
Packet Chasing: Spying on Network Packets over a
Cache Side-Channel

Mohammadkazem Taram
University of California San Diego

mtaram@cs.ucsd.edu

Ashish Venkat
University of Virginia
venkat@virginia.edu

Dean Tullsen
University of California San Diego

tullsen@cs.ucsd.edu

Abstract—This paper presents Packet Chasing, an attack on
the network that does not require access to the network, and
works regardless of the privilege level of the process receiving
the packets. A spy process can easily probe and discover the exact
cache location of each buffer used by the network driver. Even
more useful, it can discover the exact sequence in which those
buffers are used to receive packets. This then enables packet
frequency and packet sizes to be monitored through cache side
channels. This allows both covert channels between a sender
and a remote spy with no access to the network, as well as direct
attacks that can identify, among other things, the web page access
patterns of a victim on the network. In addition to identifying the
potential attack, this work proposes a software-based short-term
mitigation as well as a light-weight, adaptive, cache partitioning
mitigation that blocks the interference of I/O and CPU requests
in the last-level cache.

Index Terms—Side-Channel Attacks, Cache Attacks, DDIO,
Packet Processing, Security, Microarchitecture Security

I. INTRODUCTION

Modern processors employ increasingly complex microar-
chitectural techniques that are carefully optimized to deliver
high performance. However, this complexity often breeds
security vulnerabilities, as evidenced recently by Meltdown [1]
and Spectre [2]. This paper explores the vulnerable side effects
of another sophisticated high performance microarchitectural
technique – Intel® Data Direct I/O (DDIO) [3] implemented
in most server-grade Intel processors to accelerate network
packet processing. Further, it presents new high resolution
covert and side channel attacks on the network I/O traffic,
which while possible without DDIO, are considerably more
effective in the presence of DDIO.

The widespread adoption of multi-gigabit Ethernet and
other high-speed network I/O technology such as Infiniband
has highlighted the critical importance of processing network
packets at high speed in order to sustain this newly available
network throughput, and further improve the performance of
bandwidth-intensive datacenter workloads. Consequently, most
Intel server-class processors today employ DDIO technology
that allows the injection and subsequent processing of network
packets directly in the processor’s last level cache (LLC),
bypassing the traditional DMA (Direct Memory Access) in-
terface. DDIO is invisible to software, including OS drivers,
and is always enabled by default.

The key motivation behind DDIO is the fact that modern
server-class processors employ large LLCs (∼20MB in size),

thereby allowing the network stack to host hot data structures
and network packets in-process completely within the LLC,
reducing trips to main memory. By eliminating redundant
memory transfers, DDIO has been shown to provide sub-
stantial improvements in I/O bandwidth and overall power
consumption [3]–[6]. Although Intel restricts allocating more
than 10% of the LLC for DDIO to prevent cache pollution,
it neither statically reserves nor dynamically partitions a ded-
icated portion of the cache for DDIO.

However, despite its good intention to accelerate network
packet processing, DDIO has a previously unknown vulnerable
side effect that this paper exposes. On a DDIO host, incoming
network packets from a remote client and application data
structures from processes on the local host contend for the
shared LLC, potentially evicting each other in the event of a
cache conflict. In this paper, we show that such contention
provides significant leakage, allowing cache side channel
attacks to perform covert communication and/or infer network
behavior, with virtually zero access to the network stack.
In particular, we describe a new class of covert- and side-
channel cache attacks, called packet chasing, that exploit this
contention by creating arbitrary conflicts in the LLC using
carefully constructed memory access patterns and/or network
packet streams.

We further show that the location (in cache) of packet
buffers used by the network driver, and the order in which
they are filled, are easily discovered by an attacker, greatly
minimizing the amount of probing necessary to follow the
sequence of packets being chased.

The packet chasing-based covert channel we describe in this
paper allows a spy process running covertly alongside a server
daemon on the local DDIO host to receive secret messages
from a trojan process running on a remote client across the
network, by causing deterministic contention in the last-level
cache. We show that such a covert means of communication is
feasible, and is achievable at a high bandwidth, despite the fact
that the trojan process only sends broadcast packets and that
the spy process is completely isolated from the network-facing
server daemon (potentially cross-container and cross-VM), and
further lacks any access to the network stack.

In addition to the covert channel, we describe a novel
packet chasing based side-channel attack that leverages a local
spy process running alongside (or, within) a web browser.
In our experiments, the spy is on the client side alongside



of a browser like Mozilla Firefox, enabling it to fingerprint
a remote victim’s website accesses without having access to
the network. In particular, this attack enables an attacker to
recognize the web activity of the victim based on packet size
patterns. This type of web fingerprinting could be used by an
oppressive government to identify accesses to a banned site,
or an attacker could identify members of a secure organization
(to then target more directed attacks) simply by fingerprinting
a successful login session.

Further, this paper describes a software-based short-term
mitigation, called ring buffer randomization, as well as a
hardware defense mechanism that adaptively partitions the
LLC into I/O and CPU partitions, preventing I/O packets from
evicting CPU/adversary cache blocks. The adaptive partition-
ing defense that we describe in this paper has a performance
overhead of less than 2.7% compared to the vulnerable DDIO
baseline.

The major contributions of this paper are as follows. It
shows that (1) with DDIO turned on, the location of the packet
buffers for a common network driver are easily discovered,
(2) the size of each packet sent (in cache block increments) is
also discoverable, (3) the sequence in which the discovered
buffers are repeatedly accessed can also be deduced, (4)
covert channels can be created between a trojan sending
packets on the network and a spy on another machine, (5) the
sequence/pattern of packet sizes can leak sensitive information
across a side channel, such as a trace of web access activity,
and (6) a short-term software-only randomization scheme as
well as an adaptive cache partitioning scheme are proposed to
defend against the attack with minimal performance overhead.

II. BACKGROUND AND RELATED WORK

This section provides background on network packet han-
dling, DDIO and related network optimizations, network and
I/O based attacks, and cache attacks.

A. Journey of a Network Packet

When an application sends data through the network, it
usually sends a stream of data; and it is the responsibility of the
transfer layer to break large messages into smaller pieces that
the network layer can handle. The Maximum Transferable Unit
(MTU) is the largest contiguous block of data which can be
sent across a transmission medium. For example, the Ethernet
MTU is 1500 bytes, which means the largest IP packet (or
some other payload) an Ethernet frame can carry is 1500 bytes.
Adding 26 bytes for the Ethernet header results in a maximum
frame of 1526 bytes.

When the NIC driver initializes, it first allocates a buffer for
receiving packets and then creates a descriptor which includes
the receive buffer size and its physical memory address. It
then adds the receive descriptor to the receive ring (rx ring),
a circular buffer shared between the driver and the NIC to
store the incoming packets until they can be processed by the
driver. The driver then notifies the NIC that it placed a new
descriptor in the rx ring. The NIC reads the content of the new
descriptor and copies the size and the physical address of the

4 19

10 11 12 …
Ring Buffer

……

NIC DMA

Packet Packet Packet

NIC 
Driver

To IP Layer

Kernel Memory

Fig. 1: The shared ring buffers (FIFO) between NIC and the
device driver.

buffer into its internal memory. At this step, the initialization
is done and the NIC is ready to receive packets.

As shown in Figure 1, upon receiving incoming packets,
the NIC, using Direct Memory Access (DMA), copies packets
to the physical addresses provided in the rx ring, and then
sends an interrupt to notify the driver. The driver drains the
new packets from the rx ring and places each of them in
a kernel data structure called a socket buffer (skb) to begin
their journey through the kernel networking stack up to the
application which owns the relevant socket. Finally, the driver
puts the receive buffer back in the rx ring to be used for future
packets.

B. Direct Cache Access and Data Direct I/O

Modern processors and operating systems employ a number
of network I/O performance enhancements that address packet
processing bottlenecks in the memory subsystem [3], [7]. Hug-
gahalli, et al. [7], present Direct Cache Access (DCA), which
enables the NIC to provide prefetch hints to the processor’s
hardware prefetcher. DCA requires that memory writes go
to the host memory and then the processor prefetches the
cache lines specified by the memory write. The Intel Sandy-
Bridge-EP microarchitecture introduced the Data Direct I/O
(DDIO) technology [3] which transparently pushes the data
from the NIC or other I/O devices directly into the last level
cache. Before DDIO, I/O data was always sent through the
main memory; inbound data is written by the I/O device into
memory, and then the data is either prefetched before access or
demand fetched into the cache upon access by the processor.
With DDIO, however, DMA transactions for an I/O region go
directly to the last level cache, and they will be in dirty mode
and will get written back to memory only upon eviction [8],
[9].

While DCA and DDIO have been shown to improve packet
processing speeds by reducing the cache miss rates in many
scenarios [3], [7], if the device has large descriptor rings, they
could potentially degrade performance by evicting useful data
out of the LLC [10]. In addition, as we show in this paper,
these technologies potentially open up new vulnerabilities
since the packets are brought directly into the LLC, which
is shared by all cores in the processor.
C. Network-Based Covert-Channels

The literature abounds with network-based covert channels
that leverage network protocols as carriers by encoding the
data into a protocol feature [11]–[16]. For example, covert



channels can be constructed by encoding data in unused or
reserved bits of the frame or packet headers [15]–[18], such as
the TCP Urgent Pointer which is used to indicate high priority
data [16]. In the TCP protocol, Initial Sequence Number (ISN)
is the first sequence number and is selected arbitrarily by the
client. Rowland [19] proposed shifting each covert byte by 26
bits to the left and directly using it as the TCP ISN. Abad [12]
shows that the IP header checksum field can also be exploited
for covert communication, and further proposes encoding the
secret information into the checksum field and adding the
content of an IP header extension to compensate the checksum
modification, chosen such that the modified checksum will be
correct. Other header fields such as address fields [13] and
packet length [15] are also exploited to build covert channels.
In addition to the header field, packet rate and timing [13],
[18], packet loss rate [14], and packet sorting [20] are also
used to build covert channels.

