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Abstract—Modern CPU cores feature translation of instruc-
tions into internal instructions, often called micro-ops, for simpli-
fied CPU design and improved instruction throughput. However,
this translation is static in most known instances. This paper gives
an overview of context-sensitive decoding (CSD), a technique that
enables customization of the micro-op translation, based on the
execution context or particular hardware triggers.

This enables rapid deployment of security defenses, enabling
changes to the instruction stream without the need for recom-
pilation, translation, or interpretation of the original code. In
addition, because the alternate decodings can be turned on and
off as quickly as a single cycle, it enables the defense to be
strategically deployed only on those instructions that require it,
minimizing performance overhead.

In this work, CSD is paired with a novel machine-learning
based attack detection mechanism, allowing the system to adapt
the level of protection in the presence of suspected malicious
code.

Keywords—security defense; microcode; side channel; attack
detection

I. INTRODUCTION

Modern computing systems are highly vulnerable to security
attacks. In many applications, compromised security comes
with an extremely high cost. However, it also true that in many
cases failure to compute at cutting-edge speeds can also result
in significant losses. As a result, we need systems that enable
secure computation with minimal performance cost.

Context-sensitive decoding (CSD) exploits the fact that
modern processors typically employ a translation layer, in-
visible to the user, that translates the user instruction-set
architecture (ISA) to an internal ISA. By modifying this
translation, we can instantly change the security features of
any code, even code introduced by external users. In this
project, we combine context sensitive decoding with malware
and attack detection mechanisms [1], further enabling it to
customize to a particular attack, or raise and lower the defense
level according to the likelihood or severity of attack.

These solutions provide a security defense strategy that pro-
vides high coverage, with minimal architectural impact, greatly
reduced performance impact, complete software compatibility
(no software changes), and small power and area cost.

All code that runs on a processor, from user code to kernel,
trusted or untrusted, even attack code itself, must run through
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the hardware decoder in the pipeline and is subject to whatever
level of hardware defense we have currently enabled via CSD.
Any system in which ALL software that runs cannot be proven
secure can be made more secure through these techniques.

In this paper, we give an overview of Context Sensitive
Decoding and briefly describe some use cases.

Because CSD can be easily turned on or off or defend
against different types of attacks at different times, in this
research we also propose novel machine-learning based mal-
ware detection techniques. This allows the system to adapt the
level of defense, or the type of defense, based on the likelihood
of particular types of attacks. This is accomplished through a
machine-learning based classifier that observes performance
counter data on the running code.

II. ARCHITECTURAL APPROACH

This architecture takes advantage of an underutilized fea-
ture of modern instruction set decoders in order to provide
security guarantees, or quickly deploy new security features
or defenses, for legacy code without recompilation or binary
translation, and with minor changes to existing hardware. Most
modern processors employ translated ISAs (instruction set
architectures), as the Intel and AMD x86 processors and many
ARM and SPARC processors typically feature translation from
the native instruction set into internal micro-ops that enter
the pipeline for execution [2], [3], [4]. These architectures
enjoy the dual benefits of a versatile backward-compatible
CISC front-end and a simple cost-effective RISC back-end.
Moreover, the additional level of indirection enables seamless
optimization of the internal micro-op ISA, under the covers,
without any changes to the programmer interface. However,
for those architectures the translation is static, changing once
per generation. Instead, we propose that translation be dy-
namic, potentially changing frequently within the execution
of a single program.

This allows native instructions to be decoded/translated into
a different set of custom micro-ops based on their current
execution context. This presents operating systems, runtime
monitoring systems, antivirus programs, and other malware-
detection hardware with the unique opportunity of trigger-
ing different custom secure translation modes with varying
levels of protection, at microsecond or finer granularity, by
simply configuring a set of model-specific registers (MSRs).



16-Byte 
Fetch Buffer

Instruction 
Length 

Decoder

MSRs

Macro-op Dispatcher

18
-e

nt
ry

 M
ac

ro
-o

p 
qu

eu
e

32-entry µop-QueueDe
co

de
rs

µF
us

io
n 

Un
it

HW 
Watchdog

Register 
Tracking 

Unit

1:1

MSROM

1:1

1:1

1:4

System 
Software

µop cache

Tag Array

CT
X 

ML-Based Malware 
Classifier

Code-Pointer Integrity

Bounds Check

Control-Data Isolation

Type-Safty Enforcement

Compartmentalization

Capability Check

Side-Channel Obfuscation

Custom Performance 
Counters

Context-Sensitive Decoder

Decoy µops

ON OFF
ON OFF
ON OFF
ON OFF
ON OFF
ON OFF
ON OFF
ON OFF

Dynamic 
Information 

Flow Tracking M
alw

are Class

M
alw

are Class

HW Perf. Counters

cpu-cycles
Instructions

cache-misses
dTLB-loads…

…
…

.

