4.2.2. Examples

g := pl0] :=m n 1= n4l4s
n = n+l
4 i= B/C—r—qX8
Slv,k+2] 1= 3—arcian(sX zeta)
V i=Q>YANZ
4.2.3. Semantics
Assignment statements serve for assigning the value of
an expression to one or several variables or procedure
identifiers. Assighment to a procedure identifier may only
occur within the body of a procedure defining the value of
a function designator (cf. section 5.4.4). The process will
in the general case be understood to take place in three
steps as follows:
4.2.3.1. Any subscript expressions oceurring in the left
part variables are evaluated in sequence from left to right.
4.2.3.2, The expression of the statement is evaluated.
4.2.3.3. The value of the expression is assigned to all
the left part variables, with any subseript expressions
having values as evaluated in step 4.2.3.1.
4.2.4, Types
The type associated with all variables and procedure
identifiers of a left part list must be the same. If this type
is Boolean, the expression must likewise be Boolean.
If the type is real or integer, the expression must be
arithmetic. If the type of the arithmetic expression differs
from that associated with the variables and procedure
identifiers, appropriate transfer functions are understood
to be automatically invoked. For transfer from real to
integer type, the transfer function is understood to
yield a result equivalent to

entier (E+4-0.5)

where E is the value of the expression. The type asso-
ciated with a procedure identifier is given by the declarator
which appears as the first symbol of the corresponding
procedure declaration (cf. section 3.4.4).

4.3. Go To STATEMENTS
4.3.1. Syntax

(go to statement) ::= go to (designational expression)
4.3.2. Examples

goto 8

go to exit [n+1|

go to Townlif y <0 then N else N+1)

8o to if Ab<c then 17 else qfif w <0 then 2 else n)

4.3.3. Semantics

A go to statement interrupts the normal sequence of
operations, defined by the write-up of statements, by
defining its successor explicitly by the value of & designa-
tional expression. Thus the next statement to be executed
will be the one having this value as its label.

4.3.4. Restriction

Since labels are inherently loeal, no go to statement ean
lead from outside into a block. A 2o to statement may,
however, lead from outside into a compound statement.

Report on the Algorithmic Language ALGOL 60 53

4.3.5. Go to an undefined switch designator

A go to statement is equivalent to a dummy statement
if the designational expression is a switch designator whose
value is undefined.

4.4. DuvMyy STATEMENTS
4.4.1. Syntax

(dummy statement) ::= {empty)
4.4.2, Examples
L.

begin ... : John: end

4.4.3. Semantics
A dummy statement executes no operation. It may
serve to place a label.

4.5. CoNDITIONAL STATEMENTS
4.5.1, Syntax

(if clause) ;= if (Boolean expression) then
(unconditional statement) ::= (basic statement)]
{compound statement)|(block)
(if statement) ::= (if clause) (unconditional statement)
{conditional statement} ::= (if statement){(if statement) else
(statement)| (if clause){for statement)|
(Iabel) : (conditional statement)

4.5.2. Examples

if >0 then n 1= n-1
if v>u then V: g:= n+4m else go to R
if s<0VP=SQ then AA: begin if g<v then a := y/3
else y := 2Xa end
else if v>8 then a ;= v—q else if v>5—1
then go to S

4.5.3." Semantics

Conditional statements cause certain statements to be :
executed or skipped depending on the running values of !
specified Boolean expressions.

4.5.3.1. If statement. The unconditional statement of
an if statement will be executed if the Boolean expression
of the if clause is true. Otherwise it will be skipped and
the operation will be continued with the next statement.

4.5.3.2. Conditional statement. According to the syn-
tax two different forms of conditional statements are
possible. These may be illustrated as follows:

if Bl then 81 else if B2 then S2 else 83 ; S4
and

if Bl then Sl clse if B2 then S2 else if B3 then S3 ; S

Here Bl to B3 are Boolean expressions, while 81 to S3
are unconditional statements, 84 is the statement following
the complete conditional statement.

The execution of a conditional statement may be de-
scribed as follows: The Boolean expression of the if clauses
are evaluated one after the other in sequence from left to
right until one yielding the value true is found, Then the
unconditional statement following this Boolean is exe-
cuted. Unless this statement defines its successor explicitly
the next statement to be executed will be S4, i.e. the state-

54 The ALGOL Family

ment following the complete conditional statement. Thus
the effect of the delimiter else may be described by saying
that it defines the successor of the statement it follows to
be the statement following the complete conditional
statement.

The construction

else (unconditional statement:
is equivalent to
else if true Lhen (unconditionsal statement)

If none of the Boolean expressions of the if clauses is
true, the effect of the whole conditional statement will be
equivalent fo that of a dummy statement.

For further explanation the following picture may be
useful:

B2 false

4.5.4. Go to into a conditional statement

The effect of a go to statement leading into a conditional
statement follows directly from the above explanation of
the effect of else.

