The main problem with our previous
technique was its high consumption of resources.
Furthermore, we found that under a saturated
computational environment increasing the level of
replication actually decreased performance as replicates
competed with each other for the same finite pool of
resources.

In this paper, we extend our work by introducing the
concept of dormant actors. Using dormant actors,
programmers can increase the fault-tolerance
characteristics of their applications with very littl e
overhead. We tested this new approach using a
DNA/Protein sequence comparison application in two
different environments. The first environment consisted of
a local-area dedicated network of Intel 80486 machines.
The second environment consisted of a wide-area,
heterogeneous environment comprised of three
autonomous sites: the National Center for Supercomputing
Applications (NCSA), the University of Virginia (UVa)
and the NASA Langley Research Center (LaRC).

The remainder of the paper is organized as follows. We
first present a brief overview of the Mentat system and its
execution model (Section 2). We describe the interface for
specifying a fault-tolerance policy and discuss the
protocol used to transparently replicate both active and
dormant actors. We also ill ustrate the mapping of Mentat
source code to actual run-time implementations (Section
3). We then describe the DNA/Protein sequence
comparison application (Section 4) and analyze its
performance and recovery characteristics using several
fault-tolerance policies (Section 5). Finally, we discuss
related work (Section 6) and conclude (Section 7).

2. Mentat
Mentat [9] is a high performance, object-oriented

parallel processing system. There are two primary aspects
of Mentat: the Mentat Programming Language (MPL) and
the Mentat run-time system. MPL is an object-oriented
programming language based on C++. The granule of
computation is the Mentat class member function. The
programmer is responsible for identifying those object
classes whose member functions are of suff icient
computational complexity to allow eff icient parallel

execution. Instances of Mentat classes are used like C++
classes, freeing the programmer to concentrate on the
algorithm, not on managing the environment.

The data and control dependencies between Mentat
class instances involved in invocation, communication,
and synchronization are automatically detected and
managed by the compiler and run-time system without
further programmer intervention.

Mentat classes are denoted by the inclusion of the
keyword mentat in the class definition. Mentat classes
may be quali fied as either regular or persistent.
Instances of regular Mentat classes do not maintain state
between invocation, thus the implementation may create a
new instance to handle every member function invocation.
Persistent Mentat classes maintain state information
between member function invocations. This is an
advantage for operations that require large amounts of
data or that require persistent semantics.

Mentat objects are active entities and possess a name, a
thread of control, and their own address space. From the
user’s perspective, Mentat objects communicate via
asynchronous member function invocation.

2.1 Mentat execution model
The Mentat execution model is based on the macro

data-flow model (MDF [10]) an extension of the pure
data-flow model. MDF is one of several large grain data
flow models [1][3] that expand on traditional data flow
[22]. The salient features of MDF are that it incorporates
the notion of state, adds the abilit y to dynamically create
graphs, and provides coarse grained actors. In MDF,
actors with states are said to be persistent actors while
stateless actors are called regular actors. Persistent actors
that share state map directly onto member functions of a
persistent Mentat class. Similarly regular actors map onto
member functions of a regular Mentat class. For the rest of
the paper, we may thus use a class name and a member
function to denote actors.

The Mentat run-time system implements a virtual
macro data-flow machine that transparently constructs
program data-flow graphs, schedules actors on processors,
and manages communication and synchronization. The
token matching unit (TMU) implements the pure data-
flow subset of the MDF model and is responsible for
matching tokens and for enabling an actor when all it s
tokens are present. When an actor is enabled, the TMU
calls on the instantiation manager (IM) to schedule a
regular object for the actor. The TMU then forwards the
tokens to the object so that the actor may fire, i.e. execute.
To distribute the workload associated with regular actors
and scheduling, there is one TMU and one IM per host in
a Mentat system. Note that by delaying the instantiation of
regular objects until the tokens are matched, the Mentat



scheduler can make better placement decision by having
access to up-to-date information (e.g. load).

The macro data-flow underpinning of Mentat is
completely transparent to end users. In Figure 1, we
ill ustrate the mapping from a sample MPL source code to
its execution. At run-time, calls made to object functions
(actors) are transformed into a macro data-flow graph that
is then acted on by the run-time system to deliver the
proper arguments (tokens) to the appropriate object' s
function. The mechanism for building graphs and
detecting data dependence is fully described in [10][11].

