
Execution Migration in a
Heterogeneous-ISA Chip Multiprocessor

Matthew DeVuyst Ashish Venkat Dean M. Tullsen
University of California, San Diego

{mdevuyst | asvenkat | tullsen}@cs.ucsd.edu

Abstract
Prior research has shown that single-ISA heterogeneous chip mul-
tiprocessors have the potential for greater performance and energy
efficiency than homogeneous CMPs. However, restricting the cores
to a single ISA removes an important opportunity for greater het-
erogeneity. To take full advantage of a heterogeneous-ISA CMP,
however, we must be able to migrate execution among heteroge-
neous cores in order to adapt to program phase changes and chang-
ing external conditions (e.g., system power state).

This paper explores migration on heterogeneous-ISA CMPs.
This is non-trivial because program state is kept in an architecture-
specific form; therefore, state transformation is necessary for mi-
gration. To keep migration cost low, the amount of state that re-
quires transformation must be minimized. This work identifies
large portions of program state whose form is not critical for per-
formance; the compiler is modified to produce programs that keep
most of their state in an architecture-neutral form so that only a
small number of data items must be repositioned and no pointers
need to be changed. The result is low migration cost with minimal
sacrifice of non-migration performance.

Additionally, this work leverages binary translation to enable
instantaneous migration. When migration is requested, the program
is immediately migrated to a different core where binary translation
runs for a short time until a function call is reached, at which point
program state is transformed and execution continues natively on
the new core.

This system can tolerate migrations as often as every 100 ms
and still retain 95% of the performance of a system that does not
do, or support, migration.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors – Compilers; Code Generation

General Terms Design, Performance, Languages

Keywords Heterogeneous CMP, Thread migration

1. Introduction
Modern general-purpose processors contain multiple cores on a
single die, and industry roadmaps call for increasing core counts.
Current industry offerings are homogeneous CMPs (all cores on a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’12, March 3–7, 2012, London, England, UK.
Copyright c© 2012 ACM 978-1-4503-0759-8/12/03. . . $10.00

die are identical); however, research has shown that single-ISA (in-
struction set architecture) heterogeneous CMPs can achieve even
greater performance and power efficiency [12, 16]. Restricting the
cores to a single ISA, however, eliminates an important dimension
of potential heterogeneity. ISAs are already designed to meet dif-
ferent goals: some are designed to make hardware implementation
simple, to reduce code size, to reduce memory accesses, to en-
able more energy-efficient hardware design, or to support domain-
specific instructions. Heterogeneous-ISA CMPs would allow ar-
chitects flexibility to create more efficient multicore microproces-
sors for mixed workloads. Additionally, support for multi-ISA ex-
ecution enables the design and use of ISAs that are less general-
purpose, targeted at a particular application domain or desired exe-
cution characteristics.

There are several obstacles that must be overcome to make
general-purpose heterogeneous-ISA CMPs feasible. This paper
proposes a solution to the most significant barrier: process mi-
gration. The ability to migrate a running program among hetero-
geneous cores is critical because it allows the system to capitalize
on the available heterogeneity by being able to adapt to both phase
changes and environmental changes. Reasons that a thread may
want to migrate include:
• When the power state of the computer changes (e.g., a laptop

going from normal to low-battery operation), programs running
on a core designed for high performance could be migrated to a
core designed for energy efficiency.

• When a new process with high priority and high performance
demands enters the run queue, other processes could be mi-
grated away from the most powerful core.

• If a program enters a new phase of execution with different
computational demands (e.g., floating-point intensive code or
cryptographic code), execution could migrate to a core with
strong support for the new computation type (e.g., dedicated
vector hardware or cryptographic instructions).

• If a part of the chip becomes too hot, programs executing on
cores in that region could migrate away. If the cooler cores are
a different ISA, threads can still make progress.
Many special-purpose heterogeneous multiprocessors have

been produced [5, 9, 27]. Called heterogeneous multiprocessor
systems-on-chips (MPSoCs), these architectures are designed for
computation in specific domains that require a diverse set of al-
gorithms to solve a problem. This paper focuses on migration in
the context of general-purpose heterogeneous CMPs. Migration in
this context is more important than on embedded systems where
hardware-software co-design is more common and flexibility is
less important. Nevertheless, migration can benefit heterogeneous
MPSoCs as well by easing programmer burden.

Execution migration on a heterogeneous-ISA CMP is much
more challenging than on a homogeneous CMP because program
state (in registers and memory) is kept in an architecture-specific

form. This requires state transformation during migration, which
can be very expensive.

The goal of this research is dramatic reduction in the cost
of state transformation at migration time. Prior work on migra-
tion among heterogeneous systems has only considered migration
among heterogeneous machines (e.g., among nodes in a grid), not
among heterogeneous cores in a CMP. In all of those cases, migra-
tion cost was dominated by state copy between nodes; however, on
a multicore, that copy is unnecessary because cores share memory,
opening the door for fast and frequent migration. But this now ex-
poses the cost of the state transformation step. Because this cost
was a small factor in cross-machine migration, the optimizations
and transformations studied in this work are largely unique to our
approach.

Thus, to minimize migration time, it is essential that as little
transformation as possible be done. We accomplish this by ensuring
that the memory state of the program, at particular points through-
out execution, is nearly identical across compilations for different
architectures. During migration, most data objects do not need to
be copied or repositioned. As a result, pointers remain correct after
migration, avoiding the cost and complexity of finding and fixing
pointers at migration time.

We cannot maintain points of equivalence (where memory state
is consistent between the executables) at all instructions in the pro-
gram without serious performance consequences (e.g., worse than
unoptimized code). We relax the equivalence constraint to only
those points in execution that represent function call sites. How-
ever, we still allow for instantaneous migration (i.e., at any instruc-
tion) by performing binary translation on the migrated process un-
til a function call is reached, at which point the program state is
quickly transformed and execution is resumed natively. Thus, by
adding the ability to do binary translation, we decouple the two
aspects of migration—we can restrict migration between ISAs to
specific equivalence points (call sites), yet still support migration
between cores at any arbitrary point in the program.

In addition to the challenges presented by ISA diversity, the fact
that migration, and hence binary translation, can start at random
points of execution and run for a short duration (until a function
call is reached) poses a challenge to efficient binary translation. We
discuss these challenges and present an efficient dynamic binary
translation and optimization technique in this paper.

If we can limit the incremental performance cost for cross-ISA
migration to a few percent, even assuming very frequent migration
(e.g., every few hundred milliseconds), then there is no significant
performance barrier to using multi-ISA heterogeneous cores, mak-
ing the full spectrum of heterogeneity available to processor de-
signers. Besides minimizing performance cost (both for migrating
code as well as steady-state non-migrating code), we have the fol-
lowing additional goals for this design. The technique should not
require type-safe code, should not require special effort by the pro-
grammer, and should not require any special hardware. Migration
should be possible at any instruction.

The level of ISA heterogeneity between cores could vary
widely, from ISA extensions that are specific to a subset of the
cores, to completely different ISAs. To maximize the generality
of our system, we tackle the hardest problem, of completely dis-
joint ISAs. However, most of the techniques and principles of this
work would also apply when the degree of heterogeneity is more
moderate.

The next section discusses related work in the area of execution
migration as it has been applied to other heterogeneous domains. In
Section 3 we give an overview of the migration strategy. Section 4
describes how we ensure a nearly identical memory image across
compilation for different architectures to make migration fast. Sec-
tion 5 describes migration itself. Section 6 describes the binary

translation techniques used to allow for instantaneous migration.
Section 7 details our experimental methodology, while Section 8
shows the performance of migration. Section 9 concludes.