4.6. ForR STATEMENTS
4.6.1. Syntax

{for list element) ::= (arithmetic expression)|
(arithmeti¢ expression) step {(arithmetic expression} until
{arithmetic expression)|{(arithmetic expression) while
" {Boolean expression)
{for list) ::== (for list element)|{for list) , (for list element)
(for clause) ::= for (variable) ;= {(for list) do
{for statement) ::= (for olause)(statement)|
(label): (for statement)

4.6.2. Examples

for g := 1 step s until = do A[q] := Blg]
fork := 1, V1X2 while V1<¥ do
for j = I+4@G, L, 1step l until N, C+D do
Afk,s] 1= Blk,i]
4.6.3. Semantics
A for clause causes the statement 8 which it precedes to
be repedtedly executed zero or more times. In addition it
performs a sequence of assignments to its controlled
variable. The process may be visualized by means of the
following picture:

Initialize ; test ; statement 3 ; advance ; successor

for list exhausted

In this picture the word initialize means: perform the first
assignment of the for clause. Advance means: perform the
next assignment of the for clause. Test determines if the
last assignment has been done. If =0, the execution con-

tinues with the successor of the for statement. If not, the
statement following the for clause is executed.
4.6.4. The for list elements
The for list gives a rule for obtaining the values which
are consecutively assigned to the controlled variable. This
sequence of values is obtained from the for list elements
by taking these one by one in the order in which they are
written. The sequence of values generated by each of the
three species of for list elements and the corresponding
execution of the statement § are given by the following
rules:
4.6.4.1. Arithmetic expression. This element gives rise
to one value, namely the value of the given arithmetic
expression as calculated immediately before the corre-
sponding execution of the statement S. _
4.6.4.2. Step-until-element. An element of the form
A step B until C, where A, B, and C, are arithmetic ex-
pressions, gives rise to an execution which may be de-
scribed most concisely in terms of additional AwnGoL
statements as follows:
Vi=A ;
L1 if (V—C)X sign(B)>0 then go to element exhausied;
statement S ;
Viim V+B ;
go to L1 ;
where V is the controlled variable of the for clause and
element exhausied points to the evaluation according to
the next element in the for list, or if the step-until-element
is the last of the list, to the next statement in the program.
4.6.4.3. While-element. The execution governed by a
for list element of the form E while I', where E is an
arithmetic and F a Boolean expression, is most concisely
deseribed in terms of additional AvrcoL statements as
follows;
L3:V := E
if —F then go to element exhausted ;

Statement S ;
go to L3

where the notation is the same as in 4.6.+.2 above.

4.6.5. The value of the controlled variable upon exit

Upon exit out of the statement S (supposed to be com-~
pound) through a go to statement the value of the con-
trolled variable will be the same as it was immediately
preceding the execution of the go to statement.

If the exit is due to exhaustion of the for list, on the
other hand, the value of the controlled variable is unde-
fined after the exit.

4.6.6. Go to leading into a for statement

The effect of a go to statement, outside a for statement,
which refers to a label within the for statement, is unde-
fined.

4.7. PROCEDURE STATEMENTS
4.7.1. Syntax

{actual parameter) ::= lring)i(expression ! (arruy identifier’)
{switch identifier)!(procedure identifier>
(letter string) ::=, (letter)| {letter string) (letter)

(parameter delimiter) ::= ,{){letter string):(

{actual parumeter list) ::= (actual parameter)]
(actual parameter list)(purameter delimiter)
(actual parameter)

{(actual parameter part) ::= (empty)|
({actual parameter list))

{procedure statement) ::= (procedure identifier)
(actual parameter part)

4.7.2. Examples

Spur (4)Order: (T)Result to: (V)
Transpose (W,v-+1)

Absmaz (A N,M,Yy,I,K)
Innerproduct(A (¢, P,u],B[P],10,P,Y)

These examples correspond to examples given in section
5.4.2.

4.7.3. Semantics

A procedure statement serves to invoke (call for) the
execution of a procedure body (cf. section 5.4. Procedure
Declarations). Where the procedure body is a statement
written in ArcoL the effect of this execution will be
equivalent to the effect of performing the following opera-
tions on the program at the time of execution of the pro-
cedure statement:

4.7.3.1. Value assignment (call by value)

All formal parameters quoted in the value part of the
procedure declaration heading are assigned the values
(cf. section 2.8. Values and Types) of the corresponding
actual parameters, these assignments being considered as
being performed explicitly before entering the procedure
body. The effect is as though an additional block embrac-
ing the procedure body were created in which these assign-
ments were made to variables local to this fictitious block
with types as given in the corresponding specifications
(cf. section 5.4.5). As a consequence, variables called by
value are to be considered as nonlocal to the body of the
procedure, but local to the fictitious block (cf. section
5.4.3),

4.7.3.2. Name replacement (call by name)

Any formal parameter not quoted in the value list is
replaced, throughout the procedure body, by the corre-
sponding actual parameter, after enclosing this latter in
parentheses wherever syntactically possible. Possible
conflicts between identifiers inserted through this process
and other identifiers already present within the procedure
body will be avoided by suitable systematic changes of the
formal or local identifiers involved.

