This exam is open book. Each question is worth 3 points.

1. Are you in CS101 or CS101E?

2. Suppose \(n, j \) and \(k \) are previously defined and initialized integer variables. Write an expression that multiplies \(n \) times the quantity \(j \) plus \(k \).

3. Suppose \(n \) is a previously defined and initialized integer variable. Write an expression whose value is the remainder of \(n \) when divided by 6.

4. Write a definition for a local integer variable \(n \) whose initial value is 21.

5. Suppose \(n \) and \(m \) are previously defined and initialized integer variables. Write a statement that updates the value of \(n \) to the value of \(m \).
6. Suppose \(n \) is a previously defined and initialized integer variable. Write a statement that increases the value of variable \(n \) by 1, where the statement does not use the = operator.

7. Write a statement that defines an integer constant named \texttt{ZERO} whose value is 0.

8. Suppose \(n \) is a previously defined and initialized integer variable and that \(x \) is a previously defined and initialized floating point variable. Write a statement that updates the value of \(n \) by assigning it the int-casted value of floating point value \(x \).

9. Suppose \(j \) and \(k \) are previously defined and initialized integer variables. Write an if statement that sets variables \(j \) and \(k \) to 1 when \(j \) is less than \(k \).

10. Suppose \(j \) and \(k \) are previously defined and initialized integer variables. Write an if statement that sets variables \(j \) and \(k \) to 1 when \(j \) is less than \(k \); otherwise it sets \(j \) and \(k \) to 10.
11. Suppose \(j \) and \(k \) are previously defined and initialized integer variables. Write an if-else-if statement that sets variable \(j \) to 1, 2, or 3 respectively depending whether \(j \) is less than \(k \), \(j \) equals \(k \), or otherwise (i.e., \(j \) is greater than \(k \)).

12. Write a for statement that iterates 1000 times using a previously undefined integer index variable \(i \). Each iteration of the loop should display the current value of \(i \) (i.e., the values to be displayed are 0 …999).

13. Define a Scanner variable \(stdin \) associated with the standard input stream. Your definition should be compatible with the latest version of Java.

14. Define a Scanner variable \(stream \) associated the string represented by the previously defined and initialized String variable \(s \). Your definition should be compatible with the latest version of Java.
15. Suppose s and t are previously defined and initialized \texttt{String} variables. Write a code segment that causes t to represent the substring of s defined by indices 3 through 7 inclusive.

16. Suppose \texttt{input} is a previously defined and initialized $\texttt{Scanner}$ variable. Write a \texttt{while} loop that iterates while the input stream associated with variable \texttt{input} has unread values. Each iteration of the loop should read and display the next \texttt{int} value.

17. In TWENTY words or less how do the $\texttt{==}$ operator and the $\texttt{\texttt{equals}()}$ method typically differ.

18. Define a new $\texttt{int}[]$ variable \texttt{data} that references a list composed of the values 1, 2, and 3.

19. Define a new $\texttt{int}[]$ variable \texttt{data} that references a new array with ten elements.

20. Update an initialized $\texttt{int}[]$ variable \texttt{data} so that it references a new array with zero elements.
21. Suppose list is a defined and initialized int[] variable with 100 elements. Write a statement that assigns 10 to the first element of list.

22. Suppose list is a defined and initialized int[] variable with 100 elements. Write a statement that assigns 10 to the last element of list.

23. Suppose list is a defined and initialized int[] variable. Write a statement that displays the number of elements represented by list.

24. Suppose list is a defined and initialized String[] variable for an array with n elements and result is a defined and initialized String variable. Write a code segment that causes result to reference a String whose value is a concatenation of the values represented by list.

25. What is the output of the following program?

 public class Think {
 public void static mystery(int n) {
 n = 5;
 }

 public void static main(String[] args) {
 int n = 0;
 mystery(n);
 System.out.println("n = " + n);
 }
 }

 The output is

 n = __________
The remaining questions deal with a class named \texttt{Car}. Class \texttt{Car} is to have the following private \texttt{double}-valued attribute.

- \texttt{speed} – current travelling rate of the car in miles per hour.

Class \texttt{Car} is to also have the following \texttt{public} methods.

- \texttt{Car()} – default constructor that configures a car to have a speed of 55 miles per hour.
- \texttt{Car(double v)} – specific constructor that has a single \texttt{double}-valued parameter \(v\). The constructor configures the new car to have a speed of \(v\).
- \texttt{howFar(double t)} – indicates how far the car will go if it travels for \(t\) hours, where \(t\) is its \texttt{double}-valued parameter; i.e., the return value is the product of \(t\) and the speed attribute of the car.
- \texttt{getSpeed()} – returns the current speed of the car.
- \texttt{setSpeed(double v)} – sets the current speed of the car to the value of its single \texttt{double}-valued parameter \(v\).
- \texttt{clone()} – returns a new \texttt{Car} with the same attribute of this car.
- \texttt{equals(Object)} – returns whether its \texttt{Object}-valued parameter value is a \texttt{Car} with the same speed as this car.
- \texttt{toString()} – returns a \texttt{String} representation of the car. The representation should consist of the value of the speed attribute within parentheses.

26. Implement the \texttt{Car} default constructor using an assignment statement to configure the speed attribute.

27. Implement the \texttt{Car} speed accessor \texttt{getSpeed()}.

28. Implement the \texttt{Car} speed mutator \texttt{setSpeed()}.
29. Implement the `Car` specific constructor using a mutator to configure the speed attribute.

30. Implement the `toString()` method for `Car`.

31. Implement the `Car` default constructor so that it uses the specific constructor to configure the speed attribute of the new `Car`.

32. Implement the `equals()` method for `Car`.
33. Implement the `clone()` method for `Car`.

34. Suppose `list` is a `Car[]` variable. Write a statement that updates the `list` element with index `i` so that its speed is now 25 miles per hour.

Pledge: