
End of Course Memo
CS 101 – Intro to Computing
Aaron Bloomfield (Fall 2005)

Course Objectives:

1. Understand fundamentals of programming such as variables, conditional and iterative
execution, methods, etc.

2. Understand fundamentals of object-oriented programming in Java, including defining
classes, invoking methods, using class libraries, etc.

3. Be aware of the important topics and principles of software development.
4. Have the ability to write a computer program to solve specified problems.
5. Be able to use the Java SDK environment to create, debug and run simple Java programs.

Assessment of Learning by Course-Objective:

For the assessment of these objectives, I analyze the scores of the various course assignments
(homeworks, exams, and programming quizzes). The last two midterms this semester were
rather difficult (averages of 73% and 71%, respectively); the first one was very easy (average of
89%). The homeworks required a lot of work, but generally had high scores (average of 92%),
due to the fact that the students could receive as much TA help as they wanted. Note that these
averages are for all students in either 101 or 101-E.

Objective 1: Understand fundamentals of programming such as variables, conditional and
iterative execution, methods, etc.
Evidence that this objective was met can be seen through the lab programming quizzes and the
homeworks. The last lab quiz was the most comprehensive, as it included the concepts taught
throughout the entire course (iteration, conditional statements, OOP, defining classes, writing a
computer program to solve a program, using the JDK, etc.). The average on the last lab quiz,
which was the most comprehensive, was 88%. The homework average was 92%, but as
mentioned above, that number is somewhat inflated.

Objective 2: Understand fundamentals of object-oriented programming in Java, including
defining classes, invoking methods, using class libraries, etc.
This objective was met, and the evidence is the same as that for objective 1.

Objective 3: Be aware of the important topics and principles of software development.
This objective was met much better this semester than in the past. In particular, the big game at
the end (see below) showed the a lot of the concepts related to programming large programs with
interacting objects. I plan to do more on this next semester by using case studies, presentations
by other faculty, etc.

Objective 4: Have the ability to write a computer program to solve specified problems.

This objective was met, and the evidence is the same as that for objective 1.

Objective 5: Be able to use the Java SDK environment to create, debug and run simple
Java programs.
This objective was met, and the evidence is the same as that for objective 1.

Assessment of Changes Made in the Course:
A lot of changes were made this semester, and these changes are cumulative with

changes made in previous semesters (such previous changes include fixing the grading system,
enforcing lab attendance, allowing easy access one’s grades, and obtaining better student
feedback).

One of the big changes was an increased level of workload – the students had a higher
workload than any of the previous semester since I have been involved with the course (I started
fall ’04). There were 8 homeworks (instead of 6) and 12 labs (instead of 9). Students had two
assignments or exams every week: either a homework and a lab, or a midterm and a lab quiz.
This kept them working quite hard, and they learned much more as a result.

The undergraduate TAs all held office hours this semester. This allowed for a very large
number of office hours to be held throughout the week, and was very well received by the
students. In addition, the undergraduate TAs also had a bigger role in the course in terms of
commenting on the various assignments, etc. I plan on increasing their role in future semesters.

The last 3 homeworks and the last 3 labs were all components of a larger computer
program (in this case, a text-based swords-and-sorcery adventure game). Although we ran into a
few minor issues (which will be corrected next term), this worked very well. The students got a
chance to see how objects in a big system interact, as well as seeing how large programs are
developed. They also enjoyed a number of aspects of this: both developing a big program (over
1,000 lines), and writing a computer game. I intend to keep this for next semester, although the
resulting large program will have a different focus.

A number of labs were improved upon, mostly labs that were very poorly reviewed by
students from last semester. In addition, 6 labs (of the 12 given) were created for this semester.
Three of these were components of the game, and thus probably can’t be used next semester (we
do not re-use assignments); three others replaced labs from last semester, and can be re-used next
semester.

We required the students to include test code in their programs. The intent was to make
them think about how to test their code. While a good idea, we see ways it can be better
implemented next semester.