L1-dcache-loads

Training 
Vector

Test 
Vector

Fig. 1: Intel Front End with CSD Support.

This allows an insecure legacy executable to instantly be-
come a secure executable without recompilation or binary
translation, thereby simultaneously improving security without
compromising software compatibility. Furthermore, the extra
(security-enhancing) micro-ops injected into the instruction
stream by custom decoders are unreadable from both user and
kernel modes as they exist within the processor outside any
addressable memory. As a result, they remain invulnerable to
spyware, rootkits, and other rogue programs, even if those
programs execute with the highest privileges.

To enable context-sensitive decoding in, for example, the
Intel front-end, we plan to provision the legacy decode pipeline
with one or more custom decoders that perform custom
secure translations (see Figure 1) – notice that this is enabled
without sacrificing the effectiveness of other pipeline front-end
optimizations such as the micro-op cache, micro-op fusion, etc.
The custom translations could feature micro-ops that perform
bounds checking, code-pointer integrity checks, control-data
isolation, type-safety enforcement, compartmentalization, ca-
pability checks, side-channel obfuscation, and implementation
of custom performance counters that inform the learning-based
malware detection model we employ. Furthermore, in order to
conserve area and power, we plan to employ a simple static
table-driven translation model for custom decoders, similar to
the existing native x86 decoders. However, we note that it
is possible to generate more sophisticated micro-op flows by
relegating to the microcode ROM, if and when necessary.

To enable both flexibility and adaptability, we allow one
or more custom secure translation modes to be triggered in
the following different ways. First, they can be initiated by
software, for example if the operating system or an antivirus
program have identified certain new vulnerabilities/exposures
– they trigger this logic by configuring a set of model-specific
registers (MSRs). Second, dynamic information flow trackers
and our hardware-based malware detectors can trigger secure

translation modes that are specific to the identified malware
class, and based on the ambient threat level. Finally, as an op-
tion to trade off performance for security, when performance is
not critical, we plan to implement a hardware watchdog timer
to periodically toggle between native and secure translation
modes – exploiting the fact that our defense mechanisms stay
in effect some time after initial triggering, and attack modes
typically have some maximum attack frequency.

In the next section, we describe one of these possible trig-
gers, our machine-learning based malware and attack classifier.
Later in this paper, we will describe specific examples of
context-sensitive decoding defenses.

III. MACHINE LEARNING-BASED ATTACK DETECTION

As seen in the previous sections, one of the triggers to
enable the defense is through the machine learning (ML)-based
attack detection. With advancements in technology, attacks can
be crafted through applications or side-channel information
such as timing, or data obtained through the covert channels. In
this work, we deploy hardware-assisted ML-based techniques
to detect attacks deployed by executing malicious applications
(malware) on the processor or side-channel attacks such as
Flush+Reload [5] and Spectre [6]. It is hardware-assisted in
that we employ the available hardware related information
such as microarchitectural events for detecting the exploits.
The embedded hardware performance counters (HPCs) are
utilized in this work along with ML classifiers for detecting the
security exploits by the attackers as described below. HPCs are
a limited set of registers in the microprocessor to capture the
microarchitectural events such as instructions executed, cache-
misses, hits of an executing application, etc.

A. Runtime Malware Detection Through HPCs

For traditional computing systems, several techniques have
been explored for malware detection including dynamic bi-



nary instrumentation [7], anomaly detection [8], information
flow tracking [9], and so on. There also exist traditional
approaches such as semantic [10], [11] and signature-based
[12], [13] solutions including off-the-shelf anti-viruses as well.
However, most of these techniques are slow, and require
heavy computational resources and memory [14], [15], making
them infeasible to be adopted for runtime malware detection.
Hardware-assisted malware detection emerged as one solution
to these challenges.

One of the first works that introduced use of HPCs for
malware detection is [15]. It uses ML models for malware
detection. Similar works are explored in [16], [17], [18],
[19], [20]. However, due to design constraints and complexity,
the number of embedded HPCs are limited. As such, to
perform runtime malware detection i.e., detect a security threat
at runtime, it is non-trivial to effectively choose a subset
of microarchitectural events that are equivalent to the full
number of physically available HPCs. This calls for effective
feature selection. As different ML classifiers achieve different
performances, in this work, we study and evaluate different
kinds of ML classifiers in the context of runtime malware
detection that can be embedded in the utilized framework,
shown in Figure 1.

Figure 2 depicts the overview of the deployed runtime mal-
ware detector that encompasses a systematic feature selection
and classification. The feature selection step is performed
offline, whereas the extraction and classification are performed
online as given below.

