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Abstract—The rapid influx of biosequence data, coupled with
the stagnation of the processing power of modern computing sys-
tems, highlights the critical need for exploring high-performance
accelerators that can meet the ever-increasing throughput de-
mands of modern bioinformatics applications. This work argues
that processing in memory (PIM) is an effective solution to
enhance the performance of k-mer matching, a critical bottleneck
stage in standard bioinformatics pipelines, that is characterized
by random access patterns and low computational intensity.

This work proposes three DRAM-based in-situ k-mer match-
ing accelerator designs (one optimized for area, one optimized
for throughput, and one that strikes a balance between hardware
cost and performance), dubbed Sieve, that leverage a novel
data mapping scheme to allow for simultaneous comparisons of
millions of DNA base pairs, lightweight matching circuitry for
fast pattern matching, and an early termination mechanism that
prunes unnecessary DRAM row activation to reduce latency and
save energy. Evaluation of Sieve using state-of-the-art workloads
with real-world datasets shows that the most aggressive design
provides an average of 326x/32x speedup and 74X/48x energy
savings over multi-core-CPU/GPU baselines for k-mer matching.

Index Terms—Processing-in-memory, Bioinformatics, Acceler-
ator

I. INTRODUCTION

The field of bioinformatics has enabled significant ad-
vances in human health through its contributions to precision
medicine, disease surveillance, population genetics, and many
other critical applications. The centerpiece of a bioinformatics
pipeline is genome sequence comparison and classification,
which involves aligning query sequences against reference
sequences, with the goal of identifying patterns of structural
similarity and divergence. While traditional sequence align-
ment algorithms employ computationally-intensive dynamic
programming techniques, there has been a growing shift to
a high-performance heuristic-based approach called k-mer
matching, that breaks a given query sequence into a set of
short subsequences of size k, which are then scanned against
a reference database for hits, with the underlying assumption
that biologically correlated sequences share many short lengths
of exact matches. K-mer matching has been deployed in a wide
array of bioinformatics tasks, including but not limited to, pop-
ulation genetics [1], cancer diagnosis [2], metagenomics [3]–
[8], bacterial typing [9], and protein classification [10]. K-mer
matching may also show up in other application domains, but
in this paper, we focus on bioinformatics.
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Fig. 1: Execution time breakdown of Kraken [3], CLARK
[6], stringMLST [9], Phymer [1], LMAT [7], BLASTN [15]

The acceleration of bulk k-mer matching is of paramount
importance for two major reasons. First, k-mer matching
sits on the critical path of many genome analysis pipelines.
Figure 1 shows the execution breakdown of several important
bioinformatics applications that target a variety of tasks rang-
ing from metagenomics to population genetics, and clearly, k-
mer matching dominates the execution time in all applications.
Second, modern sequencing technologies have been shown to
generate data at a rate surpassing Moore’s Law [11]. In fact, by
2025, the market share of metagenomics alone is expected to
reach $1.4 billion, and the amount of data that needs to be an-
alyzed by metagenomics pipelines is projected to surpass that
of YouTube and Twitter [12]. To further exemplify the scale of
data explosion and processing overhead, consider the case of
precision medicine, where a patient’s sample can be sequenced
in roughly 48 hours on the NovaSeq instrument, producing
10 TB of microbiome and DNA/RNA data [13]. To develop
personalized treatment from these samples, raw sequences are
passed through, often in parallel, various metagenomics stages
with k-mer matching on the critical path (e.g., ∼68 days on
Kraken [3]). These tasks play a critical role in combating
pandemics and treating antibiotic-resistant infections, saving
billions of dollars in health care costs [13], [14].

However, despite its significance, the acceleration of k-mer
matching on modern high-end computing platforms remains a
challenge, due to its inherently memory-bound nature, con-
siderably limiting downstream genome analysis tasks from
realizing their full potential. In particular, k-mer matching
algorithms are typically characterized by random accesses
across large memory regions, leading to poor cache behavior,
even on high-end servers that feature large last-level caches.
The cache-unfriendliness of k-mer matching will continue to
get worse with the rapid growth in the size and complexity



of genomic databases, making the task a major bottleneck in
modern bioinformatics pipelines. This is further exacerbated
by the fact that the computation per k-mer lookup is too
small to mask the high data access latency, thereby rendering
existing compute-centric platforms such as multi-core CPUs
and GPUs inadequate for large-scale genome analysis tasks.

Memory-centric solutions to accelerate bioinformatics ap-
plications come in a variety of flavors, but recent proposals
demonstrate that near-data [16]–[18] and in-memory process-
ing systems [19]–[21] have promising potential to improve the
efficiency of large-scale genome analysis tasks, owing to the
fact that these applications are increasingly characterized by
their high data movement (from memory to the processor) and
low computation (within the processor) costs [22].