2. Related Work
Kumar, et al. [15, 17] demonstrate that a CMP of heterogeneous
cores (with a homogeneous ISA) is often the best use of die area
for better performance and power efficiency on mixed workloads.
Removing the restriction of a single ISA among all cores allows
for greater heterogeneity and the potential for more efficiency.
In the embedded world heterogeneous-ISA multiprocessors (MP-
SoCs) are not uncommon [5, 9, 27], but no truly general-purpose
heterogeneous-ISA CMPs are on the market at this time. The
Cell processor [13] lies somewhere in the middle—more general-
purpose than most embedded systems, but not designed for main-
stream mixed workloads. It has no ability to migrate code between
core types dynamically.

To our knowledge, no previous work has addressed the problem
of migrating a process among heterogeneous-ISA cores on a chip
multiprocessor. However, there are two closely related problems,
both potentially involving machines of different architectures: pro-
cess migration on a cluster, grid, or distributed system; and check-
pointing and recovery (CPR). The related works described in this
section address one or both of these problems. In every proposed
solution, large-scale state copy is necessary and dominates latency.
Thus, it is typically the primary performance concern.

Von Bank, et al. [29] put forth a theoretical model, including a
formal definition of heterogeneous process migration. They assert
that the language system (i.e., compiler, assembler, linker, etc.) can
be designed to ensure points of equivalence at a desired granularity;
but the finer the granularity, the more performance will suffer be-
cause the compiler will be more constrained and less able to make
machine-dependent optimizations—a conclusion that we confirm
empirically in this research.

Dubach and Shub [8, 21] produce some of the earliest work on
process migration. Their solution is meant to work on the equiva-
lent of a strongly-typed language to facilitate low-cost state trans-
formation. They follow a principle they call “greatest common de-
nominator” (GCD), where data is placed in memory with extra
padding, if necessary, to accommodate the largest data represen-
tation among architectures to which execution might be migrated.
This allows most pointers to work without the need for correction.
We apply the same GCD principle to our work; only in our case,
the migrated process uses the exact same memory image instead of
a copy of it. Also, our compiler ensures that function entry points
appear at the same offsets within the code sections so that function
pointers do not need to be located and fixed.

Several researchers have proposed migration techniques de-
signed to work with strongly-typed programming languages, like
Java [28] and Emerald [24]. Many more have proposed migration
and/or CPR through the instrumentation of well-typed C code [4,
10, 11, 14, 19, 23, 25, 26]. The definition of well-typed code is
different among these works, with some work supporting certain
type-unsafe constructs. In contrast, the migration technique this pa-
per proposes does not place any such restrictions on the code.

Pointers in languages like C present a difficult problem for het-
erogeneous migration because they are machine-dependent, allow-
ing direct access to any object in the address space of a process.
No prior work has been able to efficiently deal with the problem
of pointers. Either runtime performance [14] or migration perfor-
mance [10, 11, 19, 23, 25, 26] is sacrificed.

One of the main contributions of our work is to demonstrate an
effective method of dealing with pointers (by ensuring all pointed-
to objects remain at fixed locations).

Traditionally, binary translation has been used to convert legacy
binaries from one ISA to another. Chen, et al. [6] describe a trans-
lation technique for translating ARM binaries for execution on a
MIPS-like architecture. This work deals with similar challenges
of ISA diversity. However, their work describes static translation
while our work proposes dynamic translation, requiring different
approaches in many cases.

Some examples of dynamic translators used for emulation in-
clude Digital’s FX!32 [20] (which translates x86 applications to
Alpha) and HP’s Aries [30] (which translates PA-RISC applications
to IA-64). These translators use a two-phase translation, where the
first phase does emulation and collects runtime profile information,
and the second performs optimization. We cannot afford to have
a two-phase translation, as binary translation in our case typically
runs for far fewer instructions, rather than the entire program—the
extra time for profiling and a two-phase translation process cannot
be amortized. QEMU [2] is the closest dynamic translator to the
one described in our work. However, it is optimized for system em-
ulation and our binary translator is optimized for the migration use
case.

3. Overview of Migration
When migration is requested (by some entity), the operating system
must perform four actions to facilitate migration. It must resched-
ule the process on another core, change page table mappings to
facilitate access to the code for the migrated-to core, perform bi-
nary translation until a program transformation point, and trans-
form program state for execution on the new architecture. The first
two tasks—process scheduling and page table manipulation—are
common operating system responsibilities and require no further
discussion here. The final two tasks—binary translation and state
transformation—are unique to heterogeneous-ISA migration. We
describe these in Sections 6 and 5, respectively.

In this paper, we study in detail a specific instance of the general
problem of heterogeneous core migration. In the following para-
graphs we describe the language and ISAs/cores we compile for.

We assume that the process to be migrated is written in C, free
of inline assembly code. We also assume that externally-linked li-
braries are compiled for migration (following a similar process to
that described in this paper). For libraries that are tuned to spe-
cific architectures, this will require some code changes. The C
library, for example, because it contains a significant amount of
architecture-specific code, will require significant refactoring to be
migration-safe. For the testing of our migration technique on pro-
grams which are linked to C library code (because we have not yet
accomplished the transformation of the libraries), we restrict mi-
gration to occur only within non-library code. Finally, we assume
some similarities in the ISAs: the same endianness and fundamen-
tal data size.

For this study, we model a small, low-power ARM [1] core and a
large, high-performance MIPS [18] core. ARM and MIPS are both
32-bit, (typically configured) little-endian, RISC ISAs. However,
they represent a significant element of diversity in terms of their
memory layout and register access patterns. Diversity in these areas
pose more of a problem to migration than diversity of instruction
type. The primary contribution of our work is to perform efficient
memory transformation during migration, despite this element of
diversity.

ARM is most commonly used in highly power-constrained de-
vices, and specific microarchitecture implementations of the ARM
core typically reflect this emphasis. MIPS cores, while also com-
monly used in power-constrained devices, have also been used in
more performance-focused devices (like the Origin series of SGI
supercomputers). Fundamental differences between these ISAs are
discussed in Section 6.2.

We experiment with only two ISAs, but our migration technique
should extend in a very straightforward manner to more ISAs
on a single CMP. Because we do not create a direct mapping
of program state between binaries of each ISA, but rather to a
shared compiler front-end intermediate representation, the amount
of compiler meta-data used in migration is linear with the number
of ISAs.

Fast migration calls for minimal state transformation. This
hinges on memory image consistency—the memory image at a
point P in the execution of a program on ISA A should be nearly
identical to the memory image at P on ISA B so that very little state
must be transformed to a machine-dependent form during migra-
tion. This is the heart of our migration strategy. The next section
describes how memory image consistency is achieved, and the sec-
tions following that describe the mechanics of migration, including
both the state transformer and the binary translator.

4. Memory Image Consistency
To facilitate fast execution migration, each binary representation of
a program (compiled for different ISAs) should expect to find each
item of program data at the same virtual address. This makes it
possible to perform the migration without having to rearrange data
items in memory, greatly reducing the latency of the migration pro-
cess. In prior systems targeting inter-machine heterogeneous mi-
gration, state copy dominates migration overhead and the cost of
reordering and transforming memory is inconsequential. Migration
on a CMP does not involve memory state copy, so keeping trans-
formation overhead (now the dominant cost) low is critical to good
performance.

To achieve memory image consistency, within each section the
number of objects, their sizes, their relative order in memory, and
their alignment and padding rules must be identical in order for
their virtual addresses to be consistent across ISAs. This not only
applies to data sections, but also to sections containing code—
function definitions must begin at the same virtual address so that
function pointers will be correct after a migration. The dynamic
portions of memory—the heap and the stack—also need to be
consistent.

Although this would best be done by a single compiler with two
backends, for this initial study we use two GCC-based compilers
and merge the results. Once the compilers agree on memory image
layout, we can create a single binary composed of two coordinated
text sections and a single version of each compiled data section
(since the static data sections created by the two compilers are
identical).