The graph (Figure 1b) is constructed at run-time and
maps onto the implementation as follows :

For each iteration,
• A message that contains the token i and a copy of

the data-flow graph is sent to the persistent actor
in.get. Tokens carry a computation tag that
uniquely identifies an actor and the number of
tokens required to enable that actor. Computation
tags are equivalent to token colors in the data-
flow litterature.

• in.get then sends a message containing its
output token to a TMU along with the program
graph. The TMU is selected by a hash function
on the computation tag for actor A.filter1.

• Upon receiving the token, the TMU enables the
actor A.filter1 and then makes a scheduling
request to the Mentat scheduler. The scheduler
instantiates object A and returns A’s physical
address (host id and port number).

• The TMU forwards the token and program graph
to object A.

• Object A executes function filter1().

• When A.filter1 finishes, it must send the
result along all outgoing arcs in the data-flow
graph representation. Since B is also a regular
object, A forwards its output token to the TMU
handling B.filter2. Again, the TMU is
selected by hashing on the computation tag for
B.filter2.

• B.filter2 is handled similarly with the end
results sent back to the main program.

This simple example represents a pipeline computation
that consists of three stages.  In a traditional pipeline, the
rate of output is determined by the slowest stage. For
example, if in.get produces an output token every
second, filter1 takes one second, and filter2 five
seconds, then we will get an output every five second.

Mentat exploits the fact that the two filters are regular
objects and instantiates a new copy to service each
request. The fully elaborated execution (Figure 1c),
represents a pipeline with multiple functional units. Thus,
throughput is no longer limited by the slowest stage and
we can obtain an average throughput rate of one output
per second per iteration once the pipe is full.

 Another feature of Mentat is that results from function
invocations do not return to the caller unless they are
needed. In the pipeline example above, the output from
the first filter is never returned to the main program and is
automatically forwarded to the second filter.

3. Supporting fault-tolerance
In a previous paper [18] we described modifications to

the Mentat run-time system for supporting an active
replication policy -- actors fired as soon as they were
enabled -- and noted the resulting ineff icient use of CPU
resources. We now extend our earlier work by introducing
the concept of dormant actors. Unlike active actors,
dormant actors do not fire right away when enabled but
wait until they detect the failure of an ongoing
computation. Dormant actors serve a similar function to
backup replicates in a primary/backup replication scheme.
The main difference here is that there is no need for
explicit synchronization protocols or state transfer
primitives.

The combination of active and dormant actors provide
users with the mechanisms for trading-off f ault-tolerance,
resource consumption and performance. By using dormant
actors, application designers can reduce their consumption
of CPU while increasing the level of fault-tolerance.
However, there is a trade-off between resource
consumption and performance. In the presence of failures,
active actors provide instantaneous recovery, while
dormant actors will t ake longer to recover as they must

(1a) Source code

main() {
data_processor A, B; // regular objects
input  in;         // persistent object
int res[NUM_WORKERS]; // store results

for (int i = 0; i < NUM_WORKERS; ++i)
res[i] = B.filter2(A.filter1(in.get(i)));

}

(1c) Execution
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A.filter1

1111

B.filter2

1
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A.filter1
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(1b) Data-flow
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Figure 1. Transformation from source code to execution



first detect failure and then restart the computation from
the beginning.

The replication strategies presented in this paper only
apply to program graphs composed of regular actors. If
the program graph contains persistent actors, then they
will not be replicated and present single failure points
(transparently replicating persistent actors is much more
difficult and will be addressed in future research). This is
not a major problem as applications that use regular
objects typically exhibit a master/worker or a pipeline
structure. Thus, persistent actors in a graph usually
bracket a composition of regular actors, and it is that
subset of the program graph that we are replicating. In
fact, the main program is usually both the initiator of a
parallel computation and its recipient.

Furthermore, we assume that both user and system
objects (IM and TMU) are correctly implemented (i.e. no
logical errors) and fail only when the host on which they
are placed fails. We also assume that communication links
do not fail.

3.1 Specifying the fault-tolerance policy
One of our key goals is to provide application writers

with an easy-to-use mechanism for specifying fault-
tolerance. The interface for selecting a replication policy
simply consists of creating an instance of the class
ft_policy , setting the number of active and dormant
replicates, and specifying a ping value. The policy is then
valid within the scope of the declaration. This gives users
the flexibility of tailoring their fault-tolerance policies to
different parts of their code.