This work explores the design space for high-performance
k-mer matching accelerators that use logic in DRAM as the
basis for acceleration, including the most aggressive form of
processing-in-memory (PIM), in-situ computing, with the goal
of parallel processing of sequence data within DRAM row
buffers. To this end, we propose Sieve, a set of novel Scalable
in-situ DRAM-based accelerator designs for massively parallel
k-mer matching. Specifically, we offer three separate designs:
Sieve Type-1, Type-2, and Type-3. Each architecture incre-
mentally adds extra hardware complexity to unlock more per-
formance benefits. Note that, although our approach involves
modifying conventional DRAM organization, we do not pro-
pose change conventional DRAM; our goal is to only leverage
DRAM technology to build a new accelerator. Ultimately, the
value of the accelerator will determine whether a new DRAM-
based chip is worth the design and manufacturing effort.

The advantage of in-situ computing is that the bandwidth
at the row buffer is six orders of magnitude larger than that at
the CPU, while the energy for data access is three orders of
magnitude lower [23], [24]. However, in-situ computing also
introduces several key challenges. First, in-situ acceleration
necessarily requires the tight integration of processing logic
with core DRAM components, which has been shown to result
in prohibitively high area overheads [19], [21]. In fact, even
a highly area-efficient state-of-the-art in-situ accelerator is
only half as dense as regular DRAM [19]. However, bioin-
formatics applications typically favor accelerators with larger
memory capacity due to their ability to accommodate the ever-
increasing DNA datasets that need to be analyzed within short
time budgets. Second, existing in-situ approaches [19], [20]
rely on multi-row activation and row-wise data mapping to
perform bulk Boolean operations of data within row buffers,
resulting in substantial loss of throughput and efficiency [21].
Finally, to capitalize on the performance benefit of in-situ com-
puting for k-mer matching, it is imperative that the accelerator
is provisioned with an efficient k-mer indexing scheme that
avoids query broadcasting, and a mechanism to quickly locate
and transfer payloads (e.g., genome taxon records).

Key Contributions. The distinguishing feature of Sieve is
the placement of reference k-mers vertically along the bitlines
of DRAM chips and subsequently utilizing sequential single-
row activation rather than the multi-row activation proposed in

prior works, to look up queries against thousands of reference
k-mers simultaneously. The column-wise placement of k-
mers further allows us to employ a novel Early Termination
Mechanism (ETM) that interrupts further row activation upon
the successful detection of a k-mer mismatch, thereby con-
siderably alleviating the latency and energy overheads due to
serial row activation. To the best of our knowledge, this is the
first work to introduce and showcase the effectiveness of such
a column-wise data mapping scheme for k-mer matching with
early termination, substantially advancing the state-of-the-art
in terms of both throughput and efficiency.

By exploiting the fact that matching individual k-mers is
relatively less complex than most other conventional PIM tasks
such as graph processing, in this work, we design a specialized
circuit for k-mer matching, with the goal of minimizing the
associated hardware cost. We then meticulously explore the
design space of in-situ PIM-based accelerators by placing
such custom logic at different levels of the DRAM hierarchy
from the chip I/O interface (Type-1) to the subarray level
(Type-2/3), with a detailed analysis of the performance-area-
complexity trade-offs, and a discussion of system integration
issues, deployment models, and thermal concerns. We com-
pare each Sieve design with state-of-the-art k-mer-matching
implementations on CPU, GPU, and FPGA, and perform
rigorous sensitivity analyses to demonstrate their effectiveness.
We show that the processing power of Sieve scales linearly
with respect to its storage capacity, considerably enhancing the
performance of modern genome analysis pipelines. Our most
aggressive design provides an average speedup of 210X/35X
and an average energy savings of 35X/71X over conventional
multi-core-CPU/GPU baselines

II. BACKGROUND

In this section, we introduce the k-mer matching procedure
and explain why it is a bottleneck stage in conventional
architectures.

K-mer Matching in Bioinformatics. A DNA sequence is
a series of nucleotide bases commonly denoted by four letters
(bases): A, C, G, and T. K-mers are subsequences of size k.
Metagenomic algorithms attempt to assign taxonomic labels to
genetic fragments (sequences) with unknown origins. A “tax-
onomic label” is an assignment of a sequence to a particular
organism or species. Traditionally, this is done by aligning an
individual query sequence against reference sequences, which
can be prohibitively slow. Processing a metagenomics file
containing 107 sequences using an alignment-based BLAST
algorithm takes weeks of CPU time [25], [26]. Experts predict
that genomics will soon become the most prominent data
producer in the next decade [11], demanding more scalable
sequence analysis infrastructure. More recently, alignment-free
tools that rely on simple k-mer matching have emerged to
aid large-scale genome analysis tasks, due to the fact that
properly labeled k-mers are often sufficient to infer taxonomic
and functional information of a sequence [3], [6], [7], [27].