4.7.3.3. Body replacement and execution

Finally the procedure body, modified as above, is
inserted in place of the procedure statement and executed.
If the procedure is called from a place outside the scope
of any nonlocal quantity of the procedure body the con-
flicts between the identifiers inserted through this process
of body replacement and the identifiers whose declarations
are valid at the place of the procedure statement or func-
tion designator will be avoided through suitable systematic
changes of the latter identifiers.

4.7.4. Actual-formal correspondence

The correspondence hetween the actual parameters of

Report on the Algorithmic Language ALGOL 60 55

the procedure statement and the formal parameters of the
procedure heading is established as follows: The actual
parameter list of the procedure statement must have the
same number of entries as the formal parameter list of the
procedure declaration heading. The correspondence is
obtained by taking the entries of these two lists in the
same order.

4.7.5. Restrictions

For a procedure statement to be defined it is evidently
necessary that the operations on the procedure hody de-
fined in seetions 4.7.3.1 and +.7.3.2 lead to a correct ALGOL
statement.

This imposes the restriction on any procedure statement,
that the kind and type of each actual parameter be com-
patible with the kind and type of the corresponding formal
parameter. Some important particular cases of this gen-
eral rule are the following:

4.7.5.1. If a string is supplied as an actual parameter in
a procedure statement or function designator, whose
defining procedure body is an Arcon 60 statement (as
opposed to non-ALGOL code, cf. section 4.7.8), then this
string can only be used within the procedure body as an
actual parameter in further procedure calls. Ultimately it
can only be used by a procedure body expressed in non-
AvrgoL code.

4.7.5.2. A formal parameter which occurs as a left part
variable in an assignment statement within the procedure
body and which is not called by value can only correspond
to an actual parameter which is a variable (special case of
expression).

4.7.5.3. A formal parameter which is used within the
procedure body as an array identifier can only corre-
spond to an actual parameter which is an array identifier
of an array of the same dimensions. In addition if the
formal parameter is called by value the local array created
during the call will have the same subscript bounds as
the actual array.

4.7.5.4. A formal parameter which is called by value
cannot in general correspond to a switch identifier or a
procedure identifier or a string, because these latter do not
possess values (the exception is the procedure identifier of
a procedure declaration which has an empty formal
parameter part (cf. section 5.4.1) and which defines the
value of a function designator (cf. section 5.4.4). This pro-
cedure identifier is in itself a complete expression).

4.7.5.5. Any formal parameter may have restrictions
on the type of the corresponding actual parameter asso-
ciated with it (these restrictions may, or may not, be
given through specifications in the procedure heading).
In the procedure statement such restrictions must evi-
dently be observed.

4.7.6. Deleted.

4,7.7. Parameter delimiters -

All parameter delimiters are understood to be equiva-
lent. No correspondence between the parameter delimiters
used in a procedure statement and those used in the pro-
cedure heading is expected beyond their number being the

56 The ALGOL Family

same. Thus the information conveyed by using the elabo-
rate ones is entirely optional.

4.7.8. Procedure body expressed in code

The restrictions imposed on a procedure statement
calling a procedure having its body expressed in non-
ALGOL code evidently can only be derived from the charac-
teristics of the code used and the intent of the user and
thus fall outside the seope of the reference language.

5. Declarations

Declarations serve to define certain properties of the
quantities used in the program, and to associate them with
identifiers. A declaration of an identifier is valid for one
block. Outside this block the particular identifier may be
used for other purposes (cf. section 4.1.3).

Dynamically this implies the following: at the time of an
entry into a block (through the begin, since the labels
inside are local and therefore inaccessible from outside)
all identifiers declared for the block assume the signifi-
cance implied by the nature of the declarations given.
If these identifiers had already been defined by other
declarations outside they are for the time being given a
new significance. Identifiers which are not declared for the
block, on the other hand, retain their old meaning.

At the time of an exit from a block (through end, or by
a go to statement) all identifiers which are declared for
the block lose their local significance.

A declaration may be marked with the additional
declarator own. This has the following effect: upon a re-
entry into the block, the values of own quantities will be
unchanged from their values at the last exit, while the
values of declared variables which are not marked as own
are undefined. Apart from labels and formal parameters
of procedure declarations and with the possible exception
of those for standard functions (ef. sections 3.2.4 and
3.2.5), all identifiers of a program must be declared. No
identifier may be declared more than once in any one
block head.

Syntax.

{(declaration) ::= (type declaration})|(array declaration)|
{switch declaration)|{procedure declaration)

5.1. Tyre DEcLARATIONS
5.1.1. Syntax
(type list) ::= {(simple variabie)|
(simple variable) , (type list)
(type) ::= real | integer | Boolean
(local or own type) ::= (iype)lown (type)
(tvpe declaration) ::= (local or own type)(type list)
3.1.2. Examples

integer p,q,3
own Boolean Acryl,n
3.1.3. Semanties
Type declarations serve to declare certain identifiers to
represent simple variables of a given type. Real declared
variables may only assume positive or negative values

including zero. Integer declared variables may only assyyy e
positive and negative integral values including zepo.
Boolean declared variables may ouly assume the vales
true and false.