The interface to ft_policy  is shown below:
(1) class ft_policy {
(2) public:
(3) ft_policy (int active,

       int dormants =0, int ping =0);
(4) ~ft_policy();
(5) };

The following Mentat code fragment illustrates the use
of ft_policy :

(1)  main()  {
(2)  int a;
(3)  regular_class Y;
(4)  
(5)  // 2 active only
(6)  ft_policy repl ication( 2,0 );
(7)  
(8)  a = Y.op2( 3);
(9)  printf( “ a = %d\n ” , a);
(10)  
(11)  { // new scope , 1 active,
(12)  // 3  dorm ants, 30 sec ping
(13)  ft_policy replication2( 1,3,30 );
(14)  int b;
(15)  regular_class2 D, F;

(16)  
(17)  b = D.op1( F.op2( 4));
(18)  }
(19)  //policy restored to 2 active
(20)  }

Line (6) specifies a replication policy of two active.
The run-time system transparently replicates Y.op2(3)
twice. On line 13 the user has selected another policy that
is enforced within the scope of the declaration (lines 13-
17). The original policy is automatically restored when the
flow of control exits scope (line 18).

The fault-tolerance policy only applies to objects that
are directly invoked by the caller -- objects Y, D, F in this
example -- and does not propagate to called objects. If
Y.op2() invokes another object Z before returning its
result, Z will not be replicated by default.

3.2 Active actor replication
Before describing the algorithm for dormant actor

replication, we first review the implementation of active
actor replication. Both replication methods use the same
underlying mechanisms for transparently replicating
regular actors.

To implement replication, the Mentat run-time system
duplicates tokens and sends them to distinct TMUs. The
additional TMUs are selected by using a parameterized
hash function on the computation tag that, given a number
x, returns TMUx and guarantees that TMU0..TMUx-1 are
all on distinct hosts.

Using the same pipeline example as before, we show
the process of transforming MPL source code to a
replicated execution graph (Figure 2).

For each iteration,
•  A message that contains the token i, a copy of the

data-flow graph, and the fault-tolerance policy is
sent to the persistent actor in.get . Note that the
token is not replicated since in.get  is persistent.

• in.get  then sends a message containing its
output token to k distinct TMUs. The level of
replication k is extracted from the fault-tolerance
policy. In this particular case, k = 2.



 
• Upon receiving the token, each TMU

independently enables the actor A.filter1 and
makes a scheduling request. The scheduler
instantiates object A on the same host as the TMU
and returns A’s physical address (host id and port
number). There are now two copies of A.

• Each TMU forwards the token, the program graph,
and the fault-tolerance policy to its respective A.

• Each A executes function filter1().
• When each A.filter1 finishes, it duplicates the

result token and sends it to the two TMUs handling
B.filter2.

• Each TMU receives a total of two tokens but
discards one. At this point, B.filter2 is
handled normally with the end results sent back to
the main program.

In order to make a k-replicated object tolerate k - 1
host failures, we must ensure that they are placed on
distinct hosts. This is accomplished by scheduling regular
objects on the same host as the TMUs handling them.
Since the TMUs participating in replicating a regular actor
are guaranteed to be on distinct hosts (assuming that the
number of hosts is at least k), it follows that the objects
themselves will be on different hosts.

An arbitrary graph composed of k-replicated actors can
tolerate k - 1 host failures. As long as one of each of the
individual replicated actor succeeds, there will be a path
along which the overall computation may complete.
Consider the execution graph in Figure 2 where k = 2. To

prevent main from receiving its result would require at
least two failures, otherwise there would be a path from
in.get to main.

3.3 Algorithm for dormant actor replication
The implementation of active replication was a

relatively simple extension to the Mentat run-time system.
Its simplicity stems from the fact that TMUs need only
make local decisions and do not coordinate their
operations. Implementing dormant replication is much
more complex as it requires TMUs to cooperate amongst
themselves.  

The mechanisms for replicating dormant actors and
sending tokens to multiple destinations are the same ones
used in active replication (Figure 2). To aid in the
description of the implementation, we distinguish between
active and dormant TMUs, i.e. TMUs that handle active
or dormant actors respectively. Note that in the following
discussion TMUs are active or dormant with respect to a
single computation.

The computation tag and the fault-tolerance policy
determine the set of participating TMUs. The replication
level, k, is the number of active actors plus the number of
dormant actors.  We use the parameterized hash function
to order the set of participating TMUs (TMU0..TMUk-1).
By convention, TMU0..TMUa-1 are active and
TMUa..TMUk-1 are dormant.