Applications	
(Malware/Benign)

Feature	
Extraction

Capturing	
HPCs	via	Perf	

Tool

Feature	
Reduction

Malware	vs.	Benign		
ClassificationFeature	scoring	

Correlation	analysis	
&Attribute	
Evaluation	

HW	
Performance	
Counters

Malware

Benign

Benign

Malware

ML	classifiers	
(OneR)

Section	IV-1 Section	IV-2

Fig. 2: Overview of the runtime malware detector

Feature Selection: The main objective of the detector is to
perform attack detection during runtime. As such, the first
step is to determine the set of features (microarchitectural
events) that match the full suite of HPCs. To achieve this, we
employ feature selection and reduction techniques. Thus, the
chosen features will represent the most impacting events that
determine the performance of attack detection. This feature
selection process is performed offline, and during runtime
(evaluation phase or when deployed in real-system) only those
events are captured and fed to the ML classifier for attack
detection.

For the utilized experimental setup, we collected diverse mi-
croarchitectural events (44 in our case) by iteratively executing
the applications in a sandbox environment (described later).
The maximum number of microarchitectural events captured
during one execution of an application is limited to the number

of physically available HPCs, hence applications need to be
iteratively executed to capture all the possible events. For fea-
ture selection and reduction, we apply “Correlation Attribute
Evaluation” to rank the most critical microarchitectural events
(HPC events). The correlation attribute evaluation technique
primarily determines the Pearson correlation coefficient as
given below.

ρ(i) =
cov(Zi, C)√
var(Zi) var(C)

i = 1, ..., 44. (1)

Here, the Pearson coefficient is represented by ρ and Zi

denotes the i-th input feature (maximum of 44 in our case)
and C represents the output class i.e., “Malware” or “Benign”
in our case. The covariance between elements are represented
by the function Cov(.) and the variance by V ar(.). Thus, we
determine the most critical features for malware detection with
branch instructions being the pivotal event.

ML Classifier based Malware Detection: Once the non-
trivial microarchitectural events are determined, those events
are captured during the runtime to train the ML classifiers
for classifying the benign applications from malicious appli-
cations.

1) Evaluation of Malware Detection: Applications (both
malware and benign) are executed on an Intel Xeon X5550
processor with Ubuntu 14.04 OS having Linux 4.4 Kernel.
We use the Perf tool for extracting the HPCs values during
runtime. We evaluate on a diverse set of applications such
as MiBench [21] and SPEC2006 [22], Linux programs, and
browsers (to represent benign applications). For malware, we
included Linux ELFs, python scripts, perl scripts, and bash
scripts that represent four classes of malware: 452 Backdoor,
350 Rootkit, 650 Virus, and 1169 Trojan.

TABLE I: Evaluation of different ML classifiers when de-
ployed in HMD using 4 HPCs

Classifier Accuracy Area Power Latency F1-score(%) (%) (mW) (@10ns)
MLP 93.03 41.5 0.78 93 0.93
JRip 91.08 0.2 0.28 1 0.92

Logistic Reg. 92.21 19.9 0.55 58 0.92
SVM 81.55 4.1 0.42 13 0.82
J48 92.62 0.9 0.26 3 0.93

SGD 92.21 4.1 0.39 13 0.92

Table I presents the 10-fold validation of the malware
detection performance and the silicon overhead incurred by
the malware detector that employs 4 HPCs. As the software
implementation of ML classifiers for malware detection is slow
(in the range of tens of milliseconds) which is an order of
magnitude higher than the latency needed to capture malware
at runtime [14], hardware implementation is performed in this
work. The deployed HMD’s hardware footprint is evaluated
on a Xilinx Virtex-7 FPGA. Based on the analysis, we deploy
OneR classifier for malware detection and signaling the attack
in this work.
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Fig. 3: HPC patterns under Spectre attack: (a) L1 hits; (b) LLC
hits; (c) retired instructions; and (d) retired branch instructions

B. HPCs for Side-Channel Attack Detection

Side-channel attacks are another class of security threats
that can exploit the security vulnerabilities of the system. In
this work, we intend to also utilize the previously described
framework for side-channel attack detection. Some of the
previous works such as [23], [24], [25], [26] propose utilizing
the HPCs for attack detection. However, the analysis is limited
and confined to a limited set of security vulnerabilities.

In this work, we capture the HPCs for a given set of
applications executing on the system using the Intel-PCM tool.
Simultaneously, we also run Flush+Reload [5], Prime+Probe
[27], and Spectre [6] for evaluating the HPCs trends.

Figure 3 shows different HPC patterns under the Spectre
attack. The Y-axis represents the HPC value and the sample
in the X-axis represents the time-instant (×50µs) at which
the HPC is captured. As seen, for a system under attack, the
L1 hit count goes down and the LLC hit also reduces. This
happens due to the fact that the Spectre attack also attacks the
L1 cache and last-level cache (LLC), similar to Flush+Reload.
In addition to the cache hits, the number of retired branch
instructions also reduces. This is observed due to the fact that
the employed Spectre attack mistrains the branch predictor
leading to a significant reduction in the retired branches.
With the increase in cache misses (or reduction in cache
hits) and mistraining of the branch predictor, the instruction
rate also reduces, as shown in Figure 3. Similar to malware
detection, we evaluate the side-channel attack detection by
feeding the ML classifier with the HPC events. However,
instead of directly feeding the HPC values, we convert the
time-series (HPC data captured in a given time-interval) into
a subset of features (mean, maximum value and the sum) for
classification.

Evaluation: We carried out the experiments on an Intel i5
processor with Ubuntu 16.04 OS. The side-channel attacks
we use are Flush+Reload (with RSA and AES as victim
programs) obtained from Mastik [28] and Xlate [29]. Sim-
ilarly, Prime+Probe attack on RSA as the victim program
is obtained from Mastik [28]. Spectre is executed based on

Fig. 4: Performance of side-channel attack detection with
different ML classifiers and number of HPCs

[6] with multiple victim programs. We are able to detect
the above mentioned attacks i.e., Spectre, Flush+Reload and
Prime+Probe with an accuracy of more than 95%, as shown in
Figure 4. As seen, with the reduction in the number of HPCs
used, the detection performance also reduces with most of the
classifiers.

IV. SPECIFIC DEFENSE CASE STUDIES

Context-sensitive decoding can provide both security and
non-security advantages. Non-security applications include
fast debugging (e.g., minimal overhead watchpoints), custom
performance counters, and low-cost profiling requiring no
manipulation of the binary. Below are some potential security
applications.

A. Cache Obfuscation

Many attack codes utilize side channels to observe data at
some point. By identifying key secure data structures, we can
replace individual loads with a loop that brings the entire struc-
ture in the cache, thus leaving no data-dependent footprint.
We show this completely eliminates any signal left by known-
vulnerable AES and RSA codes, with only a 5% performance
cost [30]. This is far below existing software cache obfuscation
schemes. In addition to data cache obfuscation, it can also be
used on the instruction cache (by instrument key branches)
that prevent control flow asymmetries from being exposed to
the instruction cache.

To evaluate the effectiveness of our CSD-based cache ob-
fuscation technique (stealth-mode translation), we subject AES
and RSA running on our architecture to the FLUSH+RELOAD
and PRIME+PROBE variants of cache-based side-channel
attacks [31]. Figure 5a shows PRIME+PROBE attacker’s
perspective with and without our obfuscation technique. Fur-
thermore, as shown in figure 5b our stealth-mode translation
can completely obfuscate I-cache access pattern as a defense
against FLUSH+RELOAD attack on the RSA algorithm [32].
These results are also shown in [30], and much more detail
on the technique and the results can be seen there.

B. Dynamic Scheduling Control

Attacks such as Meltdown [33] and Spectre [34] exploit
speculative execution to bypass security guarantees that only
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Fig. 5: Effect of the cache attacks on AES and RSA with stealth-mode translation enabled.

guard committed execution. The primary solutions involve
recompilation with frequent fences (instructions which inhibit
reordering of instructions across the fence). But those come
at a heavy cost. With fine control of the instruction stream
allowing us to strategically insert expensive fences only when
necessary, dropping the overhead (vs. a more naive placement
scheme) by a factor of 3 [35].

Other security applications of CSD include dynamic bounds
checking, dynamic type checking, low-overhead dynamic in-
formation flow tracking, stack smashing detection and protec-
tion, code-pointer integrity, and branch predictor obfuscation.

V. CONCLUSION

In summary, then, context sensitive decoding has the po-
tential to provide software-level protection (high flexibility,
adapting to new attacks) at the hardware level (minimal
overhead, unavailable to attackers) all with minimal changes to
the pipeline – primarily just the decoder tables. In addition, by
exploiting already existing mechanisms companies like Intel
use to update the microcode, it provides fast deployment of
new defenses without recompilation of the entire code base.

This paper also presents initial work on machine-learning
based detector for malware and specific security attacks. They
provide accuracy as high as 95% even when using only a small
set of available performance counters. When implemented in
hardware, the classifier has the potential to enable detection
and adaptation to ongoing attacks at runtime.

By pairing these technologies, given context-sensitive de-
coding’s ability to turn on and off various defenses, and adapt
quickly to different potential threats, we can create a system
that maximizes performance in the absence of threats, yet still
reacts aggressively in the presence of possible attack.
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