Many of these covert channels are based on non-standard
or abnormal behaviour of the protocol and can be detected
and prevented by simple anomaly detection methods [11]. In
addition, all of these network-based covert channels require the
receiver to have access to the network and be able to receive
packets, while the receiver in our packet chasing attack does
not need any access or permission to the network.

D. Cache Attacks

Cache-Based side-channel attacks are the most common
class of architectural timing channel attacks, that leverage the
cache as their sole medium of covert communication [21]–
[24]. These attacks have the potential to reveal sensitive infor-
mation such as cryptographic keys [24]–[29], keystrokes [30],
[31], and web browsing data [32], [33], by exploiting timing
variations that arise as a result of a victim process and a spy
process contending for a shared cache. For example, in the
PRIME+PROBE [24], [32] attack, the spy process infers the
secret by learning the temporal secret-dependent cache access
patterns of a victim, by contending for the same cache sets
as the victim and measuring the timing variations that arise
due to such contention. In the PRIME step, the attacker fills
one or more cache sets with its own cache blocks, simply by
accessing its data. Then, in the IDLE step, the attacker waits
for a time interval and lets the victim execute and use the
cache, possibly evicting the attacker’s blocks. Finally, in the
PROBE step, the attacker measures the time it takes to load
each set of cache blocks. If it is noticeably slow, she can infer
that the victim has accessed a block in that set, replacing the
attacker’s block.

To perform these attacks in a fine time granularity, the
attacker has to target specific sets in the last level cache.
As such, she has to know how the addresses map into the
sets in the LLC. However, starting with the Sandy Bridge
microarchitecture [34], Intel has employed a new LLC design,
in which the LLC is split into multiple slices, one for each
core (See figure 2), with an unpublished hash function map-
ping physical addresses to slices, supposedly distributing the
physical addresses uniformly among the cores. This hash func-

Tag Block 
OffsetSet

6 bits11 bits47 bits S0 S1 S2 S3 S4 S5 S6 S7

Hash

Physical Address Last Level Cache

3

11

Fig. 2: Intel’s complex indexing of modern last level cache.

tion has since been successfully reverse-engineered for many
different processors, including Intel’s Sandy Bridge [35]–[37],
Ivy Bridge [36], [38], and Haswell [36], [39] architectures.

In addition to PRIME+PROBE, multiple other
variants of cache attacks are also proposed [25]–[27].
FLUSH+RELOAD [26] uses Intel’s CLFLUSH instruction
to flush a target address out of the cache, and then, at
the measurement phase, the attacker “reloads” the target
address and measure its access time. However, it relies on
shared memory between the spy and the victim, and requires
access to precise timers. PRIME+ABORT [27] exploits Intel’s
transactional memory extension (TSX) hardware to mount a
timer-free last level cache attack.

Several defenses have been proposed in the literature to
mitigate cache timing channels [40]–[55]. These mitigation
strategies include identifying the leakage in software [48],
observing anamalous cache behavior [49], [56], closing chan-
nels at hardware design time [41]–[45], dynamic cache par-
titioning [45], [46], [50], strictly reserving physical cores to
security-sensitive threads [51], randomization [46], memory
trace obliviousness [52], [53], and cache state obfuscation
using decoy load micro-ops [54], [55].

E. Security of I/O Devices and Drivers

A number of security attacks have been published that target
device drivers [57]–[59]. Thunderclap [58] describes an attack
that subverts the Input-Output Memory Management Unit
(IOMMU) protections to expose the shared memory available
to DMA-enabled I/O peripherals. Zhu, et al. [60] demonstrate
another attack that bypasses IOMMU and compromises the
GPU driver to exploit GPU microcode to gain full access
to CPU physical memory. To address these vulnerabilities,
researchers focus on isolating device drivers, and to make
operating systems secure when a device driver is buggy or
has code which is intentionally malicious [61], [62]. Tiwari,
et al. [63] propose a full system which includes an I/O
subsystem and a micro-kernel that enable isolation and secure
communication by monitoring and controlling the information
flow of the system.

NetCat [64] is a concurrent work to our Packet Chasing
attack. It describes an attack that exploits a similar underlying
vulnerability. However, this work differs in many important
ways. First, NetCat only detects the arrival time of packets,
whereas Packet Chasing has the ability to detect both arrival
time and size of each packet – the latter is more reliable
and less noisy. This gives Packet Chasing-based attacks the
opportunity to mount more powerful attacks such as the web
fingerprinting attack that we describe in this paper (Section V).



Second, unlike Packet Chasing, NetCat requires DDIO and
RDMA technologies to be present, limiting its generality.
Therefore, to mitigate NetCat, it is sufficient to disable DDIO
or RDMA. However, as we show in this paper, the Packet
Chasing attack is practical even in the absence of those
technologies. Therefore, we also present a more sophisticated
yet high-performance defense that mitigates the attacks.

III. PACKET CHASING: SETTING UP THE ATTACK

We perform our analysis and attack on Intel’s Gigabit Ether-
net (IGB) driver version 5.3.5.22 [65] loaded into Linux Kernel
version 4.4.0-142. We run the attack on a Dell PowerEdge
T620 [66] server which uses Intel I350 network adapter [67]
and is operated by two Intel Xeon CPU E5-2660 processors.
Each processor has a 20 MB last level cache with 16384 sets.
To perform PRIME+PROBE on the last level cache, we use
the Mastik Micro-Architectural Side-Channel Toolkit Version
0.02 [68]

Our attack consists of two phases. One is an offline phase
where the attacker recovers the sequence of the buffers and
an online phase where the attacker uses that information to
monitor the incoming packets.

A. Deconstruction of the NIC Driver

While the code samples of this subsection are specific to
Intel’s Gigabit Ethernet (IGB) driver, we note that the insights
are generalizable. The original Ethernet IEEE 802.3 standard
defines the minimum Ethernet frame size as 64 bytes and
the maximum as 1518 bytes, with the maximum being later
increased to 1522 bytes to allow for VLAN tagging. Since
the driver and the NIC don’t know the size of incoming
packets beforehand, the NIC has to allocate a buffer that can
accommodate any size. The IGB driver allocates a 2048 byte
buffer for each frame and packs up to two buffers into one
4096 byte page which will be synchronized with the network
adapter. For compatibility, it is recommended [69] that when
the device drivers map a memory region for DMA, they only
map memory regions that begin and end on page boundaries,
which are guaranteed also to be cache line boundaries. Further,
the rx ring buffer is used to temporarily hold packets while the
host is processing them. While employing more buffers in the
ring could reduce the packet drop rate, it could also increase
the host memory usage and the cache footprint. Therefore,
although the maximum size supported by Intel’s I350 adapter
is 4096 buffers, the default value in the IGB driver is set to
256.

The linux kernel, in the DMA API, provides two different
types of DMA memory allocation for device drivers. Coher-
ent (or consistent) memory and streaming DMA mappings.
Coherent memory is a type of DMA memory mapping for
which a write by either the device or the processor can be
visible and read by the processor or device without the need
to explicitly synchronize and having to worry about caching
effects. However, the processor has to flush the write buffers
before notifying devices to read that memory [69]. Therefore,
consistent memory can be expensive on some platforms as it

static bool igb_add_rx_frag(rx_buffer, skb){
...
size = rx_buffer->size;
page = rx_buffer->page;
if (likely(size <= IGB_RX_HDR_LEN)) {

memcpy(__skb_put(skb, size), page, size);
/* we can reuse buffer as-is,
just make sure it is local */
if (likely(page_to_nid(page) == numa_node_id()))

return true;
/* this is a remote page and cannot be reused*/
put_page(page);
return false;

}
/* only if packet is large */
skb_add_rx_frag(skb, page);
return igb_can_reuse_rx_page(rx_buffer, page);

}

Fig. 3: The IGB driver function that adds the contents of an
incoming buffer to a socket buffer which will be passed to the
higher levels of networking stack. The function returns true if
the buffer can be reused by the NIC.

bool igb_can_reuse_rx_page(rx_buffer, page){
/* avoid re-using remote pages */
if (unlikely(page_to_nid(page) != numa_node_id()))

return false;
/* if we are only owner of page we can reuse it */
if (unlikely(page_count(page) != 1))

return false;
/* flip page offset to other buffer */
rx_buffer->page_offset ˆ= IGB_RX_BUFSZ;
/* bump page refcount before it's given to stack */
get_page(page);
return true;

}

Fig. 4: The IGB driver function that checks if the driver can
reuse a page and put it back into the rx ring buffer.

invariably entails a wait due to write barriers and flushing of
buffers [69]. While the buffers themselves are mapped using
streaming DMA mapping, the ring descriptors are mapped
using coherent memory. Thus, the device and the driver have
the same view of the ring descriptors. Also, this makes the
writes to the rx descriptor ring expensive. Therefore, in order
to avoid changing the content of rx descriptors, drivers after
receiving packets usually reuse the buffers instead of allocating
new buffers. So the drivers usually allocate the buffers once
and reuse them throughout the life cycle of the driver.

