
End of Course Memo
CS 101 – Intro to Computing

Aaron Bloomfield (Spring 2006)

Course Objectives:
1. Understand fundamentals of programming such as variables, conditional and iterative

execution, methods, etc.

2. Understand fundamentals of object-oriented programming in Java, including defining
classes, invoking methods, using class libraries, etc.

3. Be aware of the important topics and principles of software development.

4. Have the ability to write a computer program to solve specified problems.

5. Be able to use the Java SDK environment to create, debug and run simple Java programs.

Assessment of Learning by Course-Objective:

For the assessment of these objectives, I analyze the scores of the various course assignments
(homeworks, exams, and programming quizzes). The last three midterms this semester were
unintentionally a bit on the easy side (averages of 88%, 83%, and 85%, respectively). The
homeworks required a lot of work, but generally had high scores (average of 92%), due to the
fact that the students could receive as much TA help as they wanted. Note that these averages
are for all students in either 101 or 101-E.

Objective 1: Understand fundamentals of programming such as variables, conditional and
iterative execution, methods, etc.
Evidence that this objective was met can be seen through the lab programming quizzes and the
homeworks. The last lab quiz was the most comprehensive, as it included the concepts taught
throughout the entire course (iteration, conditional statements, OOP, defining classes, writing a
computer program to solve a program, using the JDK, etc.). The average on the last lab quiz,
which was the most comprehensive and the most difficult, was 78%. The homework average
was 92%, but as mentioned above, that number is somewhat inflated.

Objective 2: Understand fundamentals of object-oriented programming in Java, including
defining classes, invoking methods, using class libraries, etc.
This objective was met, and the evidence is the same as that for objective 1.

Objective 3: Be aware of the important topics and principles of software development.
This objective was met much better this semester than in the past. In particular, the big game at
the end (see below) showed the a lot of the concepts related to programming large programs with
interacting objects. I plan to do more on this next semester by using case studies, presentations
by other faculty, etc.

Objective 4: Have the ability to write a computer program to solve specified problems.
This objective was met, and the evidence is the same as that for objective 1.

Objective 5: Be able to use the Java SDK environment to create, debug and run simple
Java programs.
This objective was met, and the evidence is the same as that for objective 1.

Assessment of Changes Made in the Course:
This course is a difficult one to make significant changes during the spring semester, due

to the sheer volume of the number of students in the course (447 in 101 and 101-E combined). A
number of changes were made last fall, and these changes were kept this semester – including
using the game as the final project (see below), increasing the work load, etc.

The role of the undergraduate teaching assistants was improved this semester. There
were 15 undergraduate TAs, the largest number ever in 101. There were also 5 graduate TAs.
All of the TAs held office hours, which, when combined with the faculty members' office hours,
provided the students with 50 hours during the week that there was a course staff member
available for office hours. This was very well received by the students. In addition, the
undergraduate TAs also had a bigger role in the course in terms of commenting on the various
assignments, etc. I plan on increasing their role in future semesters.

I have been working hard at creating a set of experienced undergraduate teaching
assistants, and this really paid off this semester. Of the 12 undergraduates who have TA'ed for
me for CS 101 in the past, 10 of them returned this semester (the other 5 undergraduate TAs
were new this semester). This experience was invaluable for allowing the course to run
smoothly, and was a great asset. As an example, I was able to hold the first lab 2 days after I
was alloted the teaching assistants – the fact that many were experienced allowed for this to
occur without any hitches. The grading also went more smoothly, as there was no learning curve
for the experienced TAs to learn how things are graded in this course.

The last 3 homeworks and the last 3 labs were all components of a larger computer
program (in this case, a economic trading game). This idea was started last fall, and we were
able to improve on it this semester. The game involved the students moving from one location to
another, buying and selling various goods. We improved upon the issues we encountered last
semester, and see further ways to improve it for next semester. The students got a chance to see
how objects in a big system interact, as well as seeing how large programs are developed. They
also enjoyed a number of aspects of this: both developing a big program (over 1,000 lines), and
writing a computer game. I intend to keep this for next semester, although the resulting large
program will have a different focus.