4.1 Global Data Consistency
ISAs may utilize entirely different sections for the same data. This
is the case for the small data sections in MIPS: the .sbss, .sdata, and
.scommon sections. Data objects below a certain size are placed
in the small data sections; this allows for faster access to these
data objects since it takes fewer instructions to reach these items
from a base pointer (like the global pointer). This is a consequence
of the limited amount of space (16 bits) in a MIPS instruction
to specify the offset from the base pointer. ARM overcomes this
problem, primarily, by supporting PC-relative addressing. To avoid
copying data in or out of small data sections at migration time, we
add support for small data sections to the GCC ARM back-end.
However, we do not change the compiler to generate ARM code
that can take advantage of the small data section by generating
code to access data in these sections with fewer instructions—so
the performance of ARM code is not improved, but is not degraded
either.

4.2 Code Section Consistency
Another program section that must be modified to reduce migra-
tion cost is the code (.text) section because fixing function point-
ers during migration is expensive. To eliminate the cost of finding
and fixing all function pointers, function bodies should be placed
at identical virtual addresses across each ISA. This implies that the
order of function definitions in memory be identical. The compiler,
therefore, emits function definitions in the order they are encoun-
tered in the source files. The size of each function must also be
identical; so the assembler adds NOP instructions, when necessary,
to pad functions to the appropriate size. While this increases code
size a little, we measure no performance loss.

Note that while each function body begins at the same virtual
address across binaries, the location of each function call site is not
identical. Since the address of the call site can vary, the return ad-
dress will vary—the cost of translating return addresses is incurred
at migration time because the constraint of placing call sites at con-
sistent addresses would be too limiting for the compiler and would
impact performance.

4.3 Heap Consistency
Code that accesses the heap must be consistent—we call this heap
consistency—but for different reasons. Heap consistency is not
necessary because of pointers—pointers to the heap will work
correctly after migration because the addresses of heap objects
in the shared space are created dynamically, not hard-coded into
the binary. Instead, heap consistency is necessary to ensure that
after migration the program has an accurate record of what heap
memory is allocated and what is free. This requires that the same
implementation of malloc be used for all ISAs. Then, at migration
time, because all malloc’s internal data structures are preserved, a
consistent view of the heap will be maintained. The same principle
applies to any memory management library a program uses.

In the Linux system that we model, malloc acquires memory
on behalf of the caller in two ways: through the brk system call,
which grows the heap, and through the mmap system call. The
mmap system call does not return heap memory, but pages of virtual
memory that the operating system has allocated to the process.
Since a single operating system instance governs all the cores, a
common page table is used, and page allocations will not change,
despite the migration.

4.4 Stack Consistency
Objects on the stack may need to be adjusted or reordered for two
reasons. First, many instructions have hard-coded stack offsets.
Either these instructions must be changed during migration, the
objects must be moved during migration, or the objects must be
consistently placed by the code (compiled for each ISA) in the
first place—we implement a combination of the latter two. Second,
some stack objects may have pointers to them; these pointers would
need to be fixed during migration if the objects are not placed at
identical addresses.

The stack is especially difficult to make consistent without sac-
rificing performance because stack interaction is carefully opti-
mized for each ISA. For example, in an ISA with a large number
of registers, many function arguments may be passed through reg-
isters to avoid loads and stores to stack memory. But for an ISA
with a small number of registers, most function arguments must be
passed on the stack. Our goal is to find the right balance between
good runtime performance and low migration overhead. We must
change stack memory as little as possible at migration time with-
out eliminating performance-critical ISA-specific stack optimiza-
tions. This section describes what we change (and what we do not
change) in the stack organization to strike this balance.

Figure 1. The organization of a non-leaf stack frame in a
migration-capable program.

To avoid major changes to the stack during migration, the fol-
lowing properties of the stack must be made identical across ISAs:
(1) direction of growth, (2) size, (3) ordering, and (4) alignment.
First, the stack’s direction of growth should be the same: in both
ARM and MIPS, the stack grows downward. Also, for every func-
tion in a given program, we make the stack frame size the same
for each ISA (by adding padding), making the overall stack size
consistent. It is also necessary to have a consistent ordering of re-
gions within each frame. The cross-architectural layout of a non-
leaf stack frame is shown in Figure 1. In order to achieve identical
frame size, it is also necessary to maintain consistent alignment and
padding rules between regions. In our implementation, each region
is 8-byte aligned.

In addition to the changes to the overall structure of the stack,
we must make changes to each major frame sub-component to
avoid costly stack transformations during migration. The major
frame sub-components are: (1) the function arguments region, (2)
the callee-saved register spill area, and (3) slots for local variables.

Function Arguments. After migration, the program must be
able to locate arguments to open functions—we desire to do this
with minimal transformation during migration. We recognize that
forcing arguments on the stack that would otherwise have been
passed through registers can hurt performance, so we are careful
to avoid such a change. Both ARM and MIPS pass the first four
arguments through registers, but MIPS also allocates stack space
for these arguments in case the callee needs to spill them. We force
ARM to do the same—space is allocated for the first four argu-
ments, though the arguments are always passed through registers.
This increases memory usage by about 16 bytes per frame; however
we observe no noticeable effect on performance.

Callee-saved Register Spills. For a given function, the num-
ber of callee-saved registers that need to be overwritten depends
heavily on the number of registers the ISA supports (affecting reg-
ister pressure), constraints placed on ISA-specific special-purpose
registers, and low-level code transformations. Because all of these
factors are architecture-specific, the size of the callee-saved regis-
ter spill area differs greatly across ISAs. We therefore modify the
compiler to add padding, as necessary, to the callee-saved register
spill area of each stack frame. This change has no noticeable effect
on performance.

Local Variables. The last frame sub-component that requires
modification is the area reserved for local variables. Our changes
ensure consistent ordering and identical size (requiring padding).
For MIPS, GCC allocates variables in this region from low address
to high; for ARM from high address to low. Large aggregate objects

(like structs and arrays) and objects whose addresses are taken are
allocated to the stack first. The different allocation directions cause
these objects to be allocated at different addresses on the stack. For
pointers to these objects to work after migration, we require all of
these objects to be allocated to the same addresses across ISAs. To
enforce this requirement we change the allocation direction; when
GCC compiles ARM code it now allocates stack objects from low
address to high. Like the other regions of a stack frame described
above, this region may require padding because the number and
choice of local variables to allocate depends on the number of
registers in the ISA, resulting in different frame size.

5. Migration Process
When all of the compiler/assembler/linker changes described in the
previous section are applied, all program sections, except for some
portions of the stack, are migratable without any transformation. To
facilitate the transformation of a process’ memory image (specifi-
cally, the stack portion) we introduce a small program called the
Stack Transformer (ST). The ST has three jobs: (1) It creates the
register state for the migrated-to core. (2) It fixes all the return ad-
dresses on the stack. (3) It moves the values of local variables in
open function activations to the right stack offsets. The ST must
ensure that the value of every stack-based variable is at the address
where code for the migrated-to core expects it.

The Stack Transformer (ST) needs detailed information about
the compilation of the program from source code in order to pre-
pare the stack for execution on the migrated-to core. We modify
GCC to record the necessary information during compilation. This
information includes the frame layout for each function, details
about function call sites, the locations of local variables, and the
sets of spilled caller-saved and callee-saved registers. This com-
pilation meta-data can easily be placed in a new ELF section and
bundled with the binary (in the same way debugging information
is) to make the executable self-contained.

5.1 Optimizations that Interfere with Variable Location
A few late optimization passes in GCC expose new live registers
across call sites. They do so in such a way that these new live
registers do not always correspond to a high-level variable name;
moreover, the transformations are not always applied uniformly
across all architectures, resulting in architecture-specific state that
cannot be transformed at migration time. The incompatibility of
these passes with migration is not inherent to the optimization al-
gorithms, but an artifact of their implementation in GCC. To make
these optimizations compatible with migration, one of two things
may be done. First, the optimizations can be converted from RTL
passes to tree passes because the tree intermediate representation is
architecture-independent. In this way, optimization can be applied
consistently during compilation for both architectures, and inter-
mediate state that is exposed can be assigned labels that are carried
in the intermediate representation until register assignment. Sec-
ond, the optimization passes can be modified to avoid applying the
optimization across call sites—we do this for the common subex-
pression elimination pass. How this is to be done depends on the
operation of the optimization. If the optimization moves code, then
code motion across call sites should be avoided. If the optimiza-
tion deletes instructions, it should avoid deleting an instruction that
exposes a new live register at any call site.

Both solutions—converting RTL passes to tree passes and in-
troducing optimization barriers at call sites—may result in less
than ideal performance over the current implementations. But given
the minimal performance degradations we observe with these op-
timizations completely disabled, we expect the performance trade-
off to be minimal and acceptable. Either solution would require a
significant refactoring of the code; so for this study, we have cho-

sen to disable the problematic RTL optimization passes, including
loop invariant motion, global common subexpression elimination,
forward propagation, post-reload instruction scheduling, temporary
expression elimination, and tail call elimination. Disabling most of
these passes results in negligible performance loss. For the bench-
marks we use in this study, we observe some performance degrada-
tion when the following passes are disabled: global common subex-
pression elimination (less than 1%), forward propagation (less than
1%), post-reload instruction scheduling (less than 0.5%), and tem-
porary expression elimination (less than 1%). Turning off all these
passes results in a performance loss of 3.1% in ARM code and
1.6% in MIPS code.

A compiler designed from the ground up to emit multiple-ISA
code would not have these problems, and these passes would not
have to be deactivated. In that case, we believe the performance
cost of restricting a few optimizations across call sites would be
close to zero.

5.2 Operation of the Stack Transformer
The job of the Stack Transformer is to transform the architecture-
specific program state (mainly stack data, but also register state)
from ISA A to ISA B, so that the program running on ISA B will
find all of its data after migration where it expects it. At migration
time multiple functions may be open at once (represented by a
sequence of frames on the stack). The value of each local variable
in each open function may be in one of three locations: a register,
a fixed stack slot allocated on function entry, or a register spill
location on the stack (either in the owning function’s frame or in
the frame of a descendant function). The code compiled for the
destination core will likely expect the value of each variable at
a different location (due to differences in the type and number
of registers). For example, register pressure may have forced the
compiler to allocate variable ‘x’ to stack offset 20 in code for
ISA A, but code for ISA B (which has more registers) put ‘x’ in
register 18. The ST must move the values of all live variables in
all open functions to the locations expected by the code for the
destination core. It walks the stack, one frame at a time, locating
and repositioning live local variables.

From a high level, the ST performs two quick passes over the
call stack. Two passes are necessary because we do not know which
variable’s value should be placed in a callee-saved spill location
until we discover the ancestor function that keeps one of its local
variables in the callee-saved register. The first pass goes from in-
nermost frame (the frame in which execution was stopped) to out-
ermost frame and finds values for caller-saved spill locations and
simple stack-bound variables. The second pass works in the re-
verse direction—from outermost frame back to innermost frame—
finding values for callee-saved spill locations and determining final
register state. We describe each of these passes in turn.

First Pass. The first pass examines and transforms each stack
frame from the most recently opened frame to the first frame cre-
ated. Before it can start locating live local variables, the ST must
discover which function execution stopped in, and which call site
it stopped at (since different variables may be live at different call
sites). Therefore, when the ST begins, it is given the value of the
PC on the source core. Using the PC, the ST looks up informa-
tion about the call site (recorded during compilation). The ST then
looks up information on the function containing the call site (also
recorded during compilation). Finally, the ST looks up records for
the same call site (using the call site UID) and function for the other
ISA (the ISA of the destination core). With these four records—
call site information and function information for each ISA—the
ST goes to work transforming the stack frame.

First, it processes the list of registers that are live across the call
site. It looks for the values of these registers (by variable name) in

three places: (1) live registers on the source core, (2) caller-saved
spill locations, and (3) fixed stack slots. When checking fixed stack
slots, associated scope information for each variable may be used;
the scope of the call site must be contained within the scope that
the variable is defined in. Once the ST has located the value that
the register should have at the current call site, it copies the value
to a list of live register values for the current function. It will keep
such a list of live register values for every frame encountered, to
be used later in the reverse call stack traversal. In some special
cases, the value for the live register will be a constant (which would
have been recorded during compilation) or the address of a global
variable (which can be looked up in the program’s symbol table).

Next, the ST finds the values of variables in the caller-saved
spill slots and variables at fixed locations on the stack. The ST
checks the same three sources that it used to find values for the
live registers on the destination core. Only small variables whose
addresses are never taken are moved. Large variables on the stack
(like arrays and structs) and variables whose addresses are taken
are given identical stack locations by the compiler, so no copying of
these values is needed, and pointers to these variables will remain
valid after migration.

When the ST is done processing a frame it will determine the
live register state on the source core as it existed immediately
before the current function was entered. It will carry over this
register state when it transforms the next frame. It updates its
snapshot of the register state on the source core by reading from
the callee-saved register spill locations in the current frame.

Besides moving local variables to their expected locations, the
ST is also tasked with fixing all the return addresses saved on the
stack. Each stack frame stores the return address of the call site of
its caller. Because only function heads, not call sites within func-
tions, are placed at identical addresses by the compiler, return ad-
dresses need to be fixed so that return instructions that are eventu-
ally executed on the destination core will work properly. When the
ST visits each frame to move local variables, it also fixes return ad-
dresses. Since the compiler records the size of each frame and the
offset where the return address is saved, the ST can find the saved
return address. The ST looks up compiler-recorded data on the par-
ent function and repeats the transformation procedure for the next
frame up the call stack.

Second Pass. After the ST has passed over all the stack frames
from innermost to outermost, it has enough information about the
live register state at each call site to determine the values of the im-
portant callee-saved spill locations. The ST starts with live registers
in the outermost frame (which it recorded in the previous pass) and
moves to the next (inner) frame. For each callee-saved register, it
copies the value from its snapshot of the current register state to the
appropriate location on the stack. Then it updates the current reg-
ister state with the live register values at the next call site (which it
recorded in the previous pass). The ST moves to the next frame and
repeats the process until all the important callee-saved spill slots
are full. The register state at the end of this process is the register
state that should be instated on the destination core when the ST is
done and the core is ready for native execution of the program.

There are two important things to note about this process. First,
it handles the case where a live register at a particular call site is
not saved immediately by the callee (because the callee doesn’t
recycle that register), but is instead saved in some distant frame
or is never saved—with the value remaining in the register at the
time of migration. This would not be possible with only one pass
from innermost to outermost frame. Second, if the callee spills a
register that is not live at the call site, the ST may not have a value
to place in that spill slot; but this does not cause any problems
after migration because when the called function is returned and

the register is filled, it is not live, so it will not be read before being
overwritten.

6. Binary Translation
Binary translation is performed on a migrated process until it
reaches an equivalence point, at which point the stack transformer
described in the previous section transforms program state for na-
tive execution. Our binary translator uses the following scheme of
classic just-in-time (JIT) [7] dynamic translation:
• Starting from the instruction at the point of migration, each

instruction is translated to the ISA of the migrated-to core and
placed in a code cache until we encounter a function call site or
an indirect/conditional jump instruction (whose target address
is not known until execution).

• Next, a stub (a short group of additional instructions) is added
to the end of this translated block of instructions. The stub
contains a jump to the stack transformer if we’ve reached a
function call site. Otherwise, the stub saves the target address at
a known location and jumps to a translator core function called
the translation engine.

• Control is then transferred to the translated code in the code
cache. If the code eventually relinquishes control back to the
translation engine, we repeat the above steps from the instruc-
tion at the target address until we finally reach a function call
site.

6.1 Translation Block Chaining
The translation engine, before translating the next block of instruc-
tions, checks if the block is already available in the code cache. If it
is available, it links the end of the previous block to the beginning
of the next block, with a direct branch instruction. This process is
known as translation block (TB) chaining and has been extensively
applied in emulators and virtual machines [22].

We extend this idea by allowing translation block chaining from
any instruction in the middle of a TB to any instruction in another
TB. This allows for a TB to be chained to more than one TB
at different instructions (the most common case is a conditional
branch). For example, TB X can be chained with TB Y at X.i, with
Z at X.j and with itself at X.k, where X.i,j,k represent three different
instructions in X. The converse is also true: TBs X and Y can both
chain to Z at Z.i and Z.j respectively. In this case, however, Z.i and
Z.j can be the same. Merge point is a classic example for such a
scenario, wherein the “if” part can be in TB X, “else” part in TB Y,
and they both chain to TB Z at their merge instruction Z.i.

We call this Multiple-Entry Multiple-Exit (MEME) translation
block chaining. The following issues need to be addressed by such
a design:

Condition Codes. In a MEME TB, any instruction can have
multiple entry points, including those that check condition codes.
To improve performance, our binary translator performs lazy con-
dition code evaluation, which defers evaluation of a condition code
until it is checked. Any instruction that checks a condition code
(CC) evaluates it first, if it has not already been evaluated by an
instruction prior to that in the same TB. With MEME chaining, we
can never be sure whether a CC has been evaluated or not, due
to multiple entry points. Also, we do not know which instruction
modified the CC in the first place, to perform lazy evaluation ac-
cordingly. To overcome these issues, we update a dirty CC map
register at every exit point. The dirty map can be used by instruc-
tions to check if a CC has been already evaluated. In addition to
this, we also store the opcode of the last CC modifier instruction
in a register, so that at the time of lazy evaluation, we would know
which instruction modified the CC.

Program Counter Updates. ARM allows instructions to use
the program counter as a general-purpose register. For performance

reasons, the (virtual) program counter is not updated after executing
every block of target instructions that emulates a source instruction.
It is instead updated whenever necessary. We further optimize this
by adding an offset from the last-calculated PC rather than moving
the entire 32 bit address (32 bit move takes at least two MIPS
instructions). With MEME chaining, the last-calculated PC can be
different for different entry points. To overcome this, we maintain
a map of the last-calculated PC at every instruction in a TB. Using
this map, the last-calculated PC is updated at the end of every exit
point.

Instruction Scheduling. Instructions within a translation block
might be reordered. We do not do instruction scheduling optimiza-
tions, but we do fill branch delay slots. Branch delay slots are filled
with an independent instruction prior to the branch in the same TB.
This is not always correct if the branch has multiple entry points.
We handle branch delay slots in ARM to MIPS translation as fol-
lows:
• All register indirect branches trap into the translation engine.
• All direct branches are evaluated by the translator, which trans-

lates instructions at the target address and inserts them inline.
If they are already translated, we do MEME chaining with the
lazy PC update instruction in the branch delay slot, which has
to be executed regardless of the entry point.

• All conditional branches are only dependent on condition codes
which are taken care of by lazy CC evaluation. So the instruc-
tion just before the branch is not dependent on the branch and
hence always goes into the delay slot. When MEME chaining
happens at a conditional branch, we move back any instruction
in the delay slot and insert a NOP into the delay slot instead.
Performance reduction due to this is negligible compared to the
significant gain in performance due to TB chaining.

Delay slots are not a problem in MIPS to ARM translation because
ARM does not have delay slots.

As a further optimization, we have the ability to preserve the
code cache across migrations, so that if the process is migrated
to the same core type again, there is a good chance that the code
we need is already present in the cache and can be directly used.
However, we do not employ this optimization in our presented
results.

6.2 ISA-Specific Challenges
Despite high-level similarities, ARM and MIPS represent signifi-
cant diversity. ARM has many features that MIPS lacks: condition
codes and an abundance of predicated instructions, load multiple
and store multiple instructions, a program counter that is accessi-
ble as a general-purpose register, and finally PC-relative load in-
structions to access data embedded in the text section. MIPS, on
the other hand, has double the number of integer registers that are
accessible to programmers and allows for 16-bit immediates as op-
posed to the 8-bit immediate restriction in ARM. Finally, each ISA
has a different application binary interface (ABI); they use differ-
ent system call numbers and follow different conventions to make
system calls. We discuss several of these challenges in this section.

Register Allocation. Mapping from ARM to MIPS: ARM has
16 general-purpose registers visible to the programmer, while
MIPS has 31 general-purpose registers (excluding R0). Hence, all
16 registers in ARM are easily mapped to registers in MIPS. In
addition, we reserve four MIPS registers for the ARM condition
codes (Zero, Negative, Carry, and Overflow) and an extra register
for inverse carry. Of the remaining 10 registers, four are used for
lazy condition code evaluation as described below, three are used
as temporary registers, and the remaining three are reserved for
future use.

Mapping from MIPS to ARM: All 31 MIPS general-purpose reg-
isters cannot be mapped onto registers in ARM. Hence, we map fre-

quently used MIPS registers (R1–R7, global pointer, stack pointer,
frame pointer and link register, collectively called the “mapped”
registers) to registers in ARM. One register points to an in-memory
register context block where the “unmapped” MIPS registers are
placed. In addition to this, we reserve three registers as cache regis-
ters that contain the three most frequently used unmapped registers
for faster access.

Condition Codes and Predicated Instructions. Most transla-
tors use a global data flow analysis technique to perform a lazy
evaluation of condition codes. However, since we perform binary
translation for a relatively small number of instructions until we
reach an equivalence point, a data flow analysis would increase mi-
gration overhead significantly. Hence, we use a lazy condition code
evaluation scheme similar to the one used in QEMU [2]: for ev-
ery instruction that updates a condition code, we store the opcode,
operands, and result in temporary registers reserved for the lazy
evaluation, and compute the condition codes using this information
whenever required. In addition to this, a dirty map register is used
to support MEME TB chaining as described above.

Once the condition codes necessary for a predicated instruction
are evaluated, a branch instruction is used to test the condition,
which skips the operation performed by the instruction if the con-
dition is false. The conditional move instruction in MIPS is used to
translate conditional move instructions in ARM, but we use a con-
ditional branch around arithmetic instructions for more complex
predicated instructions.

Immediate Instructions. MIPS restricts the size of immediates
to 16 bits while ARM limits them to 8 bits. This necessitates two
ARM instructions to construct a MIPS immediate, store it in a reg-
ister, and then perform the actual operation. The problem worsens
with 32 bit immediate updates like link register or program counter
updates, where four ARM instructions are needed to perform the
move. To overcome this, we extend the register context block to
also include a “cache of immediates”, so that one load instruction
will suffice for the entire operation, as opposed to the four mutually
dependent shift-OR instructions.

System Calls. In this work, we assume a single operating sys-
tem instance running on both the cores. This guarantees that a sys-
tem call works in the same way on both the cores. However, the
system call numbers and calling conventions are dictated by the
ISA’s ABI, which requires a remapping step when in binary trans-
lation mode.

One approach would be to provide system call emulation during
translation. As an alternative, it is a minor change to our system to
also make system calls equivalence points, like function calls. This
eliminates the need for system call emulation, but also increases
the frequency of equivalence points, which is also a useful feature.
To support migration while executing a system call, we would need
to apply our techniques and methodology to the operating system
itself.