Figure 3 shows the part of the IGB driver code that is called
upon receiving packets and whose job is to add the contents
of the rx buffer to the socket buffer which will be passed to
the IP layer. If the size of the packet is less than a predefined
threshold (256 by default), then the driver copies the contents
of the buffer and then tries to recycle the same buffer for
future packets. If the buffer is allocated on a remote NUMA
node, then the access time to that buffer is much more than if
the buffer was allocated in a local NUMA node. Therefore, to
improve performance, the driver deallocates the remote buffer
and re-allocates a new buffer for that rx ring descriptor. If the
packet size is larger than 256, then instead of the direct copy,
the IGB driver attaches the page as a fragment to the socket



0 32 64 96 128 160 192 224 256
Cache Block Number

0

1

2

3

4

5
N

um
be

r 
of

 B
uf

fe
rs

Fig. 5: An example of how the NIC ring buffers are mapped to
to the page-aligned cache sets.

buffer. It then calls the igb can reuse page function shown
in Figure 4. This function checks for two conditions that are
unlikely to be met. The first condition is that the buffer is
allocated on a remote NUMA node. The second condition is
that the kernel is still preparing the packet in the other half
and that the driver is not the sole owner of the page. If neither
condition is met, the driver flips the page offset field, so that
the device only uses the second half of the page.

To summarize, in the common scenarios, the driver uses
a small number of ring buffers (256) on 256 distinct pages,
each of them half-page aligned and it continually reuses these
buffers typically until the next system reboot or networking
restart. In addition, to maintain high (and consistent) packet
processing speeds, the order of the ring descriptors does not
change throughout the execution of the driver code. Therefore,
as long as the driver reuses the buffers for descriptors, the order
of the buffers remains constant.

B. Recovering the Cache Footprint of the Ring Buffer

The ultimate goal of the Packet Chasing attacker is to
gain size and temporal information about incoming packets
by spying on the last level cache. To this end, we mount
a PRIME+PROBE attack on the last-level cache. However,
blindly probing all cache sets doesn’t give us much infor-
mation. This is because the probe time is limited by the
time it takes to access the entire cache, which in this case
is about 12 million CPU cycles, too long to gain any useful
information about incoming packets. Long probe time also
makes the attack more susceptible to background noise, as the
probability of observing irrelevant activity on the cache line
increases.

However, from the previous subsection, we know that the
buffers that store packets in kernel memory are page-aligned.
That means we only need to probe the sets that the page-
aligned addresses are mapped to. Having 4KB page size
implies that the lowest 12 bits of the starting addresses are
zero. So the lowest 6 bits of the set indices are zero (also see
Figure 2). That limits us to 32 sets in each slice for a total of
256 possible sets. Using the Mastik toolkit, we find these sets
and construct eviction sets for them, which are essentially a
stream of addresses guaranteed to replace all other data from
the all cache blocks in a set. With these, we have the ability
to monitor all 256 cache sets that are potential candidates for
buffer locations.

While all the NIC rx buffers map to one of the page-aligned
cache sets that we obtain, the distribution of this mapping is
not uniform, which means that some of the rx buffers are

0 20 40 60 80 100 120
Frequency (Out of 256)

0
1
2
3
4
5

B
uf

fe
rs

 M
ap

pe
d

 to
 a

 S
et

Fig. 6: Frequency of the ring buffers that map to same sets,
measured for 1000 instances. Zero represents the number of sets
that are page aligned but none of the ring buffers is mapped to
those.

Receiving 
Idle

Fig. 7: Monitoring all the page-aligned sets while receiving
packets. A white dot shows at least one miss (activity) on a
cache set in a sample interval

mapped to the same cache set. To show an example of such
conflict in the cache sets, we instrument the driver code to
print the physical addresses of the ring buffers, which we then
map to cache set indices. Figure 5 shows this non-uniform
mapping for just one instance of the buffer allocation in the
NIC. Horizontal axes shows one of the page-aligned cache
sets and on the Y axis, we show the number of NIC buffers
that map to each page-aligned cache set. In this example, we
see that 5 NIC buffers are mapped to cache set number 165
while none of the NIC buffers are mapped to cache block 65.

Figure 6 further analyzes this mapping which shows the
result of performing the same experiment across multiple
instances of driver initialization. For around 35% of the page-
aligned sets, there is no co-mapped NIC buffer, while there
are only 5 out of 1000 instances in which we see more than
4 buffers mapped to the same page-aligned cache set.

By narrowing down the number of monitored cache sets to
only the 256 possible buffer starting locations, we are able
to see a clear footprint in the cache when the NIC device is
receiving packets, as shown in Figure 7. In this experiment,
we rely on a remote sender who is on the same network with
the spy and constantly sends broadcast Ethernet frames to the
network. To this end, we use Linux raw socket [70] which
generates broadcast Ethernet frames with arbitrary sizes. These
frames get discarded in the driver since the protocol field is
unknown. Thus, the effect that we see is only caused by the
driver/adaptor accessing the buffers, without any activity of
the kernel networking stack. At around sample 25k, the sender
starts sending packets and it continues to do so until sample
100k. In some cache sets, e.g., cache set number 53, we don’t



0.0
0.5
1.0Bl

oc
k 

0
Sa

m
pl

e#
×105

0.0
0.5
1.0Bl

oc
k 

1
Sa

m
pl

e#

0.0
0.5
1.0Bl

oc
k 

2
Sa

m
pl

e#

0 10 20 30 40
Cache Set#

1-Block Packets

0.0
0.5
1.0Bl

oc
k 

3
Sa

m
pl

e#

0 10 20 30 40
Cache Set#

2-Block Packets

0 10 20 30 40
Cache Set#

3-Block Packets

0 10 20 30 40
Cache Set#

4-Block Packets

Fig. 8: Cache footprint of packets with different sizes while
probing the addresses that map to the location of the first three
blocks in the packet buffer page. A white dot indicates at least
a miss in a set.

see any activity and that is because none of the NIC buffers
are mapped to those sets.

The packet chasing attacker, with the ability to distinguish
between an idle system vs. when there are incoming packets,
establishes a leaking channel that can be exploited to covertly
communicate secret data over the network. We can further
increase the bandwidth of this channel by differentiating the
receiving streams based on frame sizes. Since the incoming
packets are stored in contiguous rx buffers, using the same
way that we construct the eviction sets for the page-aligned
cache sets, we construct eviction sets for the second cache
blocks in the page. All the second cache blocks in the pages
are mapped to one of these 256 cache sets. Similarly we find
the sets for the third and fourth cache blocks of the pages.
This now allows us to recognize not just the presence of a
packet, but also the size of the packet.

Figure 8 shows the result of a simple experiment where we
send packets of different sizes and test our ability to detect
packet size. On the columns, we have four different runs with
constant packet sizes being sent, from one cache block (64
bytes) to four cache blocks (256 bytes). On the rows we
show detection on four different cache eviction sets, block
0 to block 3 which are targeting the first to fourth blocks in
the page-aligned buffers. As expected, we see clear activity on
the diagonal and above, and no activity below the diagonal.
The only exception is 1-block packets which exhibit activity
on block 1 as well as on block 0. This is because there is
a performance optimization in the driver code that prefetches
the second block of the packet regardless of the packet sizes.
The reason for this optimization is that most Ethernet packets
have at least two blocks, and 64-byte packets (0-Block Packet)
are only common in control packets that don’t have payloads
such as TCP acknowledge packets.

The attack distinguishes a stream of packets with different
sizes from each other, and that could be used to construct a
remote covert channel (more details in Sec IV) with 1950
bytes-per-second bandwidth by only detecting a stream of

1

2

3

4

0

11
4

34
5

6611
73

15
32

61
55

585
2

6683
218

673
4

6872

909

6143
1031

641
0

260

221
43

52

469

1

2

3

4

06611

61
55

585
2

6683

673
4

6872 6143

641
0

Pruning

210,164

93,193

205, 29

135

Sequencing

1=>0 0=>3 3=>2 2=>4

4=>11=>22=>33=>1

21 29 93 135

1641932050
210,164

93,193

205, 29

135

Fig. 9: Pruning and sequencing of the set graph to get the
order of ring buffers. Each node represents a set in the attacker
address space. Numbers in squares are the sequence number of
the associated ring buffers that map to same set.

small packets vs. a stream of large packets (essentially, a
binary signal). However, we can turn this to a more pow-
erful channel if we differentiate sizes with finer granularity,
essentially sending multiple bits of information per packet.
The following subsection describes the method that we use
to further narrow down the monitored sets while we perform
PRIME+PROBE.

C. Chasing Packets over the Cache

The attacker has to probe all 256 page-aligned sets at once to
detect incoming packets only because she doesn’t know which
buffers get filled first, and then probe more sets to detect packet
size. However, if we know the order in which the buffers get
filled in the driver, then we can actually chase the packets
over the cache by only probing the cache sets corresponding
to the next expected buffer, building a powerful high-resolution
attack. We show that it is possible to almost fully recover the
sequence of the buffers, in a one-time statistical analysis phase.
Since the buffers are always recycled and then returned to the
ring, the order of the buffers in the ring is maintained during
the lifetime of the driver.