In arithmetic expressions any position which can pe
occupied by a real declared variable may be occupied By
an integer declared variable.

For the semanties of own, see the fourth paragraph of
section 5 above.

5.2. ARRAY DECLARATIONS
5.2.1. Syntax
{lower bound) ::= (arithmetic expression)
{upper bound) ::= (arithmetic expression)
(hound pair) ::= (lower bound): (upper bound)
(bound pairlist) ::= (bound pair}|(bound pair list), (bound pair)
{array segment) :i= (array identifier){(bound pair list)|!
{(array identifier), (array segment)

{array list) ::= (array segment)|(array list),{array segment?
{array declaration} ::= array {(array list)|{local or own type?}
array (array list)

5.2.2. Examples
array a, b, ¢[7:0,2:m}, s[—2:10}
own integer array 4{if ¢<0 then 2 else 1:20]
real array g(—7:—1]
5.2.3. Semantics
An array declaration declares one or several identifiers
to represent multidimensional arrays of subscripted
variables and gives the dimensions of the arrays, the
bounds of the subsecripts and the types of the variables.
5.2.3.1. Subscript bounds. The subscript bounds for
any array are given in the first subseript bracket following
the identifier of this array in the form of a bound pair list.
Each item of this list gives the lower and upper-bound of a
subscript in the form of two arithmetic expressions sepa-
rated by the delimiter : The bound pair list gives the
bounds of all subscripts taken in order from left to right.
5.2.3.2. Dimensions. The dimensions are given as the
number of entries in the bound pair lists.
5.2.3.3. Types. All arrays declared in one declaration
are of the same quoted type. If no type declarator is
given the type real is understood.
5.2.4. Lower upper bound expressions
5.2.4.1 The expressions will be evaluated in the same
way as subscript expressions (cf. section 3.1.4.2).
5.2.4.2. The expressions can ouly depend on variables
and procedures which are nonlocal to the block for which
the array declaration is valid. Consequently in the outer-
most block of a program only array declarations with
constant bounds may be declared.
5.2.4.3. An array is defined only when the values of il
upper subscript bounds are not smaller than those of the
vorresponding lower bounds,
5.2.4.4. The expressions will he evaluated once at eneh
entrance into the block.
5.2.5. The identity of subscripted variables
The identity of a subseripted variable is not relatecd to
the subscript bounds given in the array declaration. Howw .

ever, even if an array is declared own the values of the
corresponding subscripted variables will, at any time, be
defined only for those of these variables which have sub-
seripts within the most recently calculated subscript
bounds.

5.3. SwitcH DECLARATIONS
5.3.1. Syntax
{switch list) ::= (designational expression)|

{switch list), (designational expression}
{awitch declaration) ::= switeh (switch identifier):= (switch list)

5.3.2. Examples

switch S := S1,82,Q[m), if v>—5 then S3 else S4
switch Q :=plw

5.3.3. Semantics

A switch declaration defines the set of values of the
corresponding switch designators. These values are given
one by one as the values of the designational expressions
entered in the switch list. With each of these designational
expressions there is associated a positive integer, 1, 2, ... ,
obtained by counting the items in the list from left to
right. The value of the switch designator corresponding to
a given value of the subscript expression (cf. section 3.5.
Designational Expressions) is the value of the designa-
tional expression in the switch list having this given value
as its associated integer.

5.3.4. Evaluation of expressions in the switch list

An expression in the switch list will be evaluated every
time the item of the list in which the expression occurs is
referred to, using the current values of all variables
involved.

5.3.5. Influence of scopes

If a switch designator occurs outside the scope of a
quantity entering into a designational expression in the
switch list, and an evaluation of this switch designator
selects this designational expression, then the conflicts
between the identifiers for the quantities in this expres-
sion and the identifiers whose declarations are valid at the
place of the switch designator will be avoided through
suitable systematic changes of the latter identifiers.

5.4. ProcEpURE DECLARATIONS
5.4.1. Syntax

{formal parameter) ::= (identifier)
{formal parameter list) ::= (formal parameter)|
{formal parameter list)(parameter delimiter)
{formal parametecr)
(furmal parameter part) ::= (empty}|((formal parameter list})
(identifier list) ::= (identifier)|(identifier list},(identifier)
{value part) ::= value(identifier list) ; [(empty)
(specifier) ::= string|(type)array|{type)array|labellswitch|
procedure|(type)procedure
(specification part) ::= (empty)|(specifier’(identifier list) - ; |
(specification part)(specifier)(identifier list) ;
(procedure heading) ::= (procedure identifier)
(formal parameter part) ; ({value part)(specification part)
(procedure body) ::= (statement)[{code)
{procedure declaration) ::=
procedure (procedure heading){procedure body)|
(tvpe) procedure (procedure heading){procedurg body)