7. Experimental Methodology
To test migration and measure the runtime performance effects of
compilation for migration, we use the SPEC2000 Integer bench-
marks written in C (i.e., all but the C++ benchmark, eon). From this
set of benchmarks we exclude the gcc benchmark because it uses
the non-standard alloca C library function to dynamically allocate
memory on the stack instead of on the heap—at this time our mi-
gration technique does not support variable-size stack frames. All
benchmarks are compiled with GCC at optimization level -O2. In
all simulations the reference inputs are used. We use the M5 proces-
sor simulator [3] (configured to execute ARM binaries and MIPS
binaries). The architectural model of the ARM core is based on the
low-power Cortex-A8 core, while the MIPS core is modeled with

ARM core
Frequency 833 MHz I cache 32 KB, 4 way
Fetch/commit width 2 D cache 32 KB, 4 way
Branch predictor local L2 cache 2 MB, 8 way

MIPS core
Frequency 2 GHz I cache 64 KB, 4 way
Fetch/commit width 4 D cache 64 KB, 4 way
Branch predictor tournament L2 cache 4 MB, 8 way

Table 1. Architecture detail for ARM and MIPS cores

performance as the primary design objective. The details of each
core are given in Table 1.

To evaluate the steady-state behavior of each benchmark on
each core type, we simulate a portion of execution for each bench-
mark. To ensure that we measure the performance of the modeled
cores on the same unit of work even after benchmark recompila-
tion, we insert two marks in the source code of each benchmark—
one to indicate where detailed simulation should start and one to
indicate where it should stop. The first mark is made at the point in
the code after approximately one billion instructions have passed
(to skip over initialization code) and the second mark is made after
approximately 500 million more instructions have passed. So the
simulation interval is approximately 500 million dynamic instruc-
tions, the exact number of dynamic instructions depending on the
ISA and compilation options.

To evaluate the average cost of migration, we cross-compile
both the Binary Translator and the Stack Transformer for ARM and
MIPS and run them in the M5 simulator on sample migration points
taken from the benchmarks. For these experiments, we venture
further into the executable than in the steady-state experiments,
to gather more samples of potential migrations points. We collect
10 samples for each benchmark in each direction of migration.
The samples are collected at intervals of 100 million dynamic
instructions starting one billion instructions into execution. We
first run the binary translator on each sample, and perform stack
transformation as soon as execution reaches the nearest function
call site. In a few cases migration at the nearest call site is not
possible due to issues like executing in migration-unsafe library
code; so in those cases, a nearby sample that is suitable is used.

The Stack Transformer is written in C++. Designed as a proof-
of-concept, there is still plenty of room for performance optimiza-
tion, and the performance results for the ST presented in this pa-
per should be considered conservative estimates of potential per-
formance.

8. Results
The goal of this research is to enable multi-ISA heterogeneous
architectures. Such an architecture will be most useful if we can
migrate threads often enough, with low enough overhead, to actu-
ally exploit that heterogeneity within a single process execution.
This section outlines the costs of migration, including the runtime
(migration-free) cost, the stack transformer, and the binary transla-
tor.

8.1 Runtime Performance of Migratable Code
A key goal of this work is to enable fast migration without compro-
mising runtime performance—that is, performance when no mi-
gration is occurring. Throughout the toolchain changes to ensure
a nearly identical memory image across architectures, care must
be taken that performance is not compromised. Among our bench-
marks no performance is lost due to changes to make the memory
image consistent, including the addition of padding (which is too
little to cause more instruction cache misses).

Figure 2. The average costs of state transformation for migration.
Lines indicate the minimum and maximum measured transforma-
tion times.

There is, however, some performance loss due to optimizations
in GCC that are disabled because they inconsistently move code
across call sites (that is, call-crossing code motion is applied in
only one ISA) and/or they impair the association of variable names
with locations (preventing the ST from being able to move some
data values). The specific changes that result in performance loss
are described in Section 5.1. On average, runtime performance only
suffers by 3.1% in ARM code and 1.6% in MIPS code. Again, these
are an artifact of a compilation system not intended to create dual
executables, and we expect these costs would disappear in a native
dual-ISA compiler.

8.2 Migration Cost
The cost of performing a migration is a combination of binary
translation overhead, overhead from the involvement of the operat-
ing system, and the execution time of the Stack Transformer. Since
we do not have an OS for a heterogeneous-ISA CMP, we focus
only on the migration cost incurred by binary translation and the
Stack Transformer. However, we expect the incremental OS over-
head to be relatively small, since its role is to add the thread to the
run queue of another core and change some page table entries (to
swap out code sections).

For our benchmarks, state transformation (i.e., ST execution
time) on our detailed architectural models for ARM and MIPS
cores takes (on average) 272 microseconds for migration from
ARM to MIPS and 344 microseconds for migration from MIPS
to ARM. Figure 2 shows the average transformation costs for each
benchmark for migration in each direction. It also shows the fastest
and slowest transformation times we measure, as error bars. We
do not compare the overhead of the ST (which, due to compiler
support, has very little to transform) to a naı̈ve transformer (that
must transform most of the memory image, including all pointers)
because it would be several orders of magnitude slower.

For migration in either direction, the transformation overheads
for the benchmarks vortex, crafty, and gap are the greatest. These
three benchmarks also have the highest average stack depths. The
average stack depth is the average number of frames on the call
stack at any given point in execution. Gap has an average stack
depth of just under 30. On the other end of the spectrum, perl has
an average stack depth of three. The average stack depth across all
the benchmarks is nine. Stack depth has the greatest influence on
migration cost in our migration technique; the deeper the stack, the
more state needs to be transformed.

Figure 3 shows the relationship between performance and mi-
gration frequency. The performance results presented in this graph
account for both performance costs due to compilation for migra-
tion (discussed in the previous section) and transformation over-
head. In this graph, migration frequency refers to how frequently
migrations take place. For example, a frequency of 20 milliseconds
means that every 20 milliseconds the program switches cores.

We assume in this graph that we can migrate at any time—that
potential migration points (call sites) occur frequently (Section 8.4

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50

Pe
rfo

rm
an

ce

Migration frequency (milliseconds)

Compilation for migratability (w/o migrations)
Performance with migrations

Performance - Dummy calls in outermost loops
Performance - Dummy calls in 2nd innermost loops

Figure 3. Performance (without binary translation) vs. migration
frequency when migrating back and forth between an ARM core
and a MIPS core.

quantifies the additional cost of binary translation). The straight
line in the graph represents the performance if no migration occurs,
and accounts only for the overhead of compilation for migratabil-
ity. The line below that shows performance when migrations occur.
When migrations happen every 10 milliseconds or less the effect on
performance is significant. But above 10 milliseconds, performance
remains above 95%, as compilation cost dominates migration over-
head. The other two lines will be discussed in the next section.

8.3 Frequency of Potential Migration Points
In a system without binary translation, we would have to postpone
migrations until the next function call is encountered. Even with
binary translation, the latency to reach the next function call site
is important because it determines how many instructions must
be executed by our binary translator, which incur a performance
overhead.

The distribution of function calls is highly irregular. During
some phases of execution, function calls are frequent; in other
phases, calls are much less frequent. Consequently, the average
time between calls and the median time between calls are poor
metrics for evaluating call frequency. Instead, we select as our
metric the expected time to transformation (ETTT). This is the
average time (measured in dynamic instructions) until the next call
site is reached from any randomly-selected point in execution.

Figure 4 (first two bars) shows the ETTT for each benchmark.
From this graph it is clear that call frequency varies dramatically
across benchmarks. Among the ARM binaries, on one end of the
spectrum is vpr where, on average, one must wait only 84 dynamic
instructions until the next possible transformation opportunity. On

the other end of the spectrum is mcf where, on average, one must
wait over 48 million instructions until the next possible transfor-
mation opportunity. For seven of the ten benchmarks, the ETTT is
under 130,000 dynamic instructions; but for bzip2, crafty, and mcf
the ETTT is much higher.