Algorithm 1 describes the SEQUENCER procedure that we
use to recover the sequence. It consists of three steps. First,
in the GET CLEAN SAMPLES step, we gather cache probe
samples for Nsets cache sets. To this end, we start with
constructing the eviction sets for the page-aligned NIC buffers.
However, sometimes we have always-miss scenarios on some
sets, which is easily observed a priori. For those sets, we
simply use the second cache block of a page-aligned buffer
instead of the first one.

After that, we start building a complete weighted graph with
the nodes being the monitored cache sets and the weights
on the edge that connect node x to node y are the number
of times that we observe an activity on set y which was
immediately followed by an activity on set x, as illustrated
in the leftmost graph in Figure 9. To deal with the problem
that multiple buffers can map to the same cache set, when
we build the graph, we maintain one node history for each
edge. This allows the algorithm to distinguish between the
activity on two or more different buffers that map to the same
cache set by their successor cache sets. So, for example in
Figure 9, two different buffers are mapped to cache set number
2. These buffers occupy location numbers 93 and 193 in the
ring buffer. Therefore, in the final sequence, we have two



Algorithm 1 Ring Buffer Sequence Recovery
1: procedure SEQUENCER
2: samples ← GET CLEAN SAMPLES(Nsets, Nsamples)
3: graph ← BUILD GRAPH(SAMPLES)
4: sequence ← MAKE SEQUENCE(GRAPH)
5: return sequence
6: procedure GET CLEAN SAMPLES(Nsets, Nsamples)
7: monitor list ← [0..Nsets]
8: samples ← repeated probe(Nsamples, monitor list)
9: for all x ∈ monitor list do

10: if activity(samples[x]) > activity cutoff then
11: replace x in monitor list with the 2nd block of the page
12: goto: 3
13: return samples
14: procedure BUILD GRAPH(samples)
15: curr← 0, prev← 0
16: for i ∈ {0, ..., SAMPLES} do
17: for all cand ∈ monitor list do
18: if samples[i][cand] < miss threshold then . no activity
19: continue
20: if curr 6= prev then . no self-loop
21: graph[prev][curr][cand]← graph[prev][curr][cand]+1
22: (prev, curr)←(curr, cand)
23: return graph
24: procedure MAKE SEQUENCE(graph)
25: root ← get root(graph)
26: sequence ← [], (prev,curr) ← root
27: repeat
28: sequence.push(curr)
29: (next,weight)← get max weight(graph[prev][curr])
30: if weight < weight cutoff then
31: break
32: graph[prev][curr][next] ← 0 . mark as visited
33: (prev, curr) ← (curr, next)
34: until (prev, curr) 6= root
35: return sequence

different instances of cache set number 2, one that is followed
by cache set 3 and the other that is followed by cache set 1.

The final step, MAKE SEQUENCE, is to traverse the graph
we build in the previous steps, starting from a random node,
and continuing to move forward until we reach the same node.
Note that since the final sequence is a ring in which the in-
degree and the out-degree of each node is exactly one, the
choice of the starting node doesn’t change the outcome.

While this procedure can recover the sequence of the buffers
that are mapped into Nset, it can only do so if we monitor
a limited portion of the page-aligned cache sets (we were
successful up to 64 cache sets). This is because the probe
time gets longer than what is required to detect the order of
the incoming packets, if we include more sets in our monitor
list. So we first find the sequence for 32 cache sets, then we
repeat the SEQUENCER procedure with the first 31 nodes (node
0 to node 30) plus a candidate node (e.g, 32) and we try to find
the location of the candidate in the sequence. Then, we repeat
the same procedure, moving through the node sequence, until
we find a place in the sequence for all cache sets.

Sometimes two consecutive buffers are mapped into one set.
For example, consider the case that buffers number 93 and 98
are mapped into the set 2 in Figure 9. With our approach,
we don’t capture these cases in the first round, but starting
from the beginning, when we do encounter a buffer that is
between the two, we can split the two in our graph. If they
are truly consecutive in the final ring (unlikely), the buffers are
essentially merged, but this has no impact on our mechanism
to create a covert channel, and will have minimal effect on

TABLE I: Summary of experiments for sequence recovery

Results
Measure Value CI
Levenshtein Distance 25.2 [22, 35]
Error Rate (%) 9.8 [8.5, 13.6]
Longest Mismatch 5.2 [3, 9]
Time (Minutes) 159 [153, 167]

Parameters
Parameter Value
Number of Samples 100,000
Number of Monitored Set 32
Packet Rate (packet/s) 0.2M
Probe Rate (probe/s) 8000

the overall fingerprint we observe in the web fingerprinting
leakage attack.

We measure Levenshtein distance [71] to quantify the dis-
tance between the sequence that we obtain and the ground truth
actual sequence that we get from driver instrumentation. The
Levenshtein distance between two sequences is the minimum
number of single-character edits (i.e., insertions, deletions or
substitutions) needed to change one sequence into another. We
see the results of this experiment in Table I. Fine-tuning
the probe rate is a rather challenging task as it needs to
be long enough that the activity of each incoming packet
touches only one sample, and needs to be small enough to not
lose the temporal relation between the incoming consecutive
packets. Otherwise, we see a drop in accuracy of the obtained
sequence. However, in our covert-channel construction, in
many of our attack scenarios, we only need to find buffers
that are sufficiently far apart in the ring, so small errors in the
sequence are tolerable.

During the profiling period we rely on a remote sender
whose only job is to constantly send packets. However, the
spy can recover the sequence even without the help of the
external sender, as long as the system is receiving packets. In
fact, noise (extra packets not sent by co-operating sender) in
this step only helps the spy.

IV. PACKET CHASING: RECEIVING PACKETS WITHOUT
NETWORK ACCESS

In this section, we show the effectiveness of the Packet
Chasing attack by constructing a covert channel over the
network. We assume a simple threat model where a remote
trojan attempts to send covert messages through the network,
to a spy process located in the same physical network. The
spy process can be inside a container and does not have root
privileges, neither in the container nor in the host OS, and
is also not permitted to use the networking stack. The trojan
process has the ability to send packets to the physical network,
but there is no authorized method to communicate with the spy.

a) Channel Capacity: To build a framework for quan-
titatively comparing different encoding and synchronization
schemes, we follow the methodology described by Liu, et
al. [24] to measure our channel bandwidth and error rate, while
transferring a long pseudo-random bit sequence with a period
of 215−1. The pseudo-random bit sequence is generated using
a 15-bit wide linear feedback shift register (LFSR) that covers
all the 215 sequences, except the case that all bits are zeros.
This allows us to spot various errors that might happen during



the transmission including bit loss, multiple insertion of bits,
or bit swaps [24].

b) Data Encoding and Synchronization: The spy first
chooses x, one of the page-aligned cache sets that only one
of the ring buffers is mapped to. Finding such a page-aligned
cache set is not challenging using the approaches described
in Section III. Then the spy process finds the cache sets to
which the addresses x + 64, x + 2 ∗ 64, and x + 3 ∗ 64 are
mapped. In other words, it finds the cache sets for the second,
third, and fourth cache blocks of the page-aligned buffer. As
described in Section III, the spy process knows the set index
bits for these sets, but the outcome of the hash function (slice
bits) is not known. To find out the exact slice, the spy process
executes a trial and error procedure in which it selects one of
the eight slices based on the activity on the sets. After this
step, the initialization is done and the spy process constantly
monitors the found cache lines.

The spy process, at time frame n, sends 256 (the length
of the ring buffer) packets of size (S + 2) ∗ 64 to transmit
the symbol S. Since we operate on the network and the
latency is fluctuating frequently, we cannot use return-to-
zero self-clocking encoding [24], rather we choose to use a
synchronized clock encoding scheme in which the first block
of the buffer acts as a clock to synchronize the spy with the
trojan. We measure the bandwidth and the error rate for two
cases. First, we encode one binary symbol in each packet, i.e.,
we send either 64-byte packets that encode ”0”, or we send
256-byte packets that encode ”1”. Second, we send a ternary
symbol in each packet, i.e, we send 64-byte packets to encode
”0”, 192-byte packets to encode ”1”, and 256-byte packets to
encode ”2”.

For example, Figure 10 shows a part of a sequence that
the spy receives in a real experiment. In this experiment, the
trojan transmits sequence ”2012012012...” and the spy collects
one sample from the three cache sets, every 200, 000 cycles.
When decoding, the spy uses a window of three samples to
distinguish between different values. This is because some-
times we see the cache activity of one packet (one symbol)
that spans across two cycles (the wide peaks in the figure). The
spy process should not decode these cases into two different
symbols. In addition, having a window helps if the activity on
the sets get skewed because of the delay of arriving packets.
The first set of the buffer is used as a clock to synchronize
the parties, and activity on the other two sets can show the
transmitted values. Monitoring the activity of the two sets only
gives us three different symbols because by sending a 3-block
packet, we have a compulsory activity on set 2.