Report on the Algorithmic Language ALGOL 60 57

5.4.2. Examples (see also the examples at the end of
the report)

procedure Spur{a)Order:(n)Result:(s) ; value n
array @ ; integern ; reals ;

begin integer & ;

g:=0 ; ‘

for k := 1 step 1 until n do 8 := s-+a[k}k]

end

procedure Transpose(a)Order:(n) ; valuen ;
array @ ; integern ;
begin real w ; integerd, k ;
for{ := 1 step 1 until n do
for k := 141 step 1 until n do
begin w := ali,k] ;
ali k] := afk,d] ;
afk,i] 1= w
end
end Transpose

integer procedure Step (u) ; real 4 ;
Step 1= if 0SuAus1 then 1 else 0

procedure Absmaz(a)size:(n ;m)Result:(y)Subseripts:(£,k);

comment The absolute greatest element of the matrix a,
of size n by m is transferred to , and the subseripts of this
element to 7 and k&

array a | integern,m, i,k ; realy ;
begin integer p, ¢ ;
yi=0 3

for p := 1 step 1 until n do for g := 1 step 1 until m do

if abs(a[p,g])>y then begin y := absalp,g]) ; ¢ = p
k= g

end end Absmaz

procedure Innerproduct(a,b)Order:(k,p)Result.:(y) ; value k
integer k,p ; real yab ;

begin real &

g:=0 ;

for p := 1 step 1 until k do 3 := at+axb ;

Y= 3

end Innerproduct

54.3. Semantics

A procedure declaration serves to define the procedure
associated with a procedure identifier. The principal con-
stituent of a procedure declaration is a statement or a
piece of code, the procedure body, which through the use
of procedure statements and/or function designators may
be activated from other parts of the block in the head of
which the procedure declaration appears. Associated with
the body is a heading, which specifies certain identifiers
oceurring within the body to represent formal parameters.
Formal parameters in the procedure body will, whenever
the procedure is activated (cf. section 3.2. Function
Designators and section ¢.7. Procedure Statements)
be assigned the values of or replaced by actual parameters.
Identifiers in the procedure body which are not formal
will be either local or nonlocal to the body depending on
whether they are declared within the body or not. Those
of them which are nonlocal to the body may well be local
to the block in the head of which the procedure declara-
tion appears. The procedure body always acts like a

58 The ALGOL Family

block, whether it has the form of one or not. Consequently
the scope of any label labelling a statement within the
body or the body itself can never extend beyond the pro-
cedure body. In addition, if the identifier of a formal
parameter is declared anew within the procedure body
(including the case of its use as a label as in section 4.1.3),
it is thereby given a local significance and actual param-
eters which correspond to it are inaccessible throughout
the scope of this inner local quantity.

5.4.4. Values of function designators

For a procedure declaration to define the value of a
function designator there must, within the procedure
body, cccur one or more explicit assignment statements
with the procedure identifier in a left part; at least one of
these must be executed, and the type associated with the
procedure identifier must be declared through the appear-
ance of a type declarator as the very first symbol of the
procedure declaration. The last value so assigned is used
to continue the evaluation of the expression in which the
function designator occurs. Any occurrence of the pro-
cedure identifier within the body of the procedure other
than in a left part in an assignment statement denotes
activation of the procedure.

5.4.5. Specifications

In the heading a specification part, giving information
about the kinds and types of the formal parameters by
means of an obvious notation, may be included In.this
part no formal parameter may occur more than once.
Specifications of formal parameters called by value (cf.
section 4.7.3.1) must be supplied and specifications of
formal parameters called by name (cf. section 4.7.3.2)
may be omitted.

5.4.6. Code as procedure body

It is understood that the procedure body may be ex-
pressed in non-ALcoL language. Since it is intended that
the use of this feature should be entirely a question of
hardware representation, no further rules concerning
this code language can be given within the reference
language

Examples of Procedure Declarations:
ExaMpPLE 1.

procedure euler (fci, sum, eps, iim) ; value eps, lim
integer {im ; real procedure fc! ; real sum, eps ;
comment euler computes the sum of fef(f) for {7 from zero up to
infinity by means of a aujtabley refined euler transformation. The
summation is stopped as soon as {m times in succession the ubso-
lute value of the terms of the transformed series are found to be
less than ¢ps. Hence, one should provide a function fet with one
integer argument, an upper bound eps, and an integer tim. The
output is the sum sum. euler is particularly efficient in the case
uf a slowly convergent or divergent nlternating series
begin integer i, k, n, ! ; array m[0:15] ;
timni={:=0 ; m0]:=fet(0) ;
nextlerm: i ;= i+1 ; mn = jot(d)
for & := 0 step 1 until n do
begin mp 1= (mnt+iinfk])/2
mn := mp end means

’

H
real min, mp, ds
sum 1= ml0]/2

.
’

