
CS 101 Fall 2006 Final Exam Name: _______________________________ Email ID: ________

 1

You only need to write your name and e-mail ID on the first page.

This exam is CLOSED text book, closed-notes, closed-calculator, closed-neighbor, etc. Questions are
worth different amounts, so be sure to look over all the questions and plan your time accordingly. Please
sign the honor pledge here:

Section # ____ / 5

Question 1 ____ / 15

Question 2 ____ / 25

Question 3 ____ / 20

Question 4 ____ / 10

Question 5 ____ / 25

Total ____ / 100

Note: When an integer type is required use int, when a floating-point type is required use double. If we
don’t specify an aspect of a problem, you can make any choice consistent with the given constraints.

Note: If you are still writing on the exam after “pens down” is called – even if it is just to write your
name – then you will receive a zero on this exam. No exceptions!

1. [5 points] What lab section are you in?

____ CS 101-E ____ CS 101-4 (lab 2:00–3:30 p.m. Fri)

____ CS 101-2 (lab 7:00–8:30 p.m. Thu) ____ CS 101-5 (lab 10:00–11:30 a.m. Fri)

____ CS 101-3 (lab noon–1:30 p.m. Fri) ____ CS 101-6 (lab 2:00–3:30 p.m. Thu)

CS 101 Fall 2006 Final Exam Name: _______________________________ Email ID: ________

 2

This exam involves the programming of a single class: a simplified version of the Java Vector class. A
major benefit of a vector over an array is that the size of a vector is not fixed. Rather, vectors grow and
shrink as elements are added and removed. The class you will implement, called MyVector, will support
variable-sized lists of Objects using a technique known as a linked list (which we’ll discuss in a moment).
The MyVector class provides five public methods, with the following specifications:

• MyVector() – construct an empty list, i.e., one with no elements
• int count() – return the number of elements in the list
• void add(Object o) – add the Object o as an element at the beginning of the list
• void clear() – clear the list, i.e., set it back to a list with no elements
• Object [] toArray() – return an array whose size is the length of the list and that contains the same

elements as the list in the same order that they appear in the list

Here then is an outline of the MyVector class:

public class MyVector {
 private ListNode first; // reference to a node storing the first element in the list, if any

 public MyVector() { // your code here }
 public int count() { // your code here }
 public void add(Object o) { // your code here }
 public void clear() { // your code here }
 public Object [] toArray() { // your code here }
}

Class MyVector has a single private data member, first, of type ListNode. The value of this data member
represents the list of objects stored by a given MyVector object. Here is some very important information.
Read this carefully. (1) An empty list is represented by setting the value of first to null. Recall: in Java, null
is the constant representing a null object reference. Here, then, is a picture of the representation of an empty
list:

MyVector

- first null

+ ...

(2) A non-empty list is represented by setting the value of first to be a reference to a ListNode object that in
turn represents two things: the value of the first element in the list, and a reference to another ListNode
object that represents the beginning of the rest of the list (which, at the end of the list, is the empty list).

This approach to chaining together nodes through references is what we mean by the term linked list. To see
how this will works, you have to first consider and understand the definition of the ListNode class, itself.

CS 101 Fall 2006 Final Exam Name: _______________________________ Email ID: ________

 3

class ListNode {
 public Object value; // reference to the Object stored by this node
 public ListNode rest; // reference to the first ListNode in the rest of the list, if any (can be null)
}

Remember: An object of this class will store just one of the values in a list of values. A MyVector object
representing a list of N objects will thus have N ListNode objects, one for each element in the list. As you
can see, the ListNode class is simple. It has two public data members. The first, value, will holds a reference
to one object in a given list. The second data member, rest, is the slightly tricky part. It stores a reference to
the first ListNode in the rest of the list, which we represent as a reference, rest, to another ListNode object.
All of this is much clearer if you consider a few simple pictures. In the following pictures, each rectangle
represents an object. Its type is given at the top of the rectangle and its data members follow. Reference
values are represented by arrows between objects. A null reference is represented by an arrow pointing to
null.

The picture that follows is of a list with one element, called Object 1. The list as a whole is represented by
an object of type MyVector. This object has a data member first, as described above. The value of this data
member is a reference to a ListNode that in turn stores a reference to Object 1. The ListNode object also has
a reference, rest, to the rest of the list. Because this list has only one element, the rest of the list is empty,
and so the value of the rest data member is set to null. If the rest of the list were not empty (as would occur
if the list had two or more elements), then the value of the rest data member would be a reference to another
ListNode object representing the first element in the rest of the list!

Here, then, is a picture for a list with two elements, Object 2 and Object 1. In particular, this is the list that
we will get if we add Object 2 to a list initially containing only Object 1. On this exam, we always add new
elements at the beginning of a list. A list with two elements, as the picture below illustrates, is represented
by having the first data member of class MyVector refer to a ListNode representing the first element in the
list, and by having that ListNode refer to a second ListNode object, which in turn represents the second
object in the list. Here then is a picture of a list with two elements, Object 2 and Object 1, which, again, is
the list we get if we add Object 2 to the one-element list above.