To estimate the error rate, we again use edit Levenshtein
distance [71] between the sent and received data for the pseudo
random bit sequence. Figure 11 shows the bandwidth and the
error rate of our coding schemes, as well as the effect of vary-
ing the probe rate, i.e., the time we wait between consecutive
probes. The bandwidth of the channel is almost constant with
different probe rates. This is because the limitation here is the
line rate. We are using 1 Gb/s Ethernet link and transmitting
a collection of packets whose average size is 192 bytes. The

‘2’ ‘0’ ‘1’ ‘2’ ‘0’ ‘1’ ‘2’

Fig. 10: Spy process decodes the transmitted sequence based on
the monitored activity on the probed sets. Set 1 acts as the clock
and the activity is one for a set if we find at least one miss in
the blocks in the eviction set of the probed set.

7 14 28
Probe Rate (KHz)

0

500

1000

1500

2000

B
an

dw
id

th
 (b

it/
se

co
nd

)

Binary Encoding

7 14 28
Probe Rate (KHz)

Ternary Encoding

(a) Bandwidth

7 14 28
Probe Rate (KHz)

0

2

4

6

8

10

E
rr

or
 R

at
e 

(%
)

Binary Encoding

7 14 28
Probe Rate (KHz)

Ternary Encoding

(b) Error Rate

Fig. 11: Bandwidth and error rate of the remote covert channel
for binary and ternary encoding and various cache probe rates.

maximum frame rate for the packets with frame size of 192 is
around 500,000 frames per second [72]. Since we are sending
one symbol per 256 packets, our maximum bandwidth is
theoretically bounded at 1953 symbols per second. By coding
three symbols, this packet chasing covert channel can reach a
bandwidth of 3095 bps. The error rate, however, is reduced as
we reduce the probe time. That is because with a longer wait
time between two consecutive probes, we raise the probability
of capturing irrelevant background activity on the sets. When
we use binary encoding, we use the samples from both set 2
and set 3 and if they both have activity during a window, we
decode as ”1”. Therefore, the error rate is slightly less than
the ternary encoding.

c) Exploiting Ring Buffer Sequence Information: If we
know the ordering of the buffers, this mechanism is easily
extended to send more than one symbol per 256 packets. In
this case, the trojan can send one covert message every 256/n
packets by dividing the ring buffer into n sections of similar
sizes by selecting n buffers that are ideally 256/n apart. The
selected buffers should be among the buffers that are mapped
to only one of the page-aligned cache sets. Then the spy starts
monitoring the selected sets and their adjacent blocks to detect
the size of the packets that are filling these buffers.

This process can multiply the capacity of the covert channel
as shown in Figures 12a and 12b. These figures show the



bandwidth and the error rate for the cases that the spy monitors
a different number of buffers in the ring. For each of these
buffers the spy probes three cache sets that are associated with
the first, third, and fourth cache blocks of the packets that fill
these buffers. For the case that there is only one monitored
buffer, the trojan sends one covert message with 256 packets,
and for the case of 16, the trojan sends a new message every
256/16 = 16 packets. The bandwidth of the channel almost
doubles when we double the number of monitored buffers
and it goes up to 24.5 kbps for the case of 16 monitored
buffers. The error rate remains almost constant until the time
between incoming packets gets close to the time between two
consecutive probes. Note that when we have more sets in our
monitored list, each probe takes more time and this decreases
the probe rate. Furthermore, with the increased number of
monitored buffers, it becomes harder to find the buffers that
are n buffers apart in the ring and also do not share the cache
set with any other buffer in the ring. For these reasons, we see
a jump in the error rate when we monitor 16 buffers of the
ring. Note that these and subsequent results also account for
inaccuracies incurred when we deconstruct the ring sequence.

Figures 12c and 12d show the result of another experiment
in which we actually chase the packets using the sequence.
We probe one buffer at a time and as soon as we detect an
activity on the probed buffer, we move to the next buffer
in the sequence. The out-of-sync rate is the rate by which
packet chasing misses one packet, and therefore it has to wait
until completion of the whole ring, or the next time a packet
fills that buffer, to get synchronized again. The bandwidth is
controlled by the rate at which the sender transmits the packets
and the error rate is calculated on the synchronized regions of
the transmission. The figure shows that the out-of-sync rate
is almost constant for different packet rates. This is because
when we probe just one set, the resolution of probing is higher
than the time between consecutive packets. In addition, the
frequency at which we get out-of-sync is a function of the
quality of the sequence that we obtain. The error rate jumps
at 640 kbps because at that speed the packets start to arrive
out-of-order at the receive side.

d) Detectability and Role of DDIO/DCA : In the pres-
ence of DDIO, the packets that carry the covert messages
are hard to detect and filter (e.g., by a firewall system that
drops the packets that are sent to the victim node) as they
can be regular broadcast packets, e.g., DHCP and ARP, and
they are not even required to be destined for the machine that
hosts the spy. This is because, with DDIO/DCA, the network
adapter directly transfers the packets into the last level cache
of the processor, and only after this will the driver examine
the header of each frame and discard the packets that do not
target any protocol that is hosted in that machine. That is, with
DDIO enabled, we can establish a channel between machine
A and B even with A only sending packets to machine C on
the same network.

DDIO enables Packet Chasing to get a clearer signal as
the cache blocks of the payload appear in the cache as the
same time as the cache blocks that belong to the header of the

1 2 4 8 16
Monitored Buffers

0

5

10

15

20

25

B
an

dw
id

th
 (k

bp
s)

(a) Bandwidth

1 2 4 8 16
Monitored Buffers

0

5

10

15

E
rr

or
 R

at
e 

(%
)

(b) Error Rate

80 160 320 640
Bandwidth (kbps)

0

5

10

15

20

O
ut

 o
f S

yn
c 

R
at

e 
(%

)

(c) Out of Sync

80 160 320 640
Bandwidth (kbps)

0

5

10

15

20

E
rr

or
 R

at
e 

(%
)

(d) Error Rate

Fig. 12: (a) and (b) show the channel capacity for the remote
covert channel where the spy that uses n buffers of the ring’s
sequence information. (c) and (d) show the out of sync rate and
error rate for the case where spy uses all the buffers in the
sequence information.

packet. This enables the attack to probe the adjacent cache
blocks and quickly detect the size of each packet. However, if
DDIO is disabled or not present, the journey of a packet would
be different. First, the NIC stores the header of the packet in
the memory, then the driver reads the header and processes the
packet according to the header fields. This brings the cache
blocks containing the header into the cache. For most of the
common higher level protocols (e.g., http) the software stack
will access other parts of the packet shortly after the header
comes [7].

The latency between I/O writes and driver reads now
becomes a factor in the attack without DDIO. In this scenario,
the attacker should set the probe time to be larger than that
latency. When that latency is accounted for, the cache footprint
of the packet remains the same as the DDIO case. However,
increasing the probe interval can result in more noise captured
in each interval. But the latency, as characterized in [7], is less
than 20k cycles for almost 100% of the packets. This latency
also depends on the size of the packets. For small packets
with less than 5 cache blocks, the payload will be touched
almost immediately after the header, as the driver copies such
packets into another buffer. In this case, the attack without
DDIO detects packet sizes for the small packets as readily as
the attack with DDIO.

In short, DDIO makes the attack stealthier, and more reliable
(less noise). But the attack is fully possible without DDIO. As
an example, the web fingerprinting attack presented in the next
section is mounted on a system both with and without DDIO.

V. PACKET CHASING: EXPLOITING PACKET SIZE

In this section, we present a sample application for a Packet
Chasing attack, in which we use the high resolution samples
of packet sizes to gain information on the co-located user’s
browsing data. For example, the spy could be waiting for
the victim to enter a particular website before initiating some
action such as a password detection attack.

This simple attack consist of two phases. First is the offline
phase in which the adversary generates traces of packet sizes
for different websites of interest, then processes these traces
and calculates a representative trace for each website. This is
just a point-wise average of the packet sizes, resulting in a
vector of these points (average packet size) over time.

In preparation for the attack, the attacker builds the sequence
of the ring buffers, as previously described. After that, the



0 20 40 60 80 100
Packet Number

1

2

3

4+
D

et
ec

te
d 

Pa
ck

et
 S

iz
e 

(C
ac

he
 B

lo
ck

)

(a) Successful Login

0 20 40 60 80 100
Packet Number

1

2

3

4+

Pa
ck

et
 S

iz
e 

 (C
ac

he
 B

lo
ck

)

(b) Unsuccessful Login

0 20 40 60 80 100
Packet Number

1

2

3

4+

D
et

ec
te

d 
Pa

ck
et

 S
iz

e 
(C

ac
he

 B
lo

ck
)

(c) Recovered Successful Login

0 20 40 60 80 100
Packet Number

1

2

3

4+

D
et

ec
te

d 
Pa

ck
et

 S
iz

e 
(C

ac
he

 B
lo

ck
)

(d) Recovered Unsuccessful Login

Fig. 13: Detecting successful login for hotcrp.com. Shows original packet sizes vs. the recovered packet sizes by Packet Chasing for
the first 100 packets of the responses.

attacker enables spy mode in which she constantly monitors
the first two cache blocks of the first buffer in the sequence
until she finds a window in which there are activities on both
block 0 and block 1. This indicates that a packet is filling that
buffer. Then, similar to the receiver in the covert channel, on
each detected activity the attacker moves to the next buffer
in the sequence. Each time, the attacker monitors the first
four blocks of the first half-page of the buffer as well as the
first four blocks of the the second half-page of the buffer.
This is because the driver switches between the halves of the
pages when there is a large packet (see Section III-A). This
enables the attacker to distinguish between packets with four
level of sizes. After collecting the samples of packet sizes,
the spy feeds the collected vector into a simple correlation-
based classifier which calculates cross-correlation [73] of the
collected samples with the representatives of different targets.