; mk] = mn

’

if (abs(nm)<ubs<m.[n.])),/\(n<15) then

begin ds := mn/2 ; n = a+l ; mn] =
mn end accept
else ds := mn ;

sum 1= sum + ds ;
if abs(ds) <cps then t ;= (+1 else ! := 0
if t<tim then go to ncriterm

end euler

ExameLE 2.8

procedure RK(r.yn FKTepsetaxEyE. fi) ; value 7y
integer n ; Boolean fi ; real =z.epsetazE ; array
wyE ; procedure FKT ;
comment: RK integrates the system w/=fi(zy, ¥z, ..., n)
(k=1.2, ...) of differential equations with the method of Runge-
Kutta with automatic search for appropriate length of integration
step. Paramoters are: The initial values z and y[k] for r and the un-
known functions 1 (z). The order n of the system. The procedure
FKT(zymnz) which represents the system to be integrated, i.e.
the set of functions fi . The tolerance vanlues eps and ela which
govern the accuracy of the numerical integration. The end of the
integration interval zE. The output parameter yE which repre
sents the solution at z=xzE. The Boolean variable fi, which must
always be given the value true for an isolated or first entry into
RK. If however the funetions y must Le available at several mesh-
points 2o,y , ... , s , then the procedure must be called repeat-
edly (with z=zy, 2E=x.,, for k=0, 1,..., n—1) and then the
later calls may occur with fi=fulse which saves computing time.
The input parameters of FKT must be z,y,n, the output parameter
2 ropresents the set of derivutives z[k|=fi(ry{l],y[2), ..., ¥in))
for r and the actual y's. A procedure comp enters as a nonlocal
identifier
b zin
array z,y1,y2531:m] ; real z1,2223H
integer k,j ; own real s,H3s ;
procedure RKIST (x,yhzeye) ; real
e ;
comment: RK1ST integrates one single RUNGE-KUTTA
with initial values z,y{k] which yields the output
parameters remz-+h and ye(k], the latter being the
solution at ze. Important: the parameters n, FKT, z
enter RK1ST as nonlocal entities ;

; DBoolean out ;

Thxe ; array

begin
array w{lmn|, a[l:5] ; integerk, ;
all] := a[2] := a|5] := A/2 ; a[3] i= al4] :=h
re =z
fork := 1 step | until n do yelk] := wik] := ylk] ;
for j :=] step 1 until 4 do
begin
FKT (xeaw,n.z)
ze 1= x+ali] ;
for k := 1 step 1 until n do
begin
wik] == ylkl+aliX k]
yelk] = yelk] + alj+11Xzlkl/3

1

* This RK-program contains somne new ideas which are related
to idens of S. GILL, A process for the step-by-step integration of
differential equations in an automatic computing machine,
{Proc. Camb, Phil. Soc. 47 (1951), 96]; and E. Froscra, On the
solution of ordinary differentiul equations with digital computing
machines, [Fysiograf. Séllsk. Lund, Fiérhd. 20, 11 (1950), 136-152].
It must be clear, however, that with respect to computing time
and round-off errors it may not he optimal, nor has it actually
been tested on a ecomputer,

end &
end
end RK18T
Begin of program:
iffi then begin H 1= zE—2 ; s:=0endelse H := Hs ;
vut ;= false
Ad:if (2+2.01XH—2E>0)=(H>0) then
begin Hs := H ; out := true ; H = (zE~x)/2
end if ;
REKI1ST (z,y2XHzxlyl) ;
BB: RK18T (ry,Hx2,y2) ; RKIST(x2,y2,Hx3,y3) ;
for k := 1 step 1 until n do
if comp(yllk),y3lkleta) >eps then go to CC ;

Report on the Algorithmic Language ALGOL 60 59

comment: complabe,) s a function designatur, the value
of which is the absolute value uf the difference of the
mantissae of @ and b, after the exponents of these quan-
tities have been made erual to the largest of the exponents
of the originally given parameters abc
r:= 13 ; if oul then go to DD
for k 1= 1 step 1 until n do yfk] := y3[k]
if s=5 then begin s := 0 ; H := 2XH endif ;
g 1= 34+l ; goto dd ;
CC: H := 05XH ; out:= false ; zl :=rx2 ;
for k := 1 step 1 until n do y1[k] := y2k] ;
go to BB ;
DD: for k := 1 step 1 until n do yEk] = y3(k]
end RK

ALPHABETIC INDEX OF DEFINITIONS OF CONCEPTS AND SYNTACTIC UNITS

All references are given through section numbers. The references are given in three groups:
def Following the abbreviation “def’’, reference to the syntactic definition (if any) is given.
synt Following the abbreviation “‘synt”, references to the oceurrcnees in metalinguistic formulae are given. Refer-
ences already quoted in the def-group are not repeated.
text Following the word ‘“text”, the references to definitions given in the text are given.
The basic symbols represented by signs other than underlined words (in typewritten copy; boldface in printed copy—Ed.|

have been collected at the beginning.

The examples have been ignored in compiling the index.