One way to increase the frequency of migration opportunities is
to add more function calls. The long gaps between calls result from
long-running loops that do not contain any function calls (or have
had their function calls inlined). We modify GCC to inject dummy
function calls (calls to an empty function that returns immediately)
into loops. We experiment with two loop selection policies follow-
ing two simple heuristics: inject dummy calls in outermost loops
and inject dummy calls in second-innermost loops (parents of in-
nermost loops). We never select innermost loops because the per-
formance impact is too severe [11].

The impact on ETTT of these policies is shown in the last four
bars in Figure 4. For the three benchmarks with the longest ETTT,
inserting function calls in outermost loops dramatically improves
call frequency. For example, in the MIPS binaries, the ETTT for
bzip2 drops from over 19 million to about 3.1 million dynamic
instructions; for gap, the ETTT drops from about 7.4 million to
about 4 million dynamic instructions; and mcf sees its ETTT re-
duced from almost 60 million to under 200,000 dynamic instruc-
tions. Using the second loop selection policy (second-innermost)
results in only marginal gains—most benchmarks only see a slight
decrease in ETTT. Bzip2 is an exception, dropping by a factor of
7.9 on ARM and 4.5 on MIPS.

The additional transformation opportunities that these changes
bring comes at the cost of performance. Injecting dummy calls
adds instructions that do not do any useful work and may inter-
fere with some compiler optimizations. Performance drops 1.4%
on ARM and 4.7% on MIPS when dummy calls are added to out-
ermost loops for all applications. When calls are added to second-
innermost loops, performance drops 2.3% on ARM and 5.4% on
MIPS. For some programs (ones with infrequent calls) the per-
formance degradation may be justified if the migration policy de-
mands it. Note that if we assume the compiler is smart enough to
only apply dummy calls for applications that need them, the cost
would be significantly lower.

The two lowest bars in Figure 3 show the performance of code
compiled with dummy calls inserted. Migration overhead is the
same, but due to the additional compilation costs, performance
is lower at every migration frequency. If migration never occurs,
performance remains below 95%.

For the results in the next section, we do not assume the
presence of dummy procedures calls. This preserves some non-
migration performance, but produces very conservative, worst-case
numbers for expected binary translation overhead.

Figure 4. The expected time to the next call, under three situations: no dummy calls have been added, dummy calls to outermost loops have
been added, and dummy calls to second-innermost loops have been added.

Figure 5. The ratio of the number of target instructions executed
during binary translation to the number of source instructions dur-
ing native execution.

Figure 6. Target-to-Source ratio during Binary Translation from
ARM to MIPS—without optimization, with lazy condition code
evaluation and with full optimization.

8.4 Binary Translator Performance
We characterize the performance of our binary translator based on
the following three metrics:
• Target-to-Source Ratio: The ratio of the number of dynamic

target instructions executed on the migrated-to core to the num-
ber of dynamic source instructions executed on the native core.
Most static binary translators report a target-to-source ratio be-
tween one and two. Dynamic binary translators tend to have a
higher target-to-source ratio because they have less scope for
optimization.

• Total-to-Source Ratio: The ratio of the number of dynamic
instructions inclusive of both the target instructions and the
instructions used for translation (as executed on the migrated-to
core) to the number of dynamic source instructions executed on
the native core. This is the ratio we address with our translation
block chaining algorithms.

• Overhead due to binary translation: Time taken for binary
translation compared against time taken on native core, in mi-
croseconds.
Figure 5 shows the target-to-source ratio for each benchmark in

both directions of migration. The target-to-source ratio for MIPS
to ARM translation is generally less than that from ARM to MIPS,
due to the more complex instructions in ARM. One exception to
this is gap, which has a higher ratio for MIPS to ARM translation.
This is because gap is characterized by tight loops with multiply
instructions, which takes additional instructions in ARM to per-

Figure 7. Target-to-Source ratio during Binary Translation from
ARM to MIPS—with and without Register and Immediate caches

Figure 8. The ratio of the number of dynamic instructions exe-
cuted (including the ones used for translation) during binary trans-
lation to the number of source instructions during native execution.

form stores to “hi” and “lo” memory locations. In both directions,
bzip2, perlbmk, and vpr have high target-to-source ratios because
of a large number of branches in MIPS code and large number of
predicated instructions in ARM code.

Figure 6 shows the target-to-source ratio for ARM to MIPS
translation without optimization and then with each optimization
applied incrementally. The leftmost bar shows the performance of
a naı̈ve binary translator without any optimizations. The middle
bar shows the performance of the binary translator doing lazy
condition code evaluation. This optimization significantly reduces
the dynamic instruction count. The rightmost bar shows the binary
translator with all optimizations enabled. This includes grouping
predicate instructions and certain constant-folding optimizations.
Lazy condition code evaluation contributes the most to the overall
translation speedup.

Figure 7 shows the performance of the MIPS to ARM translator
with and without the use of the register cache and immediate cache.
Dynamic instruction count is significantly lower with these opti-
mizations. Our register cache is made up of only three temporary
registers. We expect that a larger cache with an adaptive register
allocation strategy should give even greater speedups.

Figure 8 shows the total-to-source ratio for each benchmark in
both directions of migration. Again the MIPS to ARM translator
has a lower translation cost than ARM to MIPS, because it does not
have to make complex decisions like lazy condition code evaluation
and lazy PC update during translation. However, there is a high
irregularity in the total-to-source ratios of different benchmarks—

Figure 9. Comparison of Binary Translation time with Native Ex-
ecution time in microseconds

Figure 10. Migration Overhead due to Binary Translation and
Stack Transformation in microseconds

some are as high as 300 while some are close to one. This is heavily
impacted by the number of instructions to the next equivalence
point (call site). If it is 84 instructions (the average for vpr), the
cost of translation is not amortized. If it is hundreds of millions of
instructions, the vast majority of execution is in code cache and the
translation cost is insignificant. The latter is due, in large part, to
the MEME chaining which allows execution to remain in the code
cache once a steady state is reached. Table 2 shows the percentage
of dynamic instructions executed in the code cache during binary
translation.

We next compare the performance of our binary translator with
native execution in Figure 9. Within the migration points we sam-
ple, the average execution time for an ARM binary on an ARM core
from the time migration is requested until an equivalence point is
reached is 284 microseconds, while the average binary translation
time of the ARM binary on a MIPS core is 2745 microseconds.
For ARM to MIPS, the average execution time on a MIPS core
is 1981 microseconds while binary translation time on an ARM
core is 7240 microseconds. Thus, binary translation costs us 2461
microseconds while migrating from ARM to MIPS and 5259 mi-
croseconds while migrating from MIPS to ARM. All benchmarks
except bzip2, perlbmk, and mcf complete binary translation in tens
or hundreds of microseconds. These three benchmarks show a high
binary translation overhead because they have to translate millions
of instructions before reaching an equivalence point.

Finally, we evaluate the performance of our migration strategy
by looking at the total migration overhead—time taken by both bi-
nary translation and stack transformation. This is shown in Fig-
ure 10. The average migration overhead for ARM to MIPS migra-

Benchmark ARM to MIPS MIPS to ARM
bzip2 99.9992 99.993
crafty 0.0 0.0
gap 85.9 94.0
gzip 18.1 99.9
mcf 99.96 99.1
parser 15.7 30.7
perlbmk 99.997 99.99
twolf 58.9 65.4
vortex 0.0 0.0
vpr 36.6 67.1

Table 2. Percentage of instructions used from code cache

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 100 200 300 400 500

Pe
rfo

rm
an

ce

Migration frequency (milliseconds)

Compilation overhead
Compilation + state transformation overheads

Compilation + state transformation + binary translation overheads

Figure 11. Performance vs. migration frequency when migrating
back and forth between an ARM core and a MIPS core. Perfor-
mance includes overheads due to compilation for migratabiltity,
state transformation, and binary translation.

tion is 2734 microseconds, while it is 5602 microseconds for MIPS
to ARM migration. It should be noted that this average is domi-
nated by a few outliers. If we ignore bzip2, mcf, and perlbmk, the
average overhead drops by about a factor of 10.