Figure 13 shows an example of the signals that we obtain by
Packet Chasing and the actual packet sizes that are captured
using the tcpdump [74] packet analyzer. The websites are
accessed using Mozilla Firefox version 68.0.1. The figure
shows how packet size, even in cache block granularity, can
be an identifier for the webpages that are being accessed.
The packets are usually congested on the two sides of the
spectrum, they are either carrying a very large message that got
fragmented into MTU-sized frames, or they are small control
packets [75]. But the last packet of the large messages can fall
anywhere between 1-block to MTU, giving us a good indicator
of the webpages. In addition, combining packet sizes with the
temporal information that Packet Chasing obtains from the
packets, gives us enough information to distinguish between
webpages. We evaluate our fingerprinting attack using a small
closed world dataset with 5 different webpages: facebook.com,
twitter.com, google.com, amazon.com, apple.com. For this
experiment, we examined two attack setups, one with DDIO
and one without. In our experimentation with 1000 trials,
Packet Chasing with DDIO detects the correct website with
89.7% accuracy, while disabling DDIO drops the accuracy
to 86.5%. The difference between these two attacks comes
from increasing the probe time (resulting in more noise) and
increased probability of missing large packets if the header-
to-payload latency is high.

We use a simple classifier in this experiment, but given the
challenges for this particular attack, a classifier that is tolerant
of noise as well as slight compression or decompression of the
vectors would be likely to improve these results. For example,
the results in [76] suggests that using only the network packet
sizes and their timing information (the exact information that

TABLE II: Architecture Detail for Baseline Processor
Baseline Processor

Frequency 3.3 GHz Icache 32 KB, 8 way
Fetch width 4 fused uops Dcache 32 KB, 8 way
Issue width 6 unfused uops ROB size 168 entries
INT/FP Regfile 160/144 regs IQ 54 entries
RAS size 8,16, 32 entries BTB size 256 entries
LQ/SQ size 64/36 entries Functional Int ALU(6), Mult(1)

Packet Chasing can obtain) can be enough to build a classifier
with up to 95% accuracy.

VI. POTENTIAL SOFTWARE MITIGATION

We consider both long-term (e.g., requiring hardware
changes) and short-term (software only) mitigations. In this
section, we discuss potential software mechanisms that one
could employ to help mitigate the attack before a long-term
hardware solution (e.g., our I/O cache isolation) is deployed.
These solution each come with some performance impact.

a) Disabling DDIO/DCA: DDIO enables these attacks
because it ensures the header and the payload appear in
the cache simultaneously, greatly simplifying the detection
of packet size. Without this, however, attacks are still pos-
sible. If we can detect the presence of packets (headers are
always accessed immediately and will appear in the cache in
sequence), we can still establish a covert channel with inter-
arrival timing. We could also send types of packets where the
reading/processing of the payload is quick and deterministic,
again allowing us to distinguish sizes. Therefore, disabling
DDIO can not fully mitigate the attack.

b) Randomizing the Buffers: While Packet Chasing ex-
ploits the sequence in which the packets fill the ring buffers
to boost the resolution of the side- and covert-channels, we
show that attacks are still possible, without knowing the
sequence of the buffers (Section IV). However, randomization
does significantly reduce the channel bandwidth. The cost
of randomization could be quite high, as the driver and the
network adapter would now need to constantly synchronize
on the address of the next buffer. Because our attack setup
takes some time, though, it may only be necessary to permute
the buffer order at semi-regular intervals, thus limiting the
overhead.

c) Increasing the Size of the Ring: In the absence of
sequence information, the required probing of the cache scales
with the size of the ring if the attacker wants to catch every
packet. Thus a combination of occasional reshuffling of the
ring, and a larger ring, may be effective in making the probe
set large enough to make the attack difficult to mount cleanly
without picking up significant noise.



VII. ADAPTIVE I/O CACHE PARTITIONING DEFENSE

All the short-term software mitigations that Section VI
suggests are either not fully effective (disabling DDIO), or
carry a not-insignificant performance cost. In this section,
we describe a hardware defense that tackles the root of the
vulnerability, i.e., co-location of I/O and CPU blocks in the
last-level cache, in such a way that I/O can cause evictions of
other processes’ lines.

Intel’s DDIO technology improves the memory traffic by in-
troducing a last-level cache write allocation for the I/O stream.
Upon receiving a write request from an I/O device (e.g., for
incoming packets), DDIO allocates cache blocks in the last-
level cache and sets those blocks as the DMA destinations for
the incoming I/O traffic. While for performance reasons, the
allocator does not allocate more than two blocks in a cache set,
these incoming packets can still cause evictions to the CPU’s
blocks. This makes the incoming packets observable from the
perspective of an adversary process running on the CPU.

To circumvent this, we associate a counter for each set (i)
to hold the size of the I/O partition (IO linesi). By treating
this as a constant (during a single interval) rather than a
maximum, we ensure that DDIO-filled lines will only displace
other DDIO lines. To adapt to different phases of execution,
our partition schemes periodically change the boundary of
CPU and I/O partitions by incrementing or decrementing the
counter (IO linesi). To this end, we associate another set
of counters for each set to detect the I/O activity on each
set (IO present counteri). This counter gets incremented
if at least one valid I/O line is present in the set, and
initialized to zero at every adaptation period cycles (p). Note
that maintaining these counters does not impose a performance
overhead as these are done in parallel to the miss and hit path
of the cache.

At every adaptation period, we also re-evaluate the I/O-
CPU boundary in the last-level cache. For each set (i), if
the (IO present counteri) is greater than a high threshold,
Thigh (e.g, Thigh = 0.5p), it implies seti has had significant
I/O activity. In such a case, we increment IO linesi (using
a saturating counter), allowing more I/O blocks in the set.
Otherwise if the I/O activity is less than a low threshold, Tlow,
we decrement IO linesi (again, using a saturating counter)
to allow more usage for CPU data. If the boundary of the
partitions changes, we invalidate the cache blocks that are
affected and perform any necessary writebacks to the memory.

Our adaptive partitioning ensures that any process running
on the CPU will not see any of its cache lines evicted as
the result of an incoming packet or I/O activity. The only
exceptional scenario is at each adaptation period when the
boundary changes and some CPU blocks get evicted. However,
we set the adaptation period to be large enough to prevent the
attacker from gleaning any useful information about individual
packets. At best, it could receive one bit (high or low network
activity) every period.

a) System Setup for the Defense Performance Evaluation:
Table II shows the architectural configuration of our baseline

1

1.05

1.1

1.15

Adaptive
Paritioning

DDIO Adaptive
Paritioning

DDIO Adaptive
Paritioning

DDIO Adaptive
Paritioning

DDIO

LLC = 20 MB LLC = 11 MB LLC = 8 MB Average

K
ilo

 R
eq

ue
st

 p
er

 S
ec

on
d

Fig. 14: Performance impact of our adaptive partitioning defense
on Nginx web server.

processor in detail. We model this architecture using the
gem5 [77] architectural simulator. We use the full system
simulation mode of gem5 which allows us to boot an Ubuntu
18.04 distribution of Linux with a kernel version of 4.8.13.
We set a hard limit on the minimum and maximum number
of blocks in the I/O partition (i.e., IO linesi). As such, the
size of the I/O partition can be one, two, or three. Also, in these
experiments the adaptation period (p) is set to 10k cycles. We
set the thresholds Tlow and Thigh to 2k and 5k, respectively.
Furthermore, in order to provide realistic estimates regarding
the performance impact of our proposed defense, we select a
mix of benchmarks that exhibit considerable amounts of I/O
activity. To this end, we include a disk copy (using Linux’s
dd tool) that copies a 100MB file from disk. In addition, we
evaluate the defense on a program that constantly receives TCP
packets that have 8-byte payloads. Finally, we also evaluate the
impact of our defense on the Nginx web server [78] using the
wrk2 [79] framework to generate HTTP requests.

b) Performance Results of the Defense: Figure 14 shows
the performance of our adaptive cache partitioning scheme by
comparing the average throughput of the Nginx web server. On
average, we observe less than two percent loss in throughput.
This is mainly because the LLC miss rate rises slightly due to
the reduced number of lines in the CPU partitions (also see
Figure 15). The figure also shows the sensitivity of the defense
to the last-level cache size. The maximum loss in throughput
belongs to the 20 MB case where our approach incurs 2.7%
loss. Figure 15 further analyzes the performance of the defense
by showing the memory traffic and the LLC miss rate of
a baseline without any direct cache access (No DDIO) vs.
DDIO and our adaptive partitioning defense. Both the adaptive
partitioning and DDIO are effective in reducing the memory
traffic. The memory traffic of the adaptive partitioning scheme
is within 2% of DDIO.

To compare the adaptive cache partitioning with our pro-
posed software-based mitigations (Section VI), we devise
another experiment using the wrk2 tool. In this experiment
we send requests to the Nginx web server on the target
host. The wrk2 tool uses eight threads with 1000 open
connections and the target throughput is set to 140k requests
per second. Figure 16 shows the results of this experiment.
Besides the adaptive cache partitioning and the vanilla IGB
baseline, we examine three other proposed schemes: Fully
Randomized Ring Buffer scheme that allocates a new buffer
in a random memory location for each incoming packet, and
two Partial Randomization schemes that re-allocate the buffers



0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

File Copy TCP
Recv

Nginx File Copy TCP
Recv

Nginx File Copy TCP
Recv

Nginx

Norm. MemRead Traffic Norm. MemWrite Traffic LLC Miss Rate
No DDIO DDIO Adaptive Partitioning

Fig. 15: Memory Traffic and LLC miss rate of our adaptive
partitioning defense vs. DDIO.