A number of labs were improved upon, mostly labs that were very poorly reviewed by
students from last semester. In addition, 3 labs (of the 12 given) were created for this semester.
These were components of the game, and thus probably can’t be used next semester (we do not
re-use assignments).

We required the students to include test code in their programs. The intent was to make
them think about how to test their code. While a good idea, we see ways it can be better
implemented next semester.

Other Issues:

1. Do you have concerns regarding the background of students coming into the course?

No. The students are not assumed to have any background in any computer field for this course.

2. Are there other issues affecting student learning beyond what has been discussed
elsewhere in this report? Include any other concerns you have about what students have
or have not learned when they have completed the course.

Lots. The course is broken in so many ways. Having a lecture of 356 students in the CS 101
lecture is a terrible way to teach any subject, much less computer programming. More resources
need to be devoted to this course (and not just by adding more course sections to already
overworked faculty). Adding a recitation section would help improve student learning, although
how to do this in a class that is only 3 credits and already has a lab is unknown. The course
needs to focus more on problem solving, and less on coding – this is something that has changed
some for this semester, and I plan to work on this more for next semester. Java as a
introductory programming language is a terrible choice, and should be replaced. The
course also needs to show why computer science is interesting, and how there is more to it than
just programming in Java (this is also something that was changed for this semester, and needs to
be changed more for next semester).

3. If you know of changes being made or considered in the curriculum that might affect the
course, briefly describe what these are and how the course might be affected.

Some other departments want to replace CS 101 with a different type of introductory course,
such as one based on Matlab. This is not likely to affect the CS curriculum, as there will still be
a Java section. But it will affect the core classes that all incoming Engineering students take. A
potential problem is if a student takes the Matlab-based version of the introductory course, and
then tries to switch into the computer science major – he or she will not have the Java
background necessary to move into CS 201, and will have to repeat the introductory course
(which may not be allowed by UVa).

4. List any other comments you think the Committee that monitors our degree programs
should know about this course this semester.

Lower the class size! It’s ridiculous to have a computer science lecture that has this many
students!

Mapping of Course Objectives to BSCS Outcomes:

CS Degree Outcomes: Students who graduate with a BSCS will… Course
Obj. 1

Course
Obj. 2

Course
Obj. 3

Course
Obj. 4

Course
Obj. 5

(1: Math & DLD) Have demonstrated comprehension in relevant areas of
mathematics (including calculus, discrete math, and probability), and in the
area of logic design.
(2: Fundamentals) Have demonstrated comprehension in fundamental topics
of computing, including the intellectual core of computing, software design
and development, algorithms, computer organization and architecture, and
software systems.

D D D D

(3: Analysis & Evaluation) Have applied knowledge of areas of computing
to analyze and evaluate algorithms, designs, implementations, systems, or
other computing artifacts or work-products. Application of this knowledge
includes the ability to design, conduct and evaluate the results of
experiments and testing activity.

D D D

(4: Build Solutions) Have applied knowledge of areas of computing to
create solutions to challenging problems, including specifying, designing,
implementing and validating solutions for new problems.

D D D

(5: Research Awareness) Be aware of current research activity in computing
through activities including reading papers, hearing research presentations,
and successfully planning and completing an individual research project in
computing or its application.

F

(6: Broadening) Have demonstrated comprehension of subjects in the
humanities, social sciences, and the natural sciences in order to broaden a
student's education beyond engineering and computing.
(7: Social and Professional) Comprehend important social, ethical, and
professional considerations related to computing practice and research, and
be able to apply this knowledge when analyzing new situations.
(8: Post-graduation) Be prepared to enter graduate programs in computing
or related fields, and be prepared to begin a professional career in
computing.
(9: Life-long Learning) Have demonstrated a self-directed ability to acquire
new knowledge in computing, including the ability to learn about new ideas
and advances, techniques, tools, and languages, and to use them effectively;
and to be motivated to engage in life-long learning.
(10: Teamwork) Have demonstrated the ability to work effectively in a
development team.
(11: Communication) Have demonstrated the ability to communicate
effectively (orally and in writing) about technical issues.
(12: Professional development practices) Comprehend important issues
related to the development of computer-based systems in a professional
context using a well-defined process to guide development.

D D D D