Figure 11 shows performance (relative to native execution with-
out migration) at different migration frequencies (when migrating
back and forth between cores at fixed time intervals), assuming av-
erage cost values. It breaks down the costs due to compilation for
migratability, state transformation, and binary translation. With all
costs considered, execution is 95% as fast as native execution when
migration occurs, on average, every 87 milliseconds. This would be
an extremely high rate of migration for most foreseeable applica-
tions. Also recall that much of that 5% lost performance is an arti-
fact of the compiler not being designed from the ground up to emit
multi-ISA code.

We believe this level of performance crosses a critical thresh-
old. Unless the code is migrating between cores nearly every timer
interrupt, the cost of migration is very small. This means that the
difference in migration cost between a single-ISA heterogeneous
CMP and a multi-ISA CMP is negligible for most reasonable as-
sumptions about desired migration frequency. Thus, there is no
significant performance barrier to fully exploiting heterogeneity in
a multicore architecture, including both microarchitecture hetero-
geneity and ISA heterogeneity. For comparison, recall that prior
work typically measured migration time in hundreds of millisec-
onds [11], if not worse, and that migration could not occur at an
arbitrary point in execution.

9. Conclusion
In this paper we present a new technique for execution migration
in a heterogeneous-ISA CMP. This environment affords a unique
opportunity for fast migration because migration overhead is not
dominated by state copying since memory is shared among all
cores. Our migration technique takes advantage of this opportu-
nity by compiling programs to maintain memory state in a way that
is nearly identical to its representation on every core type. As a
result, migration requires only minimal transformation—only por-
tions of the stack and register state need to be transformed. All
pointers remain valid after migration without any transformation,
eschewing the need for expensive pointer fixing during migration.
We demonstrate that with strategic compiler changes, runtime per-
formance does not have to be compromised for migratability—on
average, non-migration performance is reduced by 1.6% for MIPS
and 3.1% for ARM. The state transformation cost for migration is,
on average, 272 microseconds for ARM to MIPS migration and
344 microseconds for MIPS to ARM migration. We support mi-
gration at all points of execution in the program with the help of
binary translation. We incur an average binary translation cost of
2.75 milliseconds for ARM to MIPS migration and 7.24 millisec-
onds for MIPS to ARM. Finally, we show that even if we were to
migrate every few hundred milliseconds, we experience a total loss
in performance of well under 5%.

Acknowledgements
The authors would like to thank the anonymous reviewers for their
helpful insights. This research was supported in part by NSF grant
CCF-1018356.

References
[1] ARM Limited. ARM Architecture Reference Manual.

[2] F. Bellard. Qemu, a fast and portable dynamic translator. In USENIX
Technical Conference, Apr. 2005.

[3] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and
S. K. Reinhardt. The M5 simulator: Modeling networked systems.
International Symposium on Microarchitecture, Dec. 2006.

[4] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill. Automated
application-level checkpointing of MPI programs. In Symposium on
Principles and Practice of Parallel Programming, June 2003.

[5] C-Port Corp. C-5 Network Processor Architecture Guide.

[6] J.-Y. Chen, W. Yang, T.-H. Hung, H.-M. Su, and W.-C. Hsu. A static
binary translator for efficient migration of ARM-based applications.
In Workshop on Optimizations for DSP and Embedded Systems, Apr.
2008.

[7] L. P. Deutsch and A. M. Schiffman. Efficient implementation of the
smalltalk-80 system. In Symposium on Principles of Programming
Languages, Jan. 1984.

[8] F. B. Dubach, R. M. Rutherford, and C. M. Shub. Process-originated
migration in a heterogeneous environment. In ACM Annual Computer
Science Conference, Feb. 1989.

[9] S. Dutta, R. Jensen, and A. Rieckmann. Viper: A multiprocessor SoC
for advanced set-top box and digital TV systems. Design & Test of
Computers, IEEE, 18(5), 2001.

[10] R. Fernandes, K. Pingali, and P. Stodghill. Mobile MPI programs
in computational grids. In Symposium on Principles and Practice of
Parallel Programming, Mar. 2006.

[11] A. Ferrari, S. J. Chapin, and A. Grimshaw. Heterogeneous process
state capture and recovery through process introspection. Cluster
Computing, 3(2), 2000.

[12] M. Hill and M. Marty. Amdahl’s law in the multicore era. Computer,
July 2008.

[13] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and
D. Shippy. Introduction to the cell multiprocessor. IBM Journal of
Research and Development, July 2005.

[14] F. Karablieh, R. Bazzi, and M. Hicks. Compiler-assisted heteroge-
neous checkpointing. Oct. 2001.

[15] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M.
Tullsen. Single-ISA Heterogeneous Multi-core Architectures: The
Potential for Processor Power Reduction. In International Symposium
on Microarchitecture, Dec. 2003.

[16] R. Kumar, D. M. Tullsen, N. Jouppi, and P. Ranganathan. Heteroge-
neous chip multiprocessors. Computer, 38(11), 2005.

[17] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I.
Farkas. Single-ISA Heterogeneous Multi-core Architectures for Mul-
tithreaded Workload Performance. In International Symposium on
Computer Architecture, June 2004.

[18] MIPS Technologies, Inc. MIPS32 Architecture for Programmers Vol-
ume II: The MIPS32 Instruction Set.

[19] B. Ramkumar and V. Strumpen. Portable checkpointing for hetero-
geneous archtitectures. International Symposium on Fault-Tolerant
Computing, June 1997.

[20] A. C. Ray and R. Hookway. DIGITAL FX!32 running 32-bit x86
applications on alpha NT. In USENIX Windows NT Workshop, Aug.
1997.

[21] C. M. Shub. Native code process-originated migration in a heteroge-
neous environment. In ACM Conference on Cooperation, Feb. 1990.

[22] J. Smith and R. Nair. Virtual Machines: Versatile Platforms for
Systems and Processes. Morgan Kaufmann Publishers Inc., June 2005.

[23] P. Smith and N. C. Hutchinson. Heterogeneous process migration: the
Tui system. Software — Practice and Experience, May 1998.

[24] B. Steensgaard and E. Jul. Object and native code thread mobility
among heterogeneous computers (includes sources). In Symposium
on Operating Systems Principles, Dec. 1995.

[25] V. Strumpen. Compiler technology for portable checkpoints. Techni-
cal report, Laboratory for Computer Science, Massachusetts Institute
of Technology, 1998.

[26] V. Strumpen and B. Ramkumar. Portable checkpointing and recovery
in heterogeneous environments. Technical report, University of Iowa,
June 1996.

[27] Texas Instruments Inc. OMAP5912 Multimedia Processor Device
Overview and Architecture Reference Guide.

[28] R. Veldema and M. Philippsen. Near overhead-free heterogeneous
thread-migration. In Cluster Computing, Sept. 2005.

[29] D. G. von Bank, C. M. Shub, and R. W. Sebesta. A unified model of
pointwise equivalence of procedural computations. ACM Transactions
on Programming Languages and Systems, 16(6), 1994.

[30] C. Zheng and C. Thompson. PA-RISC to IA-64: Transparent execu-
tion, no recompilation. Computer, Mar. 2000.