25% 50% 90% 99% 99.9% 99.99%
Percentile

500

1000

1500

2000

2500

3000

La
te

nc
y 

(m
ill

is
ec

on
ds

)

Vulnerable Baseline
Fully Randomized Ring Buffer
Partial Randomization (1k Interval)
Partial Randomization (10k Interval)
Adaptive Cache Partitioning

Fig. 16: Comparison of our defenses in terms of response (tail)
latency of HTTP requests to the Nginx web server. Randomiza-
tion period is the interval (measured in number of packets) that
we wait between two ring buffer randomizations.

periodically, after a specified number of packets received – we
randomize after either 1k or 10k packets are received. Note
that in our setup, the Packet Chasing attack currently requires
at least 65,536 packets to fully deconstruct the ring buffers
(find cache locations and sequence information) and another
100 packets to mount a reasonable fingerprinting attack. The
adaptive partitioning method only incurs 3.1% loss in 99th

percentile latency while the fully randomized method incurs
41.8%. We use One Gigabit Ethernet for this experiment,
but we expect the performance cost of randomization to be
exacerbated as the link rate goes higher.

VIII. DISCLOSURE

We disclosed this vulnerability to Intel, explaining the
basic substance of the vulnerability and offering more details.
MITRE has assigned an entry in the Common Vulnerabilities
and Exposures (CVE) database, CVE-2019-11184. The vul-
nerability is classified as a medium severity vulnerability.

IX. CONCLUSIONS

This paper presents Packet Chasing, a novel deployment
of cache side-channel attacks that detects the frequency and
size of packets sent over the network, by a spy process that
has no access to the network, the kernel, or the process(es)
receiving the packets. This attack is not enabled by the DDIO
network optimization, but is greatly facilitated by it. This
work shows that the inner workings of the network driver

are easily deconstructed by the spy process setting up the
attack, including the exact location (in the cache) of each
buffer used to receive the packets as well as the order in
which they are accessed. These two pieces of information
dramatically reduce the amount of probing the spy must
do to follow the network packet sequence. This information
enables several covert channels between a remote sender and
a spy anywhere on the network, with varying bandwidth and
accuracy tradeoffs. It also enables a side channel leakage
attack that detects the web activity of a victim process.

In addition to the covert- and side-channel attacks, this
paper also describes an adaptive cache partitioning scheme
that mitigates the attack with very low performance overhead
compared to the vulnerable DDIO baseline.

ACKNOWLEDGMENT

The authors would like to thank the anonymous review-
ers for their helpful insights. This research was supported
in part by NSF Grants CNS-1652925 and CNS-1850436,
NSF/Intel Foundational Microarchitecture Research Grants
CCF-1823444 and CCF-1912608, and DARPA under the
agreement number HR0011-18-C-0020.

REFERENCES

[1] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in 27th USENIX
Security Symposium (USENIX Security), 2018.

[2] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in 40th
IEEE Symposium on Security and Privacy (S&P), 2019.

[3] Intel Corporation, “Intel® Data Direct I/O Technology (Intel® DDIO):
A Primer,” 2012.

[4] S. Li, H. Lim, V. W. Lee, J. H. Ahn, A. Kalia, M. Kaminsky, D. G.
Andersen, O. Seongil, S. Lee, and P. Dubey, “Architecting to achieve a
billion requests per second throughput on a single key-value store server
platform,” in 42nd International Symposium on Computer Architecture
(ISCA), 2015.

[5] H. Basavaraj, “A case for effective utilization of direct cache access for
big data workloads,” Master’s thesis, UC San Diego, 2017.

[6] I. Marinos, R. N. M. Watson, and M. Handley, “Network stack spe-
cialization for performance,” in 12th ACM Workshop on Hot Topics in
Networks (HotNets), 2013.

[7] R. Huggahalli, R. Iyer, and S. Tetrick, “Direct cache access for high
bandwidth network i/o,” in 32nd International Symposium on Computer
Architecture (ISCA), 2005.

[8] D. Kanter, “Sandy bridge-ep launches,” 2012. https://www.
realworldtech.com/sandy-bridge-ep/2/.

[9] A. Farshin, A. Roozbeh, G. Q. Maguire, Jr., and D. Kostić, “Make
the most out of last level cache in intel processors,” in 14th EuroSys
Conference (EuroSys 19), 2019.

[10] D. Tang, Y. Bao, W. Hu, and M. Chen, “Dma cache: Using on-chip
storage to architecturally separate i/o data from cpu data for improving
i/o performance,” in 16th International Symposium on High-Performance
Computer Architecture (HPCA), 2010.

[11] S. Zander, G. Armitage, and P. Branch, “A survey of covert channels
and countermeasures in computer network protocols,” IEEE Communi-
cations Surveys & Tutorials, vol. 9, no. 3, pp. 44–57, 2007.

[12] C. Abad, “Ip checksum covert channels and selected hash collision,”
2001.

[13] C. G. Girling, “Covert channels in lan’s,” IEEE Transactions on software
engineering, vol. 13, no. 2, p. 292, 1987.

[14] S. D. Servetto and M. Vetterli, “Communication using phantoms:
covert channels in the internet,” in IEEE International Symposium on
Information Theory (ISIT), 2001.



[15] N. B. Lucena, G. Lewandowski, and S. J. Chapin, “Covert channels in
ipv6,” in International Workshop on Privacy Enhancing Technologies,
2005.

[16] A. Hintz, “Covert channels in tcp and ip headers,” 2002. Presentation
at DEFCON.

[17] T. G. Handel and M. T. Sandford, “Hiding data in the osi network
model,” in International Workshop on Information Hiding, 1996.

[18] D. Kundur and K. Ahsan, “Practical internet steganography: data hiding
in ip,” Multimedia and Security Workshop, 2003.

[19] C. H. Rowland, “Covert channels in the tcp/ip protocol suite,” First
Monday, vol. 2, no. 5, 1997.

[20] S. Cabuk, C. E. Brodley, and C. Shields, “Ip covert timing channels:
design and detection,” in 11th ACM conference on Computer and
communications security (CCS), 2004.

[21] D. J. Bernstein, “Cache-timing attacks on aes,” 2005.
[22] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counter-

measures: The case of aes,” in Topics in Cryptology (CT-RSA), 2006.
[23] Z. Wu, Z. Xu, and H. Wang, “Whispers in the hyper-space: High-

speed covert channel attacks in the cloud,” in 21st USENIX Security
Symposium (USENIX Security), 2012.

[24] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in 36th IEEE Symposium on Security
and Privacy (S&P), 2015.

[25] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+flush: A fast
and stealthy cache attack,” in 13th International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment (DIMVA),
2016.

[26] Y. Yarom and K. Falkner, “Flush+ reload: A high resolution, low noise,
l3 cache side-channel attack.,” in 23rd USENIX Security Symposium
(USENIX Security), 2014.

[27] C. Disselkoen, D. Kohlbrenner, L. Porter, and D. Tullsen, “Prime+abort:
A timer-free high-precision l3 cache attack using intel TSX,” in 26th
USENIX Security Symposium (USENIX Security), 2017.

[28] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “Cachezoom: How sgx
amplifies the power of cache attacks,” in Cryptographic Hardware and
Embedded Systems (CHES) (W. Fischer and N. Homma, eds.), 2017.

[29] F. Dall, G. De Micheli, T. Eisenbarth, D. Genkin, N. Heninger,
A. Moghimi, and Y. Yarom, “Cachequote: Efficiently recovering long-
term secrets of sgx epid via cache attacks,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, pp. 171–191, 2018.

[30] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks:
Automating attacks on inclusive last-level caches,” in 24th USENIX
Security Symposium (USENIX Security), 2015.

[31] D. Wang, A. Neupane, Z. Qian, N. B. Abu-Ghazaleh, S. V. Krishna-
murthy, E. J. M. Colbert, and P. Yu, “Unveiling your keystrokes: A
cache-based side-channel attack on graphics libraries,” in Network and
Distributed System Security Symposium (NDSS), 2019.

[32] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis, “The
spy in the sandbox: Practical cache attacks in javascript and their impli-
cations,” in 22nd ACM Conference on Computer and Communications
Security (CCS), 2015.

[33] A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mittal, Y. Oren, and
Y. Yarom, “Robust website fingerprinting through the cache occupancy
channel,” in 28th USENIX Security Symposium (USENIX Security),
2019.

[34] Intel Corporation, “2nd Generation Intel Core vPro Processor Family,”
2008. Available at http://www.intel.com/content/dam/doc/white-paper/
performance-2nd-generation-core-vpro-family-paper.pdf.

[35] M. Kayaalp, N. Abu-Ghazaleh, D. Ponomarev, and A. Jaleel, “A high-
resolution side-channel attack on last-level cache,” in 53rd Design
Automation Conference (DAC), 2016.

[36] C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon,
“Reverse engineering intel last-level cache complex addressing using
performance counters,” in International Symposium on Recent Advances
in Intrusion Detection, 2015.