-+, see: plus

-, See: minus

X, see: multiply

/, +, see: divide

1, see: exponentiation

<, 5, =, 2, >, #, see: (relational operator)
=, D, V, A, 1, see: (logical operator)
), 8€€: comma

., see: deeimal point

w0, See: ten

:, see: colon

;» 8ee: semicolon

1= gee: colon equal

u, see: space

(), see: parentheses

[), see: subseript brackets

‘7, see: string quotes

(actual parameter), def 3.2.1, 4.7.1

(actual parameter list), def 3.2.1, 4.7.1

(actual parameter part), def 3,2.1, 4.7.1

(adding operator), def 3.3.1

alphabet, text 2.1

arithmetie, text 3.3.6

(arithmetic expression), def 3.3.1 aynt 3, 3.1.1, 3.3.1, 3.4.1, 4.2.1,
46.1, 5.2.1 text 3.3.3

(arithmetic operator}, def 2.3 text 3.3.4

array, synt 2.3, 5.2.1, 5.4.1

array, text 3.1.4.1

(array declaration), def 5.2.1 aynt 5 text 5.2.3

{(array identifier), def 3.1.1 synt 3.2.1, 4.7.1, 5.2.1 text 2.8

(array list), def 5.2.1

(array segment), def 5.2.1

(assignment statement), def 4.2.1 synt 4.1.1 text 1, 4.2.3

(basic statement), def 4.1.1 synt 4.5.1
(basgie symbol), def 2

begin, synt 2.3, 4.1.1

(block), def 4.1.1 synt 4.5.1 text 1, 4.1.3, 5
(block head), def 4.1.1

Boolean, synt 2.3, 5.1.1 text 5.1.3

(Boolean expression), def 3.4.1 synt 3, 3.3.1, 4.2.1, 4.5.1, 4.6.1 tex.
34.3

(Boolean factor), def 3.4.1

{Buolean primary), def 3.4.1

(Boolean secondary), def 3.4.1

(Boolean term), def 3.4.1

(bound pair), def 5.2.1

(bound pair list), def 5.2.1

{bracket), def 2.3

(code), synt 5.4.1 text 4.7.8, 5.4.6

colon :, synt 2.3, 3.2.1, 4.1.1, 4.5.1, 46.1, 4.7.1, 5.2.1

colon equal :=, synt 2.3, 4.2.1, 4.6.1, §.3.1

comma., , synt 2.3, 3.1.1, 3.2.1, 4.6.1, 4.7.1,5.1.1, 5.2.1,5.3.1,5.4.1
comment, synt 2.3

comment convention, text 2.3

{compound statement }, def 4.1.1 synt 4.5.1 text 1

(ecompound tail), def 4:1.1

(conditional statement), def 4.5.1 synt 4.1.1 text 4.5.3

{decimal fraction), def 2.5.1

(decimal number), def 2.5.1 text 2.5.3

decimal point ., synt 2.3, 2.5.1

(declaration), def 5 synt 4.1.1 text 1, 5 (complete section)
(deelarator), def 2.3

{delimiter), def 2.3 synt 2

(designational expression), def 3.5.1 synt 3, 4.3.1., 5.3.1 text 3.5.3
(digit), def 2.2.1 synt 2, 2.4.1, 2.5.1

dimension, text 5.2.3.2

divide / +, synt 2.3, 3.3.1 text 3.3.4.2

do, synt 2.3, 4.6.1

(dummy statement), def 4.4.1 svnt $.1.1 text £.4.3

else, synt 2.3, 3.3.1, 3.4.1, 3.5.1, +.5.1 text 4.5.3.2

(empty), def 1.1 synt 2.6.1, 3.2.1, +.4.1, 4.7.1, 5.4.1

end, synt 2.3, 4.1.1

eniter, text 3.2.56

exponentiation T, synt 2.3, 3.3.1 text 3.3.4.3

(exponent part), def 2.5.1 text 2.5.3 .
(expression), def 3 synt 3.2.1, 4.7.1 text 3 (cumplete acction)

60 The ALGOL Family

{factor), def 3.3.1

false, synt 2.2.2

for, synt 2.3, 4.6.1

{for clause}, def +.6.1 text 4.6.3

(for list), def 4.6.1 text 4£.0.%

(for list element?, def 4.6.1 text 4.6.4.1, $.6.4.2, 46.4.3

{formal parameter), def 5.4.1 text 5.4.3

(formal parameter list), def 3.4.1

(formal parameter part), def 5.4.1

{for statement), def 4.8.1 synt 4.1.1, 4,51 text 4.6 {complete
section)

{function designator), def 3.2.1 synt 8.3.1, 3.4.1 text 3.2.3, 5.4.4

go to, synt 2.3, 4.3.1
(go to statement), def 4.3.1 synt 4.1.1 text 4.3.3

(identifier), def 2.4.1 synt 3.1.1, 3.2.1, 3.5.1, 5.4.1 text 2.43
{identifier list), def 5.4.1

if, synt 2.3, 3.3.1, 4.5.1

{if clause), def 3.3.1, 4.5.1 synt 3.4.1, 3.5.1 text 3.3.3, 4.5.3.2
{if statement), def 4.5.1 text 4.5.3.1

