
End of Course Memo
CS 415 – Programming Languages

Aaron Bloomfield (Fall 2005)

Course Objectives:
1. Develop a greater understanding of the issues involved in programming language

design and implementation
2. Develop an in-depth understanding of functional, logic, and object-oriented

programming paradigms
3. Implement several programs in languages other than the one emphasized in the

core curriculum (Java/C++)
4. Understand design/implementation issues involved with variable allocation and

binding, control flow, types, subroutines, parameter passing
5. Develop an understanding of the compilation process

Assessment of Learning by Course-Objective:

Objective 1: [Develop a greater understanding of the issues involved in
programming language design and implementation]
The lectures discussed these topics. Thus, the students learned this objective through the
lectures, and were assessed on this on the midterm and final exam, as well as the final
project report.

Objective 2: [Develop an in-depth understanding of functional, logic, and object-
oriented programming paradigms]
Three of the four homeworks were based on these three programming paradigms; the first
homework was in Fortran. The second homework used OCaml (functional), the third
Prolog (logic), and the fourth Smalltalk (OOP).

Objective 3: [Implement several programs in languages other than the one
emphasized in the core curriculum (Java/C++)]
There were five languages for which the students had to develop a program. The first
four were the four listed in objective 2. The last program was their final project, which
they chose the language. The languages chosen were Ada 95, Delphi, Euphoria, PHP,
Pascal, PostScript, Python, and Ruby.

Objective 4: [Understand design/implementation issues involved with variable
allocation and binding, control flow, types, subroutines, parameter passing]
The lectures discussed these topics. Thus, the students learned this objective through the
lectures, and were assessed on this on the midterm and final exam, as well as the final
project report.

Objective 5: [Develop an understanding of the compilation process]

The overall structure of the lectures generally followed the stages of a compiler. Thus,
the students learned this objective through the lectures, and were assessed on this on the
midterm and final exam.

Assessment of Changes Made in the Course:
As this was my first semester teaching this course, I did not make many

significant changes to the course. The few changes I did make are listed below.
• Coverage of aspect oriented programming: this topic was introduced in two

separate lectures, so as to give the students an understanding of what it is.
• Coverage of design patterns: this topic also was introduced throughout the end of

the semester. It was not discussed in great detail, as it more properly belongs in
another course (such as CS 494). But as the students had never heard of design
patterns (!), I felt they should know what they are.

• Change of the functional programming language: in previous semesters it was
Scheme; this semester, I used OCaml.

• Addition of a homework assignment, specifically the Fortran assignment
• Coverage of different languages: throughout the semester, I gave a few lectures

on specific languages. Some were given in past iterations of the course (such as
Fortran, Algol 60, Prolog, and Smalltalk), others were augmented (such as Perl),
and others were new (such as C# and INTERCAL). This worked well to show
how different languages solve the common programming language problems.

Other Issues:

1. Do you have concerns regarding the background of students coming into the
course?

The students are not very familiar with compilers. While this is arguably a
different course, the only time a student really learns about compilers is in the PL
course. I would support adding an undergraduate compilers course.

Also, many students commented that they finally understood why computer
theory (from CS 302) is useful, as I was able to show a number of applications in
this course (regular expressions for a lexer, etc.). The theory courses should give
a better background as to the applications of computer theory.

Lastly, students should be exposed to design patterns in prior courses: perhaps CS
201, but definitely by the end of CS 216. It does not have to be a very in-depth
exposure, but they should know what they are.

2. Are there other issues affecting student learning beyond what has been discussed
elsewhere in this report? Include any other concerns you have about what
students have or have not learned when they have completed the course.

None.

3. If you know of changes being made or considered in the curriculum that might
affect the course, briefly describe what these are and how the course might be
affected.

Some have suggested making this course a required course – I would support that
proposal.

4. List any other comments you think the Committee that monitors our degree
programs should know about this course this semester.

None, other than my comments above (especially for # 2).

Mapping of Course Objectives to BSCS Outcomes:

CS Degree Outcomes: Students who graduate with a BSCS
will…

Course
Obj. 1

Course
Obj. 2

Course
Obj. 3

Course
Obj. 4

Course
Obj. 5

(1: Math & DLD) Have demonstrated comprehension in relevant
areas of mathematics (including calculus, discrete math, and
probability), and in the area of logic design.
(2: Fundamentals) Have demonstrated comprehension in
fundamental topics of computing, including the intellectual core
of computing, software design and development, algorithms,
computer organization and architecture, and software systems.

X X X X

(3: Analysis & Evaluation) Have applied knowledge of areas of
computing to analyze and evaluate algorithms, designs,
implementations, systems, or other computing artifacts or work-
products. Application of this knowledge includes the ability to
design, conduct and evaluate the results of experiments and testing
activity.
(4: Build Solutions) Have applied knowledge of areas of
computing to create solutions to challenging problems, including
specifying, designing, implementing and validating solutions for
new problems.

X

(5: Research Awareness) Be aware of current research activity in
computing through activities including reading papers, hearing
research presentations, and successfully planning and completing
an individual research project in computing or its application.

X X

(6: Broadening) Have demonstrated comprehension of subjects in
the humanities, social sciences, and the natural sciences in order to
broaden a student's education beyond engineering and computing.
(7: Social and Professional) Comprehend important social, ethical,
and professional considerations related to computing practice and
research, and be able to apply this knowledge when analyzing new
situations.
(8: Post-graduation) Be prepared to enter graduate programs in
computing or related fields, and be prepared to begin a
professional career in computing.

X X X X X

(9: Life-long Learning) Have demonstrated a self-directed ability
to acquire new knowledge in computing, including the ability to
learn about new ideas and advances, techniques, tools, and
languages, and to use them effectively; and to be motivated to
engage in life-long learning.

X

(10: Teamwork) Have demonstrated the ability to work effectively
in a development team.
(11: Communication) Have demonstrated the ability to
communicate effectively (orally and in writing) about technical
issues.

X

(12: Professional development practices) Comprehend important
issues related to the development of computer-based systems in a
professional context using a well-defined process to guide
development.