[37] Y. Yarom, Q. Ge, F. Liu, R. B. Lee, and G. Heiser, “Mapping the intel
last-level cache.,” IACR Cryptology ePrint Archive, vol. 2015, p. 905,
2015.

[38] M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and B. Sunar,
“Cache attacks enable bulk key recovery on the cloud,” in International
Conference on Cryptographic Hardware and Embedded Systems, 2016.

[39] G. Irazoqui, T. Eisenbarth, and B. Sunar, “Systematic reverse engineer-
ing of cache slice selection in intel processors,” in Euromicro Conference
on Digital System Design, 2015.

[40] G. Saileshwar and M. K. Qureshi, “Lookout for zombies: Mitigating
flush+reload attack on shared caches by monitoring invalidated lines,”
CoRR, vol. abs/1906.02362, 2019.

[41] J. Oberg, S. Meiklejohn, T. Sherwood, and R. Kastner, “A practical
testing framework for isolating hardware timing channels,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2013.

[42] B. Mao, W. Hu, A. Althoff, J. Matai, Y. Tai, D. Mu, T. Sherwood,
and R. Kastner, “Quantitative analysis of timing channel security in
cryptographic hardware design,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 37, no. 9, pp. 1719–1732,
2017.

[43] X. Li, V. Kashyap, J. K. Oberg, M. Tiwari, V. R. Rajarathinam,
R. Kastner, T. Sherwood, B. Hardekopf, and F. T. Chong, “Sapper:
A language for hardware-level security policy enforcement,” in 19th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2014.

[44] M. Kayaalp, K. N. Khasawneh, H. A. Esfeden, J. Elwell, N. Abu-
Ghazaleh, D. Ponomarev, and A. Jaleel, “Ric: Relaxed inclusion caches
for mitigating llc side-channel attacks,” in 54th Design Automation
Conference (DAC), 2017.

[45] Y. Wang, A. Ferraiuolo, D. Zhang, A. C. Myers, and G. E. Suh,
“Secdcp: Secure dynamic cache partitioning for efficient timing channel
protection,” in 53rd Design Automation Conference (DAC), 2016.

[46] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” in 34th Annual International Sympo-
sium on Computer Architecture (ISCA), 2007.

[47] M. Taram, A. Venkat, and D. Tullsen, “Context-sensitive fencing: Secur-
ing speculative execution via microcode customization,” in Proceedings
of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2019.

[48] S. Wang, P. Wang, X. Liu, D. Zhang, and D. Wu, “Cached: Identifying
cache-based timing channels in production software,” in 26th USENIX
Security Symposium (USENIX Security), 2017.

[49] T. Zhang, Y. Zhang, and R. B. Lee, “Cloudradar: A real-time side-
channel attack detection system in clouds,” in International Symposium
on Research in Attacks, Intrusions, and Defenses, 2016.

[50] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“Dawg: A defense against cache timing attacks in speculative execution
processors,” in 51st IEEE/ACM International Symposium on Microar-
chitecture (MICRO), 2018.

[51] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and C. Fetzer,
“Varys: Protecting SGX enclaves from practical side-channel attacks,”
in USENIX Annual Technical Conference (USENIX ATC ), 2018.

[52] C. Liu, A. Harris, M. Maas, M. Hicks, M. Tiwari, and E. Shi,
“Ghostrider: A hardware-software system for memory trace oblivious
computation,” in 20th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2015.

[53] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital side-channels
through obfuscated execution.,” in 24th USENIX Security Symposium
(USENIX Security), 2015.

[54] M. Taram, A. Venkat, and D. Tullsen, “Mobilizing the micro-ops:
Exploiting context sensitive decoding for security and energy efficiency,”
in 45th Annual International Symposium on Computer Architecture
(ISCA), 2018.

[55] M. Taram, A. Venkat, and D. M. Tullsen, “Context-sensitive decoding:
On-demand microcode customization for security and energy manage-
ment,” IEEE Micro, vol. 39, no. 3, pp. 75–83, 2019.

[56] M. Taram, D. Tullsen, A. Venkat, H. Sayadi, H. Wang, S. Manoj, and
H. Homayoun, “Fast and efficient deployment of security defenses via
context sensitive decoding,” in Proceedings of the 44th Government
Microcircuit Applications and Critical Technology Conference (GO-
MACTech), Mar 2019.

[57] X. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang, “The peril of frag-
mentation: Security hazards in android device driver customizations,” in
35th IEEE Symposium on Security and Privacy (S&P), 2014.

[58] A. T. Markettos, C. Rothwell, B. F. Gutstein, A. Pearce, P. G. Neu-
mann, S. W. Moore, and R. N. M. Watson, “Thunderclap: Exploring
vulnerabilities in operating system IOMMU protection via DMA from
untrustworthy peripherals,” in Network and Distributed Systems Security
Symposium (NDSS), 2019.

[59] M. Gorobets, O. Bazhaniuk, A. Matrosov, A. Furtak, and Y. Bulygin,
“Attacking hypervisors via firmware and hardware,” Black Hat USA,
2015.



[60] Z. Zhu, S. Kim, Y. Rozhanski, Y. Hu, E. Witchel, and M. Silberstein,
“Understanding the security of discrete gpus,” in Proceedings of the
General Purpose GPUs (GPGPU), 2017.

[61] S. Boyd-Wickizer and N. Zeldovich, “Tolerating malicious device drivers
in linux,” in USENIX Annual Technical Conference (USENIX ATC),
2010.

[62] L. Tan, E. M. Chan, R. Farivar, N. Mallick, J. C. Carlyle, F. M. David,
and R. H. Campbell, “ikernel: Isolating buggy and malicious device
drivers using hardware virtualization support,” in 3rd IEEE International
Symposium on Dependable, Autonomic and Secure Computing (DASC),
2007.

[63] M. Tiwari, J. K. Oberg, X. Li, J. Valamehr, T. Levin, B. Hardekopf,
R. Kastner, F. T. Chong, and T. Sherwood, “Crafting a usable microker-
nel, processor, and i/o system with strict and provable information flow
security,” in 38th International Symposium on Computer Architecture
(ISCA), 2011.

[64] M. Kurth, B. Gras, D. Andriesse, C. Giuffrida, H. Bos, and K. Razavi,
“NetCAT: Practical Cache Attacks from the Network,” in 41st IEEE
Symposium on Security and Privacy (S&P), May 2020.

[65] Intel Corporation, “Intel gigabit etherenet driver,” 2019. Online:
https://downloadcenter.intel.com/download/13663/Intel-Network-
Adapter-Driver-for-82575-6-82580-I350-and-I210-211-Based-Gigabit-
Network-Connections-for-Linux-, Accessed on June 2019.

[66] Dell, “Poweredge t620 technical guide,” 2013. Online:
http://i.dell.com/sites/doccontent/shared-content/data-sheets/en/
Documents/dell-poweredge-t620-technical-guide.pdf, Accessed on
Aug 2019.

[67] Intel Corporation, “Intel® ethernet controller i350 datasheet,” 2017.
https://www.intel.com/content/dam/www/public/us/en/documents/
datasheets/ethernet-controller-i350-datasheet.pdf.

[68] Y. Yarom, “Mastik: A micro-architectural side-channel toolkit,” 2016.
Online: https://cs.adelaide.edu.au/∼yval/Mastik/, Accessed on Aug
2019.

[69] J. E. Bottomley, “Linux kernel dma api,” 2019. Online: https://www.
kernel.org/doc/Documentation/DMA-API.txt, Accessed on Aug 2019.

[70] M. Kerrisk, “Linux programmer’s manual.” Accessed Aug 2019 http:
//man7.org/linux/man-pages/man7/raw.7.html.

[71] D. Jurafsky and J. H. Martin, Speech and Language Processing: An In-
troduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition. Prentice Hall PTR, 1st ed., 2000.

[72] C. S. R. . Operations., “Bandwidth, packets per second, and other
network performance metrics.” Accessed Aug 2019 https://www.cisco.
com/c/en/us/about/security-center/network-performance-metrics.html.

[73] E. W. Weisstein, “Cross-correlation. from mathworld–a wolfram web
resource. lessons in digital estimation theory,” 2019. Accessed Aug
2019 http://mathworld.wolfram.com/Cross-Correlation.html.

[74] V. Jacobson, C. Leres, and S. McCanne, “Tcpdump/libpcap,” Accessed:
Aug 2019, vol. 23, p. 2016, 1987. https://www.tcpdump.org.

[75] R. Sinha, C. Papadopoulos, and J. Heidemann, “Internet packet
size distributions: Some observations,” Tech. Rep. ISI-TR-2007-643,
USC/Information Sciences Institute, 2007. Available online: http://
netweb.usc.edu/%7ersinha/pkt-sizes/.

[76] V. Rimmer, D. Preuveneers, M. Juarez, T. Van Goethem, and W. Joosen,
“Automated website fingerprinting through deep learning,” in 25th
Network and Distributed System Security Symposium (NDSS), 2018.

[77] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and
S. K. Reinhardt, “The M5 Simulator: Modeling Networked Systems,”
Micro, IEEE, 2006.

[78] W. Reese, “Nginx: The high-performance web server and reverse proxy,”
Linux J., Sept. 2008.

[79] W. Glozer, “wrk - a HTTP benchmarking tool.” https://github.com/wg/
wrk. Online; accessed Jun 2018.


