
CS415 Anderson – Fall 2003 Page 1 of 11

CS 415 Midterm Exam – Fall 2003

Name __________________KEY______________________________

Email Address _________________ Student ID # ___________________

Pledge:

This exam is closed note, closed book. Questions will be graded on quality of answer.
Please supply the best answer you can to each question. Good Luck!

 Score
Fortran & Algol 60
Compilation
Names, Bindings, Scope
Functional Programming
Logic Programming
Control Flow
Total /72

CS415 Anderson – Fall 2003 Page 2 of 11

Fortran and Algol 60 (11 points)

1. [1 point] Fortran uses pass by __reference_____ for parameters.

2. [1 point] Algol was designed by _a committee of 8, in Zurich in 1958 ______.

3. [5 points] List 3 significant differences between Fortran and Algol 60.

(Many different answers possible here)

4. [4 points] Algol 60 introduced blocks of statements. List three reasons why these
were useful in Algol 60.

- programs easier to read (compared to gotos in Fortran)
- supported structured programming
- can use in place of a single statement
- allows nested scopes
- efficient storage management (allocate on entrance to a block and de-allocate

on exit)
- allows a fix to the dangling else problem

CS415 Anderson – Fall 2003 Page 3 of 11

Compilation [15 points]
1. [5 points] List the phases a typical compiler uses in converting a program into

assembly language. Indicate what is passed from one phase to the next. A full credit
answer would have at least 5 phases.

character
stream -> Scanner (Lexical Analysis) -> token stream

 -> Parser (Syntax Analysis) -> parse tree
 (concrete syntax tree)

 -> Semantic Analysis & -> abstract syntax tree
 intermediate code generation or other intermediate form

 -> Machine-Independent Code -> modified intermediate form
 Improvement (optional)

 -> Target Code Generation -> assembly code or other
 target language

 -> Machine-Specific Code -> modified target language
 Improvement (optional)

2. [3 points] Why might a program written in a compiled language execute faster than

one written in a language that is interpreted?

Interpreted – must read and execute each statement as it is running, incurs
overhead of analysis at run-time.

Compiled – compiler does analysis at compile-time, so this overhead is not
incurred at runtime. In addition, a compiler can afford to take more time to do
optimizations and may have access to more information at compile time than can
typically be done in an interpreter.

CS415 Anderson – Fall 2003 Page 4 of 11

3. [2 points] Write a regular expression for an identifier in the cs415 language.
Identifiers can consists of only letters (upper and lowercase) and digits, and must start
with a capital letter and end with a digit.

[A-Z] [A-Za-z0-9]* [0-9]

4. [2 points] Draw a finite automaton for the regular expression you gave in question 3
above. Be sure to properly denote the accepting states.

5. [3 points] Describe the dangling else problem.

In the example below, it can be unclear which if stmt the else clause matches
with. This can be solved in a number of ways, either by having an else should
match the closest unmatched then, or by requiring explicit end markers to show
the end of an IF statement.

if cond then
 if cond then
 stuff
 else
 other stuff

start

A-Z 0-9

accept

A-Za-z0-9

CS415 Anderson – Fall 2003 Page 5 of 11

Names, Scopes, and Bindings (10 points)
1. [4 points] What does the function test print if the language uses static scoping?

What does it print with dynamic scoping? (otherwise assume C++ syntax and
semantics).

int n = 100; // global

print_plus_n(int x) {
 cout << x + n;
}
increment_n() {
 n = n + 1;
}

test() {
 int n;

n = 1;
 print_plus_n(25);

 n = 33;
 print_plus_n(n);

 increment_n();
 cout << n;

 print_plus_n(n);
}

With Static Scoping:

125 133 33 134

With Dynamic Scoping:

 26 66 34 68

CS415 Anderson – Fall 2003 Page 6 of 11

2. [4 points] Support the claim: “Early binding generally leads to greater efficiency.”
First, define binding, and then give evidence why this might be true.

binding – an association between two things, such as a name and the thing it
names (examples: a variable bound to a location in memory, a function name
bound to a specific piece of code)

Reasons why early binding can lead to greater efficiency:
- compilation generally binds things earlier than interpretation. This can allow
the compiler to do more optimization at compile time, or to avoid some
indirection at run-time.
- binding variables to memory locations early can avoid indirection at run-time
(we can use a particular address rather than an indirect access).
- binding variables to types ahead of time can eliminate some run-time type
checking or can bind function addresses to call sites (rather than needing to
consult a vtable at run-time to determine which function to call as in dynamic
dispatch of functions).

3. [2 points] What does reference counting refer to? Give one problem with this
approach.

As discussed in class, this is an approach to garbage collection that keeps track
of the number of references to an object. When the count goes to zero, then the
object can be reclaimed.