To simpli fy the description of the algorithm, we
assume that there is only one active and d dormant TMUs.
Recall that an active TMU schedules an actor as soon as it
is enabled. The task of the dormant TMUs is to monitor
the progress of the scheduled actor and restart it when a
failure is detected. To minimize the number of ping
messages, the dormant TMUs do not all monitor the active
actor. Instead, the dormant TMUs elect a leader that is
responsible for monitoring the scheduled actor. The leader
assumes failure when the actor does not respond within
the specified ping interval P0.

The dormant leader also sends a “pulse” message every
P0 seconds to each of its followers. When a follower does
not receive a pulse within a time interval Pi, it elects itself
leader. The value Pi  is set according to the rank of each
follower and is a multiple of P0 . By staggering the values
of Pi, we attempt to elect a unique leader. In the event that
multiple leaders are elected, they will start monitoring the
same object, which will i ncrease the number of ping
messages sent to the object. In the unlikely worse case
scenario, all followers turn leaders and reschedule the
same failed computation. While this may waste resources
it does not affect the correctness of the computation. The
net result is that we are back to an active replication
policy.

(2c) Execution for one iteration

(2a) Source code

main() {
data_processor A, B; // regular objects
input  in;         // persistent object
int res[NUM_WORKERS]; // store results

ft_policy replication(2); // specify policy

for (int i = 0; i < NUM_WORKERS; ++i)
res[i] = B.filter2(A.filter1(in.get(i)));

}

(2b) Data-flow graph for each iteration

main
A.filter1 B.filter2

in.get
A.filter1 B.filter2

TMU
in.get

TMU

TMU A.filter

11
A.filter1

mai

n
TMU B.filter

21

B.filter

21

Figure 2. Active replication

Objects in dashed round- rectangles are on the same host



TMU1

TMU2

TMU3

We now describe the steps taken by a TMU when it has
matched the tokens for an actor:

TMU:
(T1) TMU determines whether it is active or
dormant. Since we have assumed a policy of  k
replication (one active and d dormants), TMU0 is
active and TMU1..TMUk-1 are dormant.
Active:

(A2) Schedules regular object and forwards
physical address to all dormant TMUs.

Dormant:
(D2) TMU determines whether it is a leader
or a follower. We have assumed only one active
TMU, thus the leader is TMU1 and the followers
are TMU2..TMUk-1.
Dormant Leader:

(L3) If the dormant leader does not receive a
physical address within P0 seconds, it changes
status from dormant to active and reschedules
the computation (A2).
(L4) Pings instantiated object every P0

seconds using physical address received from
active TMU (A2).
(L5) If object does not reply within P0

seconds, it changes the status to active and
reschedules the computation (A2).
(L6) Sends pulse to followers every P0

seconds.
Dormant Follower:

(F3) Determines rank Fi within the set of
followers. F0  is the highest ranking follower
and is initially TMU2.
(F4) If no pulse is received within P0 * (i+1)
seconds, it elects itself leader and sends a
pulse message to lower ranked followers.

We also present the protocol for regular objects:
Regular object:

(R1) Asynchronously responds to pings sent by
dormant leader TMU.
(R2) Upon completing a computation, it notifies
dormant TMUs so that they can stop tracking this
computation.

Using dormant replicates in conjunction with active
replicates provides the same guarantees as active
replication alone since all dormant TMUs have the
potential of changing their status to active TMUs. Indeed,
a dormant TMU with a ping value set to 0 is essentially
equivalent to an active TMU. If the active actor fails, steps
L3 and L5 guarantee that a dormant leader TMU turns
active and reschedules the actor computation. If the leader
TMU fails, step F4 guarantees that at least one of the

dormant follower TMU elects itself leader within a
bounded time interval.

4. DNA/Protein sequence comparison
Our test application compares two protein or DNA

sequence libraries. Each library contains one or more
sequences, each of which consists of a sequence name and
a variable-length string of characters (also known as
residues). Each sequence in the first library, called the
source library, is compared against each sequence in the
second, called the target library. For each sequence
comparison, a score is generated reflecting sequence

// Mentat source code
// This is the heart of the application
//
docomplib (genome_lib src, collector_class collector)
{

worker sw; // Smith-Watermann
chunk *tgt_chunks;
chunk  source_chunk;

ft_policy  replication(active, dormant, ping);

tgt_chunk = tgt.get_chunk(num_workers);
src_chunk = src.get_chunk();

for (i=0; i < num_workers; ++i) {
   collector.register( 

sw.compare(src_chunk,tgt_chunk[i]));
}

}

worker1

worker1

target

source

collector

worker2

worker2

Figure 4. Mentat source code and program graph

Policy shown is 1 active and 1 dormant

alive?

yes

TMU0

X1.foo

Figure 3. Active and dormant replication

TMU0 is the active TMU. TMU1, TMU2, TMU3 are dormant
TMUs. TMU1 is the dormant leader and monitors the health
of X1 by periodically sending ping messages. TMU1 also
sends “pulse” messages to its followers.



commonality using the Smith-Waterman [21] algorithm.
Once all of the scores have been generated for all

sequence comparisons, they are sorted and statistical
information is generated. An important attribute of the
algorithm is that all comparisons are independent of one
another and if many sequences are to be compared, they
can be compared in any order. This parallelism is easy to
exploit.

The program consists of several Mentat objects, the
source and target libraries, a collector object that monitors
the progress of the comparisons, a recorder object to
gather statistical information, and finally, workers to
perform the actual comparisons.

In Figure 4, we show the heart of the application. For
each worker, we compare the source library with a subset
of the target library. The results of the comparisons are
then forwarded to the collector object. Note that the
workers are the only objects that are instances of regular
Mentat classes. All other objects are persistent.

5. Experiment
We ran our experiments on two very different

environments. The first consisted of a dedicated network
of 26 33MHz 80486 PCs running Linux connected by
Ethernet. This controlled environment allowed us to
analyze our data with a high degree of confidence. The
second environment consisted of shared computing
resources at three sites: the SGI Power Challenges at
NCSA, high-end SGI workstations at NASA Langley and
several SUN workstations running both SunOS & Solaris
at the University of Virginia (UVa).

To minimize the impact on other users, we ran our
experiments over the course of several nights. Even then,
the machines were often heavily utilized (especially the
Power Challenges at NCSA and the compute servers at
UVa) and the load varied widely. In addition, we limited
ourselves to using at most 5 processors of the 16-
processor Power Challenges and 2 processors of the 4-
processor Solaris compute servers at UVa. Table 1 lists
the resources used at each site.

MACHINE #MACHINES PROCS. USED

Dedicated Homogeneous Testbed
Intel 80486-33
(Linux)

26 1 / 1

Shared Heterogeneous Testbed
SGI Power
Challenge Array

2 5 / 16

SGI Indigo 8 2 / 2
Sparc 20 (SunOS) 2 1 / 1
Sparc 10 (Solaris) 4 2 / 4
Sparc 10 (Solaris) 1 2 / 2

Table 1. Testbeds configuration

To determine the relative strengths and weaknesses of
various replication strategies, we tested their performance
in both environments with the DNA/protein sequence
comparison application developed at the University of
Virginia. Performance is given in terms of millions of
matrix entries per second (MEPS) and is a standard
benchmark in the biochemistry community. Each matrix
entry corresponds to one residue from one sequence
compared against one residue from another sequence.

We explored several replication strategies: 1 active, 1
active and 1 dormant (30 second ping interval), and 2
active. For the last two policies, we tested both the 0 and 1
host failure case. For all configurations, we varied the
number of workers from 8 to 24.

Baseline sequential times and their corresponding
MEPS are given in Table 2. Note that we used different
libraries for the testbeds. The MEPS rating for the Intel
platform corresponds to 905,079,926 residue comparisons
whereas performance for the other platforms were
computed with 3,087,930,284 residue comparisons. This
was a practical decision as the Intel based machines are
relatively slower.

MACHINE CPU TIME

(SEC)
MEPS

SGI Power Challenge Array 1455 2.12
SGI Indigo 1103 2.80
Sparc 20 (SunOS) 1987 1.55
Sparc 10 (Solaris) 1887 1.64
Intel 80486-33 (Linux) 2985 0.30

Table 2. Relative performance of each class of machine
using sequential version of the application

In Table 3 we show the average wall clock time
elapsed for the baseline case (1 active, no dormant) with
no failures on both testbeds.