CS 101 Fall 2006 Final Exam Name: _______________________________ Email ID: ________

 4

- value

- rest

MyVector

- first ListNode

- value

- rest

Object 2

ListNode

null

Object 1

+ ...

A list with three elements would be represented by having the second ListNode object refer to a third. A list
with N elements is thus represented by a chain of ListNode objects, each referring to the next in line, with
the last one in line referring to null.

Your job on this exam is to program a set of MyVector methods that in effect maintain a variable-length list
of objects as a variable-length chain, linked list, of ListNodes.

CS 101 Fall 2006 Final Exam Name: _______________________________ Email ID: ________

 5

Question one [15 points]. Provide an implementation of the constructor, MyVector(). Remember, this
method is required to initialize a new MyVector object to represent an empty list of objects. If you don’t
know what to do at this point, just go back and re-read the preceding directions. They state very clearly how
we will represent an empty list.

 public MyVector() { // your code goes here

 }

Question two [25 points]. Implement the method public void add(Object o). Think very carefully about
what needs to happen. First, you need to create a new ListNode object to represent (and refer to) the object,
o, being added to the list. Then you need to make this new ListNode object the first element in the chain of
ListNode objects representing the updated list. The key insight is that the object being added will become
the first element in the updated list, while the first element in the list before the new node is added will
become the rest of the new list. Read that again. Now go back and look at the pictures of the empty and the
one-element lists above, and between the one-element and two-element lists. The differences between these
pairs of lists is precisely the difference that your add code must implement. Note in particular: the first node
in the list before the add method executes becomes the first node in the rest of the list after the new element
is added. Here, then, is an outline of what your code must do: (1) create a new ListNode; (2) make its value
refer to the object being added; (3) make its rest field refer to the element that was, until now, first in the list
(which will be null if the list was empty); (4) make the first element in the new list refer to the new
ListNode.

 public add(Object o) { // your code goes here

// create a new ListNode

// make its value refer to the object being added

// make its rest field refer to the element that until now was first in the list

// make the first element in the list refer to the new ListNode.

}

CS 101 Fall 2006 Final Exam Name: _______________________________ Email ID: ________

 6

Question three [20 points]. This question tests your ability to use iteration in Java. The count method
returns the number of elements in the list. The question is how to implement this method. Here what you
need to do. Your code will (1) initialize a counter to zero and then execute the following loop: (a) load the
reference to the first ListNode into a variable cursor; (b) if the end of the chain has been found (cursor is
null) terminate the loop and return the current count (which will be zero if the list was empty to start with),
(b) otherwise add one to the count, update cursor to refer to the next ListNode in the chain (rest), and repeat
the loop, starting with the test. This iterative process will repeat until the end of the list is found, at which
point count will have accumulated a value indicating the number of elements in the list. If you haven’t
understood these directions so far, just try “running” them by hand. Your finger is the cursor. See the
picture of the empty list. count starts at zero. Point at first. What is its value? Null? Yes, the loop terminates
and the “program” returns count, which is zero. Now do the same thing for the list with one element. count
starts at zero. Point at first. Is it zero? No, so add one to count, and now point at rest. Is it zero? Keep going.
Get it? It’s a little tricky but really not so hard! Now you just need to express your understanding in Java
code.

public int count() {

 // initialize an integer variable count to zero

 // initialize a ListNode variable, cursor, to the first element in the list (it could be null)

 // write the loop – if cursor is null, return count; otherwise (a) increment count, (b) update cursor to refer
 // to the rest ListNode (it could be null), and (c) repeat.

 // return the value of count

}

CS 101 Fall 2006 Final Exam Name: _______________________________ Email ID: ________

 7

Question four [10 points]. This one is easy. Implement public void clear(). When this method is applied to
a MyVector v, the result is that v subsequently represents the empty list.

public void clear() {
 // your code goes here

}

Question five [25 points]. Okay, you now have to implement public Object [] toArray(). This method is to
return an array of the same length as the list and containing the same elements in exactly the same order.
You may assume that this method will only be called for MyVector lists with at least one element.
Conceptually the logic is pretty simple. First, create an array of Objects having the same number of
elements as the given list. Hint: You already have a method that returns that information. Use it. Second,
you need to set the value of each element in the array to the value of the corresponding element in the list.
To do this, loop through the elements of the list, setting the corresponding elements of the array. You have
already written code to loop through the elements of the list. Re-use the key parts of that code here.

public Object [] toArray() {

 // determine the number of elements in the list, store it as length

 // allocate an array arr of objects of that length

 // iterate over the list elements, storing each value in the corresponding array element.
 // You will need to keep track of the correct array index as you proceed, incrementing by
 // one on each pass through the loop.

}

CS 101 Fall 2006 Final Exam Name: _______________________________ Email ID: ________

 8

This page unintentionally left blank