One problem with this approach is that it does not work on circularly linked
structures (like a circularly-linked list) as each node will always be pointed to
even if the structure is unreachable from the program.

CS415 Anderson – Fall 2003 Page 7 of 11

Functional programming (14 points)
1. [5 points] At several schools (MIT, Berkley, Rice) Scheme is the programming

language used in introductory programming courses. Give at least 3 reasons why
Scheme could be argued to be well-suited for this purpose?

A few reasons:
- garbage collection (don’t need to worry about memory management)
- simple syntax makes it easy to learn
- if used in a purely functional style, no side effects will be used, this tends to
avoid bugs related to un-expected side effects and makes it easier to reason
about programs
- good environments/interpreters are available free of charge (Dr. Scheme)
- benefits of using an interpreter – fast response (don’t have to wait to recompile
the whole program each time you change something, makes it easy to
experiment), good error messages
- closely related to math functions – draws on students’ math reasoning abilities.

2. [2 points] What is the result of the following in Scheme. (Be specific)

 (define y (lambda (x y) (+ x y)))

y is bound to a function that takes two parameters and returns their sum

3. [2 points] Assuming that the following definitions are executed in this order:

(define b ‘(3 14 27))
(define c (cons (car (cdr b)) (list ‘a ‘b ‘c))))

What is the result of typing the following into the Scheme interpreter:

c => (14 a b c)

(car (cdr (cdr c))) => b

CS415 Anderson – Fall 2003 Page 8 of 11

4. [5 points] Write a recursive Scheme function, double_each that takes a single
parameter that is a list and returns a list that contains all of the elements of that list
doubled. You can assume that you will always be passed a list, and one that contains
only integer values.

Example: (double_each ‘(4 5 6)) => (8 10 12)

(define (double-each x)
 (if (null? x) ()
 (cons (* 2 (car x)) (double-each (cdr x)))))

CS415 Anderson – Fall 2003 Page 9 of 11

Prolog and Logic Programming (12 points)
1. [2 points] What is the scope of a variable in Prolog?

The clause in which it appears.

2. [2 points] Define “backward chaining”.

Start with the goal and work backward, attempting to un-resolve it into a set of
pre-existing clauses. (In contrast to forward chaining, that would start with the
set of existing clauses in the database and work forward from that, attempting to
derive the goal.)

3. [5 points] Write a function find_nth that will find the Nth element in a list. For
example: find_nth([11, 12, 13, 14, 15], 4, X) returns X=14.

find_nth([H|_], 1, H).
find_nth([_|T], N, H2):- N2 is N - 1, find_nth(T, N2, H2).

CS415 Anderson – Fall 2003 Page 10 of 11

4. [3 points] More Prolog:

likes(mary,marlins).
likes(fred,dracula).
likes(fred,bats).
likes(sue,yankees).
likes(sue,bats).
likes(fred,baseball).
likes(fred,screaming).
likes(fred,marlins).
likes(mary,ghosts).
likes(bob,cubs).
likes(bob,pumpkins).
likes(bob,dracula).
likes(mary,bats).

friends(X,Y, Something) :-
 likes(X, Something),
 likes(Y, Something),
 not(X = Y).

What does this query produce? Give the complete set of responses obtained after typing ;
until a “No” response is given.

?- friends(fred,X,Y).

X = bob
Y = dracula ;

X = sue
Y = bats ;

X = mary
Y = bats ;

X = mary
Y = marlins ;

No

CS415 Anderson – Fall 2003 Page 11 of 11

Control Flow (10 points)
1. [5 points] Define side effect and short circuiting. Give an example where short

circuiting and side effects could lead to unexpected results (if you didn’t know that
short circuiting was being used, for example).

side effect – influencing subsequent computation in any way other than
returning a value for use in the surrounding context.

short circuiting – (of Boolean expressions) skips over the second half of an AND
if the first part is false, skips over the second part of an OR if the first part if
true. (Since in both cases the value of the expression can already be determined
based on the value of the first part of the expression.)

Generic example: (false AND side effect-producing code)
 If short circuiting is used, then the side effect-producing code would never be
executed when the first condition is false.
 (cond1 AND i++)
If i is meant to count the number of times the condition is tested, it will not be
incremented whenever the cond1 is false.

2. [4 points] Give an example of a tail recursive function. (This can be in any language,
and does not have to be perfect syntax, or to actually do anything useful.) What is an
optimization that can be applied to tail recursive functions?

int func (int x) {
 if (x == 0)
 return 1;
 else
 … stuff …
 return func (x – 1);
}

An optimization is to convert the recursive call to a loop. In this way we avoid
the overhead of function call and return and can re-use the stack frame from the
original call (we don’t need a new stack frame for the recursive calls anymore).

3. [1 point] Macros in C++ are an example of __Normal_______ Order evaluation.