WORKERS

MIN

TIME (S)
MAX

TIME (S)
MEAN

TIME(S) ±
STDDEV

MEPS

Dedicated Homogeneous Testbed
8 368 424 379 ± 18 2.39

16 217 241 225 ± 9 4.02

24 166 207 176 ± 13 5.13

Shared Heterogeneous Testbed
8 276 343 299 ± 27 10.33

16 160 283 199 ± 31 15.50

24 164 2678 212 ± 37 14.57

Table 3. Performance with no failures

The figures obtained on the shared heterogeneous
network exhibit a wide variance due to unpredictable
resource availability and the vastly different processing
capabilities of each platform. The performance in the
homogeneous environment was good.  However the focus



of this paper is not on the absolute performance of the
application but rather on exploring the costs associated
with using various fault-tolerance replication policies.

5.1 Execution in failure-free mode
We found that the additional performance overhead

incurred using 1 dormant actor is very low as compared to
the non-fault tolerant base case (Table 4).  In all cases, the
difference is within 6%.  This should be expected since a
dormant actor does not fire unless a fault is detected.  In
the cases of 2 active replicates in a dedicated homogenous
environment, we find that as the number of workers
increases, performance degradation occurs.

This performance penalty is a symptom of a saturated
computational environment.  As the number of workers
increases, the chances of multiple objects being scheduled
on the same host also increases. With our 26 host
homogeneous test environment, using 2 active replicates
with more than 13 workers guarantees that at least two
workers will be scheduled on the same host.

WORKERS

& POLICY

MIN

TIME(S)
MAX

TIME(S)
MEAN

TIME(S)
MEPS

Dedicated Homogeneous Testbed
8 (1,0) 368 424 379 ± 18 2.39

8 (1,1) 385 434 401 ± 16 2.26

8 (2,0) 376 398 384 ± 6 2.36

16 (1,0) 217 241 225 ± 9 4.02

16 (1,1) 215 260 227 ± 13 3.99

16 (2,0) 380 414 387 ± 9 2.34

24 (1,0) 166 207 176 ± 13 5.13

24 (1,1) 170 207 176 ± 13 5.14

24 (2,0) 279 452 314 ± 57 2.88

Shared Heterogeneous Testbed
8 (1,0) 276 343 299 ± 27 10.33

8 (1,1) 287 312 299 ± 9 10.32

8 (2,0) 274 331 297 ± 20 10.40

16 (1,0) 160 283 199 ± 31 15.50

16 (1,1) 163 248 211 ± 31 14.62

16 (2,0) 177 380 280 ± 65 11.04

24 (1,0) 164 268 212 ± 37 14.57

24 (1,1) 184 218 201 ± 13 15.33

24 (2,0) 157 235 211 ± 27 14.65

Table 4. Effects of using active and dormant replicates for
fault tolerance (Policy in parenthesis denote the
level of  active and dormant replication)

 We do not observe any performance advantage to
using multiple active replicates in our heterogeneous
testbed, however because of the high variance within the
heterogeneous network, we cannot draw any definite
conclusion.

5.2 Execution with host failure
Table 5 presents the effects of a simulated 1 host

failure in a variety of configurations.  In order to simulate
host failure, we terminated all of the Mentat objects on a
single host.  Since our replication strategy does not
include persistent objects, the main program, collector,
and libraries are not fault tolerant.  To ensure that these
persistent objects did not fail, they were all placed on the
same host and this host was never a candidate for a
simulated host failure.  The simulated host failure
occurred 45 seconds after the application began.

As expected the system successfully recovered from a
single host failure using 2 active or 1 active and 1 dormant
replicate.  The main difference between these two fault
tolerant strategies is their recovery characteristics.  In the
dormant replicate case the completion time depends on the
time it takes to detect failure, the amount of work lost,
where the object is rescheduled, and the cost of restarting
the object. Active replication essentially provides
instantaneous recovery.  As can be seen though, active
replication is not an efficient solution in a saturated
computational environment.