Figure 2 illustrates the process of a typical k-mer-matching-
based sequence classifier. In an offline stage, a reference k-



1.					for	(query_seq:	query_list){
2.										kmer_list	=	[]
3.										payload_list	=	[]
4.										...	//	store	k-mers	from	query_seq
5.										for	(kmer:	kmer_list){
6.														result	=	query_kmer(kmer,	reference	k-mer	set,	...)
7.														if	(result	!=	NULL)	//	found	match,	retrieve	payload
8.																	payload_list.add(result.payload)
9.														else
10.																...	//	no	match
11.								}
12.								...	//	classify	query_seq	using	payload_list
13.			}

Fig. 2: k-mer matching-based sequence classification.

mer database is built, which maps unique k-mer patterns
to their taxon labels. For example, if a 5-mer ”AACTG”
can only be found in the E.coli bacteria sequence, an entry
that maps ”AACTG” to E.coli is stored. At run time, k-
mer matching algorithms slide a window of size k across the
query sequence, and for each resulting k-mer, they attempt to
retrieve the associated taxon label from the database. Function
query kmer in line 6 is repeatedly called to search each k-
mer in the database. If the query k-mer exists in the database
(k-mer hit), its taxon label (payload) is retrieved, otherwise
we move on and compare the next k-mer in the query. Once
all k-mers in a query are processed, the taxon labels of the
matched k-mers are used to make a final decision on the
originating organism for the query sequence. A popular choice
is to keep a counter for each retrieved taxon label, and the
taxon label with the most hits is used to classify the query
sequence. See Figure 3 for example. The reference k-mer set
itself can be implemented in a number of ways. CLARK [6]
and LMAT [7] leverage a hash table, with the k-mer pattern
as the key and the taxon label as the value. Kraken [3] uses
a more sophisticated data structure that is a hybrid between
a hash table and a sorted list, in which k-mers that share the
same “signature” are put into the same hash bucket, which is
then looked up using binary search. The assumption here is
that two adjacent k-mers within a query sequence are likely to
share the same “signature”, since they overlap by (k-1) bases,
and are thereby likely to get indexed into the same bucket. In
theory, this improves the cache locality over purely hash table
or sorted list approaches, since matching the first query k-mer
often brings the bucket to the cache which will be used for the
subsequent query k-mers. As we note below, even with this
optimization, cache performance remains poor.

Memory Is the Bottleneck for K-mer Matching. Real-
world k-mer matching applications expose limited cache lo-
cality. For sequence classifiers that store reference k-mers in
a hash table, accessing a hash table generates a large number
of cache misses due to the linked list traversal or repeated
hashes (to resolve hash collision). While a hash table/sorted
list hybrid can provide better locality, since the k-mer bucket
can be fetched into the cache from the previous k-mer lookup,
using Kraken and its supplied datasets, we discover that
only 8% of consecutive k-mers index into the same bucket,
resulting in new buckets fetched repeatedly from memory
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Fig. 3: Illustration of CLARK [6], a state-of-the-art k-mer
matching based metagenomics tool. A taxon label is a
formal scientific name to identify bacterial, fungi, virus,
and other species.

to serve requests. k-mer matching also benefits from finer-
grained memory access—k-mer records are typically around
12 bytes [3], while each memory access retrieves a cache line
of data, which usually serves only one request due to poor
locality, resulting in waste of bandwidth and energy. Finally,
computational intensity of k-mer matching is too little to mask
extended data access latency. Using CLARK (Figure 3) as an
example, we find that while retrieving k-mers from a database
takes many cycles due to cache misses, updating counters for
matched k-mers is trivially inexpensive, amplifying the effects
of the memory wall [22].

III. MOTIVATION AND KEY IDEAS

In this section, we address the main challenge of designing
in-situ k-mer matching accelerators, namely integrating logic
into DRAM dies with low hardware overhead. We propose
three separate Sieve designs to combat this issue. We then
identify the key limitations of prior in-situ work when adapted
for k-mer matching and motivate our novel data layout and
pattern matching mechanisms. Finally, we introduce an Early
Termination Mechanism (ETM) to further optimize Sieve by
exploiting characteristics of real-world sequence datasets.

DRAM Overhead Concerns. While in-situ accelerators
can provide dramatic performance gains for memory-intensive
applications, building them with reasonable area overhead is
difficult [19], [21]. The sense amplifiers in row buffers are
laid out in a pitch-matched manner, and the DRAM layout is
carefully optimized to provide high storage density, and fitting
additional logic into the row buffer in a minimally invasive
way is non-trivial. Moreover, since the number of metal layers
of a DRAM process is substantially smaller than that of the
logic process, building complex logic with a DRAM process
incurs significant interconