
20

T he NSF CCLI showcase is a yearly event at the
SIGCSE conference. If you are working on an

NSF CCLI grant, or have recently completed one and
would like to present at the showcase, please contact
Aaron Bloomfield at asb (at) cs (dot) virginia (dot)
edu. The selection process will begin in the early fall.

http://www.cs.virginia.edu/~asb/nsfcclishowcase

1

National Science Foundation
Course, Curriculum and
Laboratory Improvement

Program

 NSF NSF
CCLI Project ShowcaseCCLI Project Showcase

SIGCSE 2007

Covington, Kentucky

March 7-10, 2007

Booth 231
Exhibition Hall

CCLI Showcase

2

Program at a Glance

Thursday, 10:30 a.m.—12:00 p.m.

The Discrete Math Concept Inventory Project (page 4)

Vicki Almstrum, Southwestern University
David Klappholz, Stevens Institute of Technology

The Development of Student Electronic Portfolios for Curriculum
Improvement in Practice-Oriented Biology and Computer Sci-
ence Programs (page 5)

Kostia Bergman, Northeastern University
Veronica Porter, Northeastern University
Viera K. Proulx, Northeastern University
Mel Simms, Northeastern University

Media Computation as an Approach to Attract and Retain Stu-
dents (page 6)

Mark Guzdial, Georgia Institute of Technology

Friday 10:30 a.m.—12:00 p.m.

CLICS: Computer Security Workshops for Faculty (page 7)

Paul J. Wagner, University of Wisconsin, Eau Claire
Andrew T. Phillips, University of Wisconsin, Eau Claire

An Interactive Approach to Formal Languages and Automata
with JFLAP (page 8)

Susan H. Rodger, Duke University

Redesigning Introductory Computing: The Design Discipline
(page 9)

Stephen Bloch, Adelphi University
John Clements, California Polytechnic University, San Luis Obispo
Kathi Fisler, Worcester Polytechnic Institute
Matthew Flatt, University of Utah
Viera K. Proulx, Northeastern University

Problets: Online Programming Tutors for Computer Science I
(page 10)

Amruth Kumar, Ramapo College of New Jersey

Friday 2:00 p.m.—3:30 p.m. (continued on next page)

TinkerNet and TinkerNet 2 (page 11)

Michael Erlinger, Harvey Mudd College

19

18

SEED: Developing Instructional Laboratories
for Computer SEcurity EDucation

Saturday, 10:30 a.m.—12:00 p.m.

Wenliang Du, Syracuse University

T he security and assurance of our computing infrastructure has
become a national priority. To address this priority, higher

education has gradually incorporated the principles of computer and
information security into the mainstream undergraduate and graduate
computer science curricula. To achieve effective education, learning
security principles must be grounded in experience. This calls for
effective laboratory exercises (or course projects). Although a number
of laboratories have been designed for security education, they only
cover a small portion of the fundamental security principles.
Moreover, their underlying lab environments are different, making
integration of these laboratories infeasible for a semester-long
course. Currently, security laboratories that can be widely adopted
are still lacking, and they are in great demand in security education.
 We have developed a novel laboratory environment (referred
to as SEED). The SEED environment consists Minix, an instructional
operating system (OS), and Linux, a production OS. It takes
advantage of the simplicity of Minix and the completeness of Linux,
and provides a unified platform to support a rich set of laboratories for
computer security education. Based on the SEED environment, we
have developed a list of laboratories that cover a wide spectrum of
security principles. These labs provide opportunities for students to
develop essential skills for secure computing practice. We have been
using these labs in our courses during the last four years.

3

Program at a Glance

Friday 2:00 p.m.—3:30 p.m. (continued)

Integration and Assessment of Pair Programming, Unit Testing
and Lab Practica in an Introductory Computer Science Course
(page 12)

Grant Braught, Dickinson College
Tim Wahls, Dickinson College
Louis Ziantz, Dickinson College

Learning Computer Graphics Programming Through Examples
(page 13)

Kelvin Sung, University of Washington, Bothell
Peter Shirley, University of Utah
Becky Reed Rosenberg, University of Washington, Bothell

State-Wide Undergraduate Grid Computing Course (page 14)

Barry Wilkinson, University of North Carolina, Charlotte
Clayton Ferner, University of North Carolina, Wilmington

Saturday 10:30 a.m.—12:00 p.m.

Computing Educators Oral History Project (page 15)

Barbara B. Owens, Southwestern University
Vicki Almstrum, Southwestern University

Improving Student Learning in Multimedia Programming (page
16)

Chris Stein, CUNY Borough of Manhattan Community College
Jody Culkin, CUNY Borough of Manhattan Community College

Three Years of SOFTICE: Remotely Accessible, Load Balanced,
Virtual Machines for Operating Systems and Networking Labora-
tories (page 17)

Matt Rideout, University of South Florida
Sarah Langevin, University of South Florida
Alessio Gaspar, University of South Florida
William Armitage, University of South Florida

SEED: Developing Instructional Laboratories for Computer SE-
curity EDucation (page 18)

Wenliang Du, Syracuse University

4

The Discrete Math Concept Inventory Project

Thursday, 10:30 a.m.—12:00 p.m.

Vicki Almstrum, Southwestern University
David Klappholz, Stevens Institute of Technology

T he focus of the Discrete Math Concept Inventory project is to
study how student learning of Discrete Mathematics (DM) is in-

fluenced by pedagogy (e.g. the way DM instruction is sequenced and
integrated with instruction in the Computing core) and attitude to-
wards DM (e. g. student assessment of how and whether mastery of
DM will contribute to their intended careers, generally in IT). Immedi-
ate objectives are to construct and validate two types of tools for use
in the study: a Views About Discrete Mathematics instrument (VADM)
and a coordinated collection of Concept Inventories (CIs) covering
core DM concepts, including set theory, propositional logic, predicate
logic, relations, functions, recursion, and mathematical induction. We
expect that these tools will prove to be useful in both formative and
summative assessment of DM learning. On the formative side, if a CI
for a specific concept is administered after that concept has been
taught and the results reveal common misunderstandings, the instruc-
tor could use these insights to address the concept again, possibly by
simply discussing the misunderstandings in class. On the summative
side, post-core administration of the CIs can reveal how well curricu-
lar choices have motivated students to learn DM and how well stu-
dents have learned the concepts. We believe that use of the DMCI(s)
and VADM will: (i) help improve DM pedagogy/instruction; (ii) help
with ABET and other assessment of DM learning; and (iii) ultimately
help improve motivation to learn and master DM concepts - which in
turn could improve retention of computing majors.

17

Three Years of SOFTICE: Remotely
Accessible, Load Balanced, Virtual Machines

for Operating Systems
and Networking Laboratories

Saturday, 10:30 a.m.—12:00 p.m.

Matt Rideout,, University of South Florida
Sarah Langevin, University of South Florida
Alessio Gaspar, University of South Florida
William Armitage, University of South Florida

T he SOFTICE project (NSF CCLI award 0410696) started in 2004
with the intent of addressing classroom management / technical

and pedagogical issues involved in providing undergraduate students
with hands-on experience in the operating systems and networking
courses.
 From the technical perspective, we provide students access
to a Linux system on which they can spawn virtual machines (User
Mode Linux - UML project), network them together (My Linux Network
- MLN project) and even rebuild them from scratch with a modified
kernel if need be. Because these virtual machines are running on the
server, they can be accessed over the internet from any platform on
which a SSH client (and optionally a x-server) can run (windows,
Linux, Unix…). As the number of students grows, recycled classroom
PCs can be federated into a cluster and attached to our single Linux
server which will provide them, at boot time, with an OS to run and
use them to dispatch and load balance students connection. From the
students perspective, still a single IP to connect to, form the adminis-
trator perspective, all these extra nodes scale up the computing
power without requiring extra attention.
 From the pedagogical perspective, our work focused on lev-
eraging Linux technologies; in networking, students can assemble,
using an abstract configuration language, arbitrary networks to moni-
tor protocols traffic, learn about routing… In operating systems, they
can insert code into running kernels to explore its components one by
one thus circumventing traditional problems stemming form using a
production-level OS in the classroom.

16

Improving Student Learning
in Multimedia Programming

Saturday, 10:30 a.m.—12:00 p.m.

Chris Stein, CUNY Borough of Manhattan Community College
Jody Culkin, CUNY Borough of Manhattan Community College

M ultimedia Programming majors at the Borough of Manhattan
Community College, CUNY have historically had difficulty

learning the basic concepts behind programming and digital media,
and applying these concepts to real-world tasks. Our grant,
"Improving Student Learning through the use of 3D Simulation Activi-
ties and Case Studies in Multimedia Programming (NSF-DUE-
0511209)," addresses these issues by adapting and implementing
exemplary educational materials and pedagogical strategies from
three sources: the National Center for Case Study Teaching in Sci-
ence at University at Buffalo SUNY, St. Joseph's University (NSF-
DUE-0302542) and Wake Forest University (NSF-DUE-0127280,
NSF-DUE-0340969). Also, as part of the grant, a tutoring program
and a faculty development program were instituted to extend student
learning and ensure integration of the newly developed courseware
into the teaching practices of the faculty.
 The materials from Wake Forest teach students the basic
scientific concepts behind digital media and use those concepts to
give them a deeper understanding of multimedia software. The team
sponsored by St. Joseph's created curricular materials that use the
Alice programming environment to make object-oriented program-
ming more enjoyable and accessible to under-prepared students. We
adapted their materials to teach a course that begins with Alice and
then transitions students to the Flash IDE and ActionScript program-
ming. To move an application development course away from a lec-
ture-based pedagogy, we are developing a hands-on Case Study
approach with the help of the National Center for Case Study Teach-
ing in Science.

5

The Development of Student Electronic
Portfolios for Curriculum Improvement in

Practice-Oriented Biology and
Computer Science Programs

Thursday, 10:30 a.m.—12:00 p.m.

Kostia Bergman, Northeastern University
Veronica Porter, Northeastern University
Viera K. Proulx, Northeastern University
Mel Simms, Northeastern University

T his project is intended to move the assessment of practice-
oriented science education from indirect measures of learning to

direct indicators of student achievement. A review of science pro-
grams that combine academic instruction with cooperative education
work placements shows that the assessment of student achievement
still relies heavily on self-reports from employers and students to de-
termine whether or not students attain desired skills and abilities. A
carefully crafted electronic portfolio can be a vehicle through which
the students present direct evidence of attainment of program learn-
ing goals. Electronic portfolios have become widely adopted in K-12
science education, but have not as yet become common in university
science instruction. This may be because the first wave of higher
education electronic portfolios focused on expanded resume presen-
tations and personal development without the rigor necessary to be
useful indicators of student academic achievement. The creation and
maintenance of a performance-based portfolio can become a part of
a science student's learning experiences, and not just a documenta-
tion of learning that has already taken place. Portfolios may be espe-
cially useful for first-generation and second language students who
need as much opportunity as we can provide to improve their skills in
communicating and reflecting on their scientific understanding.

6

Media Computation as an Approach to
Attract and Retain Students

Thursday, 10:30 a.m.—12:00 p.m.

Mark Guzdial, Georgia Institute of Technology

T he research findings on why students avoid CS or drop-out
those that try seems to point much of the blame on what we

teach and how we teach it. A common theme of several studies is
that students find introductory computer science classes too abstract
and lacking relevance for real-world problems. To address this prob-
lem, we have developed a two semester sequence of introductory
computer science courses that contextualize computing education
around the manipulation and creation of media. Students in these
classes learn about loops by writing progrms negating and generat-
ing grayscale version of pictures; they learn about array manipulation
by writing programs to splice sounds; they learn about managing lar-
ger programs by writing 100+ line programs to generate animations
and collages; they learn about linked list manipulation by composing
music through nodes filled with MIDI notes; and they meet their first
tree as a "scene graph." The results are compelling: Dramatically
higher retention rates, particularly among women and non-technical
majors, and renewed interest in computing degrees. We'll present
student work and research findings in this presentation.

15

Computing Educators Oral History Project

Saturday, 10:30 a.m.—12:00 p.m.

Barbara B. Owens, Southwestern University
Vicki Almstrum, Southwestern University

T he Computing Educators Oral History Project (CEOHP) was
conceived as a means to address factors that affect girls' and

women's decisions about studying computing and working in the field.
This collection of career stories and artifacts from a variety of
computing educators will provide inspirational role models at levels
ranging from middle school to late career, and serve as a rich
multimedia database for social scientists studying career paths and
influences.
 Since 2004, a grass-roots movement has brought together a
broad international group of women and men passionate about this
project, who have pushed it forward. Concrete results to date include
an in-depth formative report, a solid protocol for carrying out
interviews, training several interviewers, a temporary website with
sample interviews, and a baseline collection of 12 interviews with
computing educators from across the globe. The work during 2007 is
being supported by a grant from NSF, with the goal of establishing
the project's foundation for the next five years.
 The work this year, which will clearly define the expertise and
infrastructure for this project, includes two strategy meetings, two
project reviews, and creation of an advisory board that includes
technical and visionary leaders. This planning phase is using
students enrolled in a capstone project at the PI's home institution to
develop a prototype web portal and tools for making the collection
accessible. The results will ensure the project's short-term technical
success as well as its long-term sustainability.
 The current status of the project can be followed at
http://cs.southwestern.edu/OHProject.

14

State-Wide Undergraduate
Grid Computing Course

Friday, 2:00 p.m.—3:30 p.m.

Barry Wilkinson, University of North Carolina, Charlotte
Clayton Ferner, University of North Carolina, Wilmington

G rid computing has become an important concept for high per-
formance computing. By taking advantage of the Internet, geo-

graphically distributed computers can be used collectively for collabo-
rative problem solving. In Grid computing, different organizations can
supply resources and personnel, and the Grid infrastructure can cross
organizational boundaries. This concept has many benefits including
solving problems that could not be solved previously because of lim-
ited computing resources (e.g. searching for new drugs). We have
developed an undergraduate grid computing course that crosses or-
ganizational boundaries using resources at several North Carolina
universities. The course is broadcast across North Carolina using the
televideo facilities of the North Carolina Research and Education Net-
work. Fourteen universities and colleges participated included minor-
ity-serving universities, state universities, and private colleges.
 Most grid computing courses are graduate-level courses
within a single department. Our course is unique both because it tar-
gets undergraduates and because many universities participated. The
course was first taught in Fall 2004 and again in Fall 2005. A newly
revised version of the course is currently being taught in Spring 2007
using a top-down approach starting with the use of a grid computing
portal, leading through details of grid computing infrastructure with
seven hands-on assignments, finally cumulating in a team mini-
project.
 This work is funded by the National Science Foundation
through their CCLI program, grant #0410667/053334, and the Univer-
sity of North Carolina Office of President.

7

CLICS: Computer Security
Workshops for Faculty

Friday, 10:30 a.m.—12:00 p.m.

Paul J. Wagner, University of Wisconsin, Eau Claire
Andrew T. Phillips, University of Wisconsin, Eau Claire

T his NSF CCLI Showcase presentation describes a workshop that
we have used to provide computer security education to CS/IT

professionals and students, and that has been effective in communi-
cating basic computer security principles as well as an understanding
of some of the significant tools and techniques in this area. Evalua-
tion of the workshop has been very positive, and we have been offer-
ing the workshop nationally since 2004.
 The workshop focuses on computer system security, as op-
posed to network security, and it concentrates on technological is-
sues, although there is some limited discussion of social engineering
and physical security. It also focuses on defensive issues, though
some discussion of attacking strategies is presented in order to help
the participant understand the mindset of an attacker.
 We present the workshop information in six modules, and
finish with a cyberwar exercise. The modules include material on (1)
information gathering and packet sniffing, (2) port scanning, (3) pass-
word policies and password cracking, (4) vulnerability assessment
and analysis, (5) system hardening, and (6) intrusion detection. All
topics include hands-on exercises with common tools on both Linux
and Windows systems.
 In the cyberwar exercise, our workshop staff initiate a series
of controlled exploits against all participant systems based on a vari-
ety of attack scenarios. The status of all participant machines is dis-
played for all participants so that they can see if the attacks success-
fully penetrated their system(s). This allows participants to see the
attacks developing and to defend against them in real time.

8

An Interactive Approach to Formal
Languages and Automata with JFLAP

Friday, 10:30 a.m.—12:00 p.m.

Susan H. Rodger, Duke University

T raditionally, formal languages and automata have been pre-
sented in a formal manner. Students generally have difficulty

understanding abstract concepts presented in this manner. We have
developed an instructional software tool JFLAP (www.jflap.org) to
complement the formal approach to the formal languages and auto-
mata course by allowing one to explore the abstract topics in a visual
and interactive manner. With JFLAP one can construct and test finite
automata, pushdown automata, Turing machines, and grammars. In
addition, one can interactively explore many proofs such as pumping
lemma, NFA to DFA to minimal state DFA, and CFG to NPDA. JFLAP
allows one to explore applications of formal languages. In the area of
parsing, one can construct an SLR parse table, including the DFA
that models the stack, and compare the parsing process with an
NPDA for the same grammar. In the area of biology, one can build L-
system grammars to model the growth of plants and fractals.
 JFLAP has been used around the world in over 160 countries
in automata theory courses, compiler courses, discrete math courses
and artificial intelligence courses. We demonstrate JFLAP, describe
how it can be used in teaching, and discuss a 2-year study to evalu-
ate JFLAP's effectiveness in learning involving a dozen universities.

13

Learning Computer Graphics Programming
Through Examples

Friday, 2:00 p.m.—3:30 p.m.

Kelvin Sung, University of Washington, Bothell
Peter Shirley, University of Utah
Becky Reed Rosenberg, University of Washington, Bothell

A few years ago, due to practical constraints, we started looking
for answers to the question that, "if students can only schedule

one elective computer graphics course in their undergraduate educa-
tion, what are the most important and useful knowledge we should
cover?"
 When answering this question, we strived to achieve: practi-
cality and essentiality. The knowledge should be practical with poten-
tial applicability in students' chosen filed of profession, and the knowl-
edge should be essential concepts that support students' future self-
learning.
 These objectives guided us to the topics that are relevant to
popular computer graphics (CG) applications. To address time restric-
tion, only topics related to interactive applications are covered. To
maximize potential applicability, example concept demonstration ap-
plications (CDAs) based on popular APIs implementing and utilizing
the relevant concepts are provided. To ensure students learn the con-
cepts together with the APIs, the CDAs are implemented based on
more than one APIs (OpenGL and D3D).
 The result is a course that emphasized on programming CG
concepts in moderately complex interactive applications. We cover
CG topics with exemplified CDAs in OpenGL and D3D. Students
demonstrated their understanding by implementing and integrating
CG concepts in their projects. These projects are implemented based
on a combination of languages C++/C#/Java, and APIs (OpenGL/
D3D/Java3D/XNA, and MFC/WinForm/JavaSwing). Currently, there
are more than 100 CDAs implemented in OpenGL and D3D.
 In our presentation we will explain the organization of our
CDAs; describe example CDAs of CG concepts; demonstrate exam-
ple student projects; and discuss student learning outcome and chal-
lenges we have encountered.

12

Integration and Assessment of Pair
Programming, Unit Testing and Lab Practica in

an Introductory Computer Science Course

Friday, 2:00 p.m.—3:30 p.m.

Grant Braught, Dickinson College
Tim Wahls, Dickinson College
Louis Ziantz, Dickinson College

T he objective of this project has been to design, implement and
assess a new introductory computer science course at Dickinson

College. The new course focuses on programming fundamentals and
integrates three exemplary practices: unit testing, pair programming
and laboratory practica. In developing and assessing this course we
have focused on three distinct goals: (1) Adapting and integrating pair
programming, unit testing and the use of lab practica. (2) Assessing
(a) the success and retention rate of students in the new course, (b)
the development of students' individual programming skills, (c) stu-
dents' use and mastery of unit testing and (d) the effects of pair pro-
gramming on (a), (b) and (c). (3) To refine and disseminate the mate-
rials developed for our course.
 During the first year of this project, four sections of our new
introductory course (24 students each) were offered with half of these
sections using pair-programming for lab assignments. A comparison
of the data collected from the paired and individual sections showed:

• No evidence for a difference in individual programming ability
as measured by performance on laboratory practica.

• No evidence for a difference in performance on any individu-
ally completed course work.

• Students in paired sections had greater confidence in their
individual ability to create complete unit test suites for their
programs.

9

Redesigning Introductory Computing:
The Design Discipline

Friday, 10:30 a.m.—12:00 p.m.

Stephen Bloch, Adelphi University
John Clements, California Polytechnic University, San Luis Obispo
Kathi Fisler, Worcester Polytechnic Institute
Matthew Flatt, University of Utah
Viera K. Proulx, Northeastern University

T he goal of this project is to disseminate the TeachScheme! -
ReachJava! introductory computer science curriculum to faculty

members through a series of summer workshops held at four loca-
tions throughout the USA over the next three years.
 The curriculum provides an integrated pedagogic and techni-
cal solution to teaching a disciplined program design that supports
novice learners and challenges all students. Our approach uses multi-
ple programming languages over multiple semesters with a well-
developed methodology for transitioning between languages. Stu-
dents develop skills at iterative refinement through a series of ex-
tended exercises supported by Teachpacks that encapsulate infra-
structure code while allowing students to work in pedagogically-
motivated language subsets. Each of these features is critical to cre-
ating a powerful yet novice-friendly introductory curriculum.
 Students start programming in functional languages, yet
through the use of Teachpacks implement an interactive game within
the first three weeks of the semester. By the end of the second se-
mester they develope a solid understanding of the architecture of the
Java Collections Framework including the design of algorithms that
leverage the collections interfaces for data structure access and the
functional operations on the data set elements. Test-driven design
and strict documentation requirements enforce disciplined program-
ming while illustrating in a concrete way the program's desired behav-
ior.
 Curriculum materials include software, Teachpacks, text-
books (published first part, the second part in a draft form), a wealth
of lab materials, lecture notes, and assignments with solutions.

10

Problets: Online Programming Tutors
for Computer Science I

Friday, 10:30 a.m.—12:00 p.m.

Amruth Kumar, Ramapo College of New Jersey

P roblets are web-based software that provide practice exercises
for Computer Science I. The exercises include programming

problems such as "Debug this program", "What is printed by this pro-
gram?", "Show the changes to the array after the loop", and "Evaluate
the expression step-by-step." The problems are not multiple-choice
questions, and cannot be solved without a deep understanding of
programming concepts.
 Problets grade the student's answer and provide instant feed-
back. In order to help the student learn from mistakes, problets: 1)
illustrate the correct answer by explaining the step-by-step execution
of the problem code; 2) graphically visualize the step-by-step execu-
tion of the program. These features help students learn on their own,
at their own pace.
 Problets log the student data on a central server. So, faculty
can get reports of how well each student did on each topic, how well
the class did, and the concepts that are not yet clear to each student/
class.
 Problets are designed to be used as supplements to class-
room instruction and complements to programming projects. They
can be used as exercises during closed labs, as assignments after
class, or for in-class testing with the feedback turned off. Since prob-
lets are self-administering, they can be used with or without faculty
supervision.
 Currently, problets are available for arithmetic expressions,
relational expressions, logical expressions, variables and scope, if
and if-else statements, while loops, for loops, and C++ pointers. They
are available for C, C++, Java and C# programming.
 Problets are free for educational use. They run on any recent
Java-enabled browser. Using problets in a course is simple: 1) faculty
specify the programming language and the topics for which they
would like to use problets; 2) a dedicated web site is set up for their
class; 3) faculty ask students to use problets from this web site; 4)
after the students use each problet, faculty request a report, which is
emailed to them within three working days.
 To try out problets, please visit http://www.problets.org.

11

TinkerNet and TinkerNet 2

Friday, 2:00 p.m.—3:30 p.m.

Michael Erlinger, Harvey Mudd College

T inkerNet1 was developed as a low-cost platform for teaching
bottom-up, handson networking at the undergraduate level. In

the original TinkerNet "throw away" PCs, cheap components, and
free software were used to enable students to build their own net-
working protocol stack from Ethernet up to the Application level, and
to have their packets actually transmitted on the wire. Operationally,
students: write network specific code; integrated that code into a new
OS kernel; downloaded the new kernel to a waiting host machine;
and then evaluated the traffic produced by that kernel. Since nothing
is emulated, standard networking tools such as packet sniffers can be
used to test student generated traffic from a host located on the
TinkerNet network. The directions and all code for creating a Tinker-
Net are available on the web.
 A new TinkerNet, TinkerNet 2, has been created as a soft-
ware only system based on User Mode Linux (UML) (http://user-
mode-linux.sourceforge.net). In this version only a server is needed.
Students again write network specific code and integrate the code
into an OS kernel, but in TinkerNet 2 the student kernel is executed
as a virtual kernel within UML. From the student view, TinkerNet 2
behaves the same as original TinkerNet. TinkerNet in both forms in-
cludes a set of laboratory exercises based on building a network pro-
tocol stack, e.g., Ethernet packet recognition and generation, ARP
packet recognition and generation, etc. Included with the laboratory
exercises is an automatic grading program which evaluates each ex-
ercise.
 This work was supported in part by the National Science
Foundation under grant NSF-DUE-0443012 to Harvey Mudd College.