WORKERS

& POLICY

MIN

TIME(S)
MAX

TIME(S)
MEAN

TIME(S)
MEPS

Dedicated Homogeneous Testbed
8 (1,1) 463 466 408 ± 2 2.22

8 (2,0) 377 408 394 ± 13 2.30

16 (1,1) 294 364 321 ± 32 2.82

16 (2,0) 365 406 380 ± 11 2.38

24 (1,1) 244 313 280 ± 28 3.23

24 (2,0) 277 396 314 ± 56 2.88

Shared Heterogeneous Testbed
8 (1,1) 394 469 432 ± 53 7.15

8 (2,0) 282 356 309 ± 23 9.99

16 (1,1) 215 280 248 ± 23 12.45

16 (2,0) 234 407 295 ± 69 10.46

24 (1,1) 189 270 212 ± 25 14.57

24 (2,0) 195 376 259 ± 58 11.93

Table 5. Effects of using active and dormant replicates for
fault tolerance with one host failure (Policy in
parenthesis denote the level of  active and
dormant replication)

The data suggests that using dormant replication, fault
tolerance can be obtained without negatively impacting
resource consumption or application performance
significantly.  The advantages of dormant replication over
active replication is its more efficient use of resources.  In
failure free mode, there is no significant performance
penalty (less than 6%).  Theoretically, the potential benefit
to active replication is its instant recovery characteristic.
Unfortunately, this is only true when the number of
available resources is sufficiently high.  Otherwise, in a



saturated environment, replicated workers may compete
with each other for the same available resources; thus
negatively impacting performance.  In a highly shared
environment such as our heterogeneous testbed, active
replication may consume resources that other users could
have used.

6. Related work
While there is a rich literature in fault-tolerance for

distributed and real-time systems, there has been much
less done in the area of fault-tolerant parallel processing
systems. Most of the work has concentrated on fault-
tolerant hardware, e.g. fault-tolerant networks and system
reconfiguration after a fault. There has been some though,
for example, FT-Linda [4], PLinda [14], Orca [15],
Calypso [5], and Fail-safe PVM [16]. These systems use a
combination of well known mechanisms such as
replication, transactions, message logging, or checkpoints
and rollbacks to provide fault-tolerance.

Mentat differs from these systems in that its underlying
computational model is based on data-flow. Moreover,
Mentat and macro data-flow (MDF) differ from other
large grained data-flow systems such as Paralex [2], CDF
[3], HeNCE [6], and Code/Rope [8] in that program
graphs in MDF are dynamic and generated at runtime. In
Mentat, the program graphs are generated by the compiler
and run-time system, unlike [2][6][8], where the
programmer is responsible for generating the program
graphs using a graphical interface. Paralex uses the ISIS
toolkit [7] to provide fault-tolerance and to our knowledge
is one of the few data-flow parallel processing system that
provides direct support for fault-tolerance. ATAMM [19]
is another but its application domain is embedded real-
time systems.

The techniques described in this paper are easily
applicable to any coarse grain data-flow systems.
Replication is not novel and is a well understood concept
even in the general case of objects/processes with state
[17][20]. Our work differs in that we have focused on the
special case, i.e. stateless objects, and have exploited their
idempotent nature to provide easy-to-use fault-tolerance.
The combination of active and dormant replication form a
very special kind of replicated group that does not require
group communication protocols. We have tailored our
group abstraction to work with objects that do not
maintain state and this considerably simplifies our design.

7. Conclusion
Wide-area parallel processing systems will soon be

available to researchers to solve a range of problems. It is
certain that host failures and other faults will be an every
day occurrence in these systems. Unfortunately

contemporary parallel processing systems were not
constructed with fault-tolerance as a design objective.

The data-flow model offers hope. Its functional nature,
which makes it so amenable to parallel processing,      also
facilitates straight-forward fault-tolerant implementations.
It is the combination of ease of parallelization and fault-
tolerance that we feel will increase the importance of the
model in the future and lead to the widespread use of
functional components.

We have demonstrated the mechanisms by which the
Mentat run-time system transparently replicates data-flow
actors to implement a user defined fault-tolerance policy.
We have also introduced the concept of dormant actors.
Unlike active actors, dormant actors do not execute as
soon as they are enabled but wait until failure occurs
before firing their computation. We have shown that by
using dormant actors, programmers can add fault-
tolerance to their code without a significant impact on
resource consumption, and in failure-free mode, without
paying a high performance penalty (less than 6% in all
cases).

We have presented results from a production
biochemistry application running over both a local,
dedicated network of Intel based machine and a wide-area
heterogeneous environment consisting of shared resources
from three sites: NCSA, NASA Langley and the
University of Virginia.  The wide-area heterogeneous
testbed represents an early prototype of the envisioned
nation-wide Legion system.

Future work consists of incorporating persistent actors
in our replication strategies and on extending our
replication mechanism to handle network partitioning.
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