Lastly, the lab room was renovated this past summer, and new computers were installed.
This was a great improvement over the state of the lab last semester.

Other Issues:

1. Do you have concerns regarding the background of students coming into the course?

No. The students are not assumed to have any background in any computer field for this course.

2. Are there other issues affecting student learning beyond what has been discussed
elsewhere in this report? Include any other concerns you have about what students have
or have not learned when they have completed the course.

Lots. The course is broken in so many ways. Having a lecture of 130 students (and over 400 in
the spring!) is a terrible way to teach any subject, much less computer programming. More
resources need to be devoted to this course (and not just by adding more course sections to
already overworked faculty). Adding a recitation section would help improve student learning,
although how to do this in a class that is only 3 credits and already has a lab is unknown. The
course needs to focus more on problem solving, and less on coding – this is something that has
changed some for this semester, and is going to be changed more for next semester. The course
also needs to show why computer science is interesting, and how there is more to it than just
programming in Java (this is also something that was changed for this semester, and needs to be
changed more for next semester).

3. If you know of changes being made or considered in the curriculum that might affect the
course, briefly describe what these are and how the course might be affected.

Some other departments are trying to replace CS 101 with a different type of introductory course,
such as one based on Matlab. This is not likely to affect the CS curriculum, as there will still be
a Java section. But it will affect the core classes that all incoming Engineering students take. A
potential problem is if a student takes the Matlab-based version of the introductory course, and
then tries to switch into the computer science major – he or she will not have the Java
background necessary to move into CS 201, and will have to repeat the introductory course
(which may not be allowed by UVa).

4. List any other comments you think the Committee that monitors our degree programs
should know about this course this semester.

Lower the class size! It’s ridiculous to have a computer science lecture that has this many
students!

Mapping of Course Objectives to BSCS Outcomes:

CS Degree Outcomes: Students who graduate with a BSCS will… Course
Obj. 1

Course
Obj. 2

Course
Obj. 3

Course
Obj. 4

Course
Obj. 5

(1: Math & DLD) Have demonstrated comprehension in relevant areas of
mathematics (including calculus, discrete math, and probability), and in the
area of logic design.
(2: Fundamentals) Have demonstrated comprehension in fundamental topics
of computing, including the intellectual core of computing, software design
and development, algorithms, computer organization and architecture, and
software systems.

D D D D

(3: Analysis & Evaluation) Have applied knowledge of areas of computing
to analyze and evaluate algorithms, designs, implementations, systems, or
other computing artifacts or work-products. Application of this knowledge
includes the ability to design, conduct and evaluate the results of
experiments and testing activity.

D D D

(4: Build Solutions) Have applied knowledge of areas of computing to
create solutions to challenging problems, including specifying, designing,
implementing and validating solutions for new problems.

D D D

(5: Research Awareness) Be aware of current research activity in computing
through activities including reading papers, hearing research presentations,
and successfully planning and completing an individual research project in
computing or its application.

F

(6: Broadening) Have demonstrated comprehension of subjects in the
humanities, social sciences, and the natural sciences in order to broaden a
student's education beyond engineering and computing.
(7: Social and Professional) Comprehend important social, ethical, and
professional considerations related to computing practice and research, and
be able to apply this knowledge when analyzing new situations.
(8: Post-graduation) Be prepared to enter graduate programs in computing
or related fields, and be prepared to begin a professional career in
computing.
(9: Life-long Learning) Have demonstrated a self-directed ability to acquire
new knowledge in computing, including the ability to learn about new ideas
and advances, techniques, tools, and languages, and to use them effectively;
and to be motivated to engage in life-long learning.
(10: Teamwork) Have demonstrated the ability to work effectively in a
development team.
(11: Communication) Have demonstrated the ability to communicate
effectively (orally and in writing) about technical issues.
(12: Professional development practices) Comprehend important issues
related to the development of computer-based systems in a professional
context using a well-defined process to guide development.

D D D D