(implication}, def 3.4.1

integer, synt 2.3, 5.1.1 text 5.1.3

{integer), def 2.5.1 text 2.5.4

label, synt 2.3, 5.4.1

(label), def 3.5.1 synt 4.1.1, 4.5.1, 4.0.1 text 1, 41.3
(left part), def 4.2,1

(left part list), def 4.2.1

(letter), def 2.1 synt 2, 2.4.1, 3.2.1, 4.7.1
(letter string), def 3.2.1, 4.7.1

local, text 4.1.3 '

{local or own type), def 5.1.1 synt 5.2.1
{logical operator), def 2.3 synt 3.4.1 text 3.4.5
(logical value), def 2.2.2 synt 2, 3.4.1

(lower bound}, def 5.2.1 text 5.2.4

minus —, synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1
multiply X, synt 2.3, 3.3.1 text 3.3.4.1
{multiplying operator}, def 3.3.1

nonlocal, text 4.1.3
{number), def 2.5.1 text 2.5.3, 2.5.4

{open string), def 2.6.1
{operator), def 2.3
own, synt 2.3, 5.1.1 text 5, 5.2.5

(parameter delimiter), def 3.2.1, 4.7.1 synt 5.4.1 text 4.7.7
parentheses (), synt 2.3, 3.2.1, 3.3.1, 3.4.1, 3.5.1, 4.7.1, 54.1
text 3.3.5.2
plus 4, synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1
(primary}, def 3.3.1
procedure, synt 2.3, 5.4.1
{procedure body), def 5.4.1
{procedure declaration), def 5.4.1 synt 5 text 54.3
{procedure heading}), def 5.4.1 text 5.4.3
{procedure identifier) def 3.2.1 synt 3.2.1, 4.7.1, 5.4.1 text 4.7.5.4
{procedure statement}, def 4.7.1 synt 4.1.1 text 4.7.3
(program), def +.1.1 text 1
(proper string), def 2.6.1

quantity, text 2.7

real, synt 2.3, 5.1.1 text 5.1.3
(relation}, def 3.4.1 text 3.4.5
(relationul operator), def 2.3, 341

scope, text 2.7

semicolon ;, synt 2.3, 4.1.1, 5.4.1

(separator), def 2.3

{sequential operator), def 2.3

(simple arithmetic expression}, def 3.3.1 text 3.3.3

(simple Boolean), def 3.4.1

(simple designational expression), def 3.5.1

(simple variable), def 3.1.1 synt 5.1.1 text 2.4.3

space u, synt 2.3 text 2.3, 2.6.3

{(specification part), def 5.4.1 text 54.5

(specificator), def 2.3

(specifier), def 5.4.1

standard funetion, text 3.2.4, 3.2.5

(statement), def +.1.1, synt 4.5.1, 4.6.1, 5.4.1 text 4 (compiete
section)

statement bracket, see: begin end

step, synt 2.3, 4.6.1 text 4.6.4.2

string, synt 2.3, 5.4.1

{string), def 2.6.1 synt 3.2.1, 4.7.1 text 2.6.3

string quotes ¢ 7, synt 2.3, 2.8.1, text 2.6.3

subseript, text 3.1.4.1

subseript bound, text 5.2.3.1

subseript brackets {], synt 2.3, 3.1.1, 3.5.1,5.2.1

(subseripted variable), def 3.1.1 text 3.1.4.1

(subseript expression), def 3.1.1 synt 3.5.1

{subseript list), def 3.1.1

successor, text 4

awitch, synt 2.3, 3.3.1, 5.4.1

(switeh declaration), def 5.3.1 synt 5 text 5.3.3

(switch designator), def 3.5.1 text 3.5.3

(switch identifier), def 3.5.1 synt 3.2.1, 4.7.1, 531

(switch list), def 5.3.1

(term), def 3.3.1

ten 1, synt 2.3, 2.5.1

then, synt 2.3, 3.3.1, 4.5.1

trapsfer function, text 3.2.5

true, synt 2,2.2

(type), def 5.1.1 synt 5.4.1 text 2.8

{type declaration), def 5.1.1 synt 5 text 5.1.3
{type list), def 5.1.1

(unconditional statement), def 4.1 .1, 4.5.1
{(unlabelled basic statement), def 4.1.1
{unlabelled block}, def 4.1.1

{unlabelled compound), def 4.1.1
{unsigned integer), def 2.5.1,3.5.1
(unsigned number), def 2.5.1 synt 3.3.1
until, synt 2.3, 4.6.1 text 4.6.4.2

{upper bound), def 5 2.1 text 5.2.4

value, synt 2.3, 5.4.1

value, text 2.8, 3.3.3

{value part), def 5.4.1 text 4.7.3.1

{variable), def 3.1.1 synt 3.3.1, 3.4.1, 4.2.1, 4.6.1 text 3.1.3
(variable identifier), def 3.1.1

while, synt 2.3, 4.6.1 text 4.6.4.3

END OF THE REPORT

