
End of Course Memo
CS 101 – Intro to Computing

Aaron Bloomfield (Spring 2005)

Course Objectives:

1. Understand fundamentals of programming such as variables, conditional and iterative
execution, methods, etc.

2. Understand fundamentals of object-oriented programming in Java, including defining
classes, invoking methods, using class libraries, etc.

3. Be aware of the important topics and principles of software development.
4. Have the ability to write a computer program to solve specified problems.
5. Be able to use the Java SDK environment to create, debug and run simple Java programs.

Assessment of Learning by Course-Objective:

For the assessment of these objectives, I analyze the scores of the various course assignments
(homeworks, exams, and programming quizzes). The first two midterms were very easy
(averages of 86.8% and 85.4%, respectively), the third was fair (average of 75.2%). The
homeworks were also very easy, and those grades were also inflated (the average on the
homeworks was 94.6%).

Objective 1: Understand fundamentals of programming such as var iables, conditional and
iterative execution, methods, etc.
Evidence that this objective was met can be seen through the lab programming quizzes and the
homeworks. The last lab quiz was the most comprehensive, as it included the concepts taught
throughout the entire course (iteration, conditional statements, OOP, defining classes, writing a
computer program to solve a program, using the JDK, etc.). The average on the last lab quiz,
which was the most comprehensive, was 89.1%. The homework average was 94.6%, but as
mentioned above, that number is inflated.

Objective 2: Understand fundamentals of object-or iented programming in Java, including
defining classes, invoking methods, using class librar ies, etc.
This objective was met, and the evidence is the same as that for objective 1.

Objective 3: Be aware of the important topics and pr inciples of software development.
I do not feel we met this objective very well, and this is something I plan to change in the future.
The only software development the students saw was for small Java programs, and that does not
constitute this objective. In particular, I plan on bringing in faculty to discuss their research and
software development. Quantitatively measuring these additions will be difficult, however.

Objective 4: Have the ability to wr ite a computer program to solve specified problems.

This objective was met, and the evidence is the same as that for objective 1.

Objective 5: Be able to use the Java SDK environment to create, debug and run simple
Java programs.
This objective was met, and the evidence is the same as that for objective 1.

Assessment of Changes Made in the Course:
One of the biggest changes made to the course was in the grading. In the past, the

grading was done on paper (which, for 520 students in 101 and 101-E, wasted a lot of paper).
The current grading system I developed allows all of this to be done online. The students submit
their assignments online, the grading is done (by the TAs) online, and the results are e-mailed
back to the students. This allowed for a much more efficient use of the teaching assistants time,
as well as saving a few forests.
 Although lab attendance was required in the past, it was first enforced this semester. The
students received a lab grade (within a week of their lab), which was a zero if they were not
present. In the past, they were told at the very end of the semester their lab grade.
 The students were given easy access to their grades and their graded assignments.
Indeed, we went a bit overboard on this – the students had access to their weighted average,
which caused them to focus on that average rather than learning the material. This is going to be
changed in future semesters (they can compute their average themselves, but it will not be
computed for them).
 A number of the labs were redone and/or improved on. A few of the labs (in particular,
the fourth lab) will need to be reworked for next semester.
 Student evaluations were improved over last semester. The students submitted evaluation
data for each homework assignment, for such questions as the difficulty of the assignment, how
long they spent on it, etc. This allowed for analysis of the student opinions of the various
assignments.

Other Issues:

1. Do you have concerns regarding the background of students coming into the course?

No. The students are not assumed to have any background in any computer field for this course.

2. Are there other issues affecting student learning beyond what has been discussed
elsewhere in this report? Include any other concerns you have about what students have
or have not learned when they have completed the course.

Lots. The course is broken in so many ways. Having a lecture of 420 students is a terrible way
to teach any subject, much less computer programming. If the department and/or school were
serious about improving the student experience in this course, this would be the aspect to tackle
first. The school/dept needs to devote more resources to this course (not just add more course

sections to already overworked faculty). The state of the lab room was absolutely terrible (I
repeatedly felt it necessary to apologize for the state of the room) – the computers were
repeatedly down, and the furniture was pathetic. Although this is being fixed (to some extent) at
the end of this semester, the students should not have had to put up with that this semester at all.
There is a general lack of teaching assistant support for this class (I had to fight very hard to get a
decent amount of undergrad TA support). The amount of funding for undergraduate teaching
assistants (who are generally better than the graduate teaching assistants) was much lower than
what was needed to run a good course. The prevalent department attitude about graduate student
teaching (specifically, that their teaching is not very important and their research is) – while it
might be good for publications, is not good for the pedagogical experience of the students in the
course. I had serious problems with one teaching assistant this semester, and was told there was
little I could do about it. Adding a recitation section would help improve student learning. The
course needs to focus more on problem solving, and less on coding – this is something that is
going to be changed for next semester. The course also needs to show why computer science is
interesting, and how there is more to it than just programming in Java (this is also something that
is going to change for next semester).

3. If you know of changes being made or considered in the curriculum that might affect the
course, briefly describe what these are and how the course might be affected.

Some other departments are trying to replace CS 101 with a different type of introductory course,
such as one based on Matlab. This is not likely to affect the CS curriculum, as there will still be
a Java section. But it will affect the core classes that all incoming Engineering students take. A
potential problem is if a student takes the Matlab-based version of the introductory course, and
then wants to switch into the computer science major – he or she will not have the Java
background necessary to move into CS 201, and will have to repeat the introductory course.

4. List any other comments you think the Committee that monitors our degree programs
should know about this course this semester.

Lower the class size! It’s ridiculous to have a computer science lecture that has 420 students!
Better labs; more TA funding; better departmental attitude about graduate student teaching; etc.
See my discussion above.

Mapping of Course Objectives to BSCS Outcomes:

CS Degree Outcomes: Students who graduate with a BSCS will…

Course
Obj . 1

Course
Obj . 2

Course
Obj . 3

Course
Obj . 4

Course
Obj . 5

(1: Math & DLD) Have demonstrated comprehension in relevant areas of
mathematics (including calculus, discrete math, and probability), and in the
area of logic design.

(2: Fundamentals) Have demonstrated comprehension in fundamental topics
of computing, including the intellectual core of computing, software design
and development, algorithms, computer organization and architecture, and
software systems.

D D D D

(3: Analysis & Evaluation) Have applied knowledge of areas of computing
to analyze and evaluate algorithms, designs, implementations, systems, or
other computing artifacts or work-products. Application of this knowledge
includes the ability to design, conduct and evaluate the results of
experiments and testing activity.

D D D

(4: Build Solutions) Have applied knowledge of areas of computing to
create solutions to challenging problems, including specifying, designing,
implementing and validating solutions for new problems.

D D D

(5: Research Awareness) Be aware of current research activity in computing
through activities including reading papers, hearing research presentations,
and successfully planning and completing an individual research project in
computing or its application.

 F

(6: Broadening) Have demonstrated comprehension of subjects in the
humanities, social sciences, and the natural sciences in order to broaden a
student's education beyond engineering and computing.

(7: Social and Professional) Comprehend important social, ethical, and
professional considerations related to computing practice and research, and
be able to apply this knowledge when analyzing new situations.

(8: Post-graduation) Be prepared to enter graduate programs in computing
or related fields, and be prepared to begin a professional career in
computing.

(9: Life-long Learning) Have demonstrated a self-directed ability to acquire
new knowledge in computing, including the ability to learn about new ideas
and advances, techniques, tools, and languages, and to use them effectively;
and to be motivated to engage in life-long learning.

(10: Teamwork) Have demonstrated the ability to work effectively in a
development team.

(11: Communication) Have demonstrated the ability to communicate
effectively (orally and in writing) about technical issues.

(12: Professional development practices) Comprehend important issues
related to the development of computer-based systems in a professional
context using a well-defined process to guide development.

D D D D

