
CS 415: Programming Languages 

Homework 2: Ocaml 

Due Friday, 23 September by 10 a.m. 
 
 
For this homework, you will need to write three Ocaml functions that deal with DFAs and NFAs: 

• dfasimulate: given a DFA and input, will return the state transition of the progress through the 
DFA, and true or false if the DFA ended in a final state after reading in all the input 

• nfasimulate: same as dfasimulate, but for an NFA (this function can’t use nfa2dfa, however) 
• nfa2dfa: given an NFA, this function will convert it to a DFA 

 
The only requirements are: 

• The types of the functions must be as specified below, to standardize the specification for the 
FAs, and thus enable us to test your code 

• You may NOT use any iterative programming, objects, or functions that have side-effects (this 
includes print statements) even though Ocaml allows this – the homework must use “pure” 
functions and recursion only (you are welcome to have these aspects in there while you are 
developing – just not in the final submission) 

• You may only use the functions in the List and String modules as well as the standard OCaml 
functions 

 

FA specification 
 All states and transitions in the FAs will have string names.  You can assume that the states we 
use in our test FAs will only have state names made of digits and/or letters (although the transitions may 
include punctuation).  The input for both types of FAs will be a string list , where the various 
elements of the list are the transitions the FA should take. 
 The type for both FAs must be string * (string * char * string) list * string lis t .  
The first part of the tuple, the string , is the initial (or current) state of the FA.  The second part of the 
tuple, the (string * string * string) list , contains a list of all the transitions of the FA.  A 
transition consists of an initial state, a symbol, and the destination state.  The final part of the tuple, the 
string list , is a list of the final states.  Note that the FA format is the same for both DFAs and NFAs.  
Also note that both state names and transitions can be strings of length greater than 1.  You can assume 
there will be no common names between the states and transitions. 
 Sample OCaml code for a DFA and an NFA are given below, and more will be available on the 
website. 
 

Function requirements 
 The two simulate functions must take in two parameters each: the FA (described above), and a 
list of transitions to take (as a string list ).  You are welcome to have as many other functions in your 
submission file as needed.  Both simulate functions return a tuple of type string list * bool .  The 
string list  is the list of all the states visited.  The bool  is whether the FA is in a final state after 
reading the input.  Thus, both simulate functions must have the following type: string * (string * 



string * string) list * string list -> string list -> string list * bool .  Note that 
you may want to pass more or less parameters into the recursive function calls for this simulation – in 
that case, have the dfasimulate or nfasimulate function be a wrapper function that has the above type. 

The nfa2dfa function must take in an NFA and return a DFA.  Thus, the type is ‘a * (string * 

‘b * string) list * string list -> ‘a * (string * ‘ b * string) list * string list .  
Your function can have the type list string  for ‘a  and ‘b , though.  The format of the FAs is as 
described above. 

 

Example FAs 
 The DFA described in the textbook (page 603) is specified as follows.  This DFA will accept any 
input that has an even number of 0’s and an even number of 1’s.  The first input is a valid input for this 
DFA; the second is not. 
 
let dfa1 = ("0", 
   [("0", "0", "2"); ("0", "1", "1"); ("1", "0", "3 "); ("1", "1", "0"); 
    ("2", "0", "0"); ("2", "1", "3"); ("3", "0", "1 "); ("3", "1", "2")], 
   ["0"]);; 
let dfainput1 = ["0";"1";"0";"1";"0";"0"];; 
let dfainput2 = ["0";"1";"0";"1";"0";"0";"1"];; 

 
 The code below describes a NFA.  As with the DFA input, the first input is valid, the second is 
not. 
 
let nfa1 = ("0", 
   [("0", "a", "1"); ("0", "a", "2"); ("1", "a", "1 "); ("1", "a", "2"); 
    ("2", "b", "1"); ("2", "b", "3"); ("3", "a", "1 "); ("3", "a", "2")], 
   ["0"; "1"]);; 
let nfainput1 = ["a";"b";"a";"b";"a";"b";"a";"a";"a ";"b";"a";"a"]; 
let nfainput2 = ["a";"a";"b";"a";"b";"b"];;  
 

More examples of NFAs and DFAs will appear on the course website. 
 

How to start 
There are three parts to this assignment 
The first part, dfasimulate, is (relatively) easy, as you are converting the Scheme code in the 

book (page 603) to Ocaml.  The difficulty here will be learning Ocaml syntax.  You may want to look at 
the user’s manual for Ocaml at http://caml.inria.fr/pub/docs/manual-ocaml/, as well as the lecture slides. 

The second part, nfasimulate, is moderately difficult.  You will have to implement a depth-first 
search through the NFA. 

The last part, nfa2dfa, is more difficult.  This will require a bit of thought as to how to design the 
algorithm.  In particular, you will need to implement each of the steps for converting NFAs to DFAs.  If 
you are unsure about the algorithm, you can look in your course textbook for CS 302, do a Google 
search for “convert nfa to dfa” (the first search result is where the above NFA came from), or ask for 
help.  You may find it easier to manipulate the state names during the conversion as lists instead of 
strings – you can use String.concat function for this. 

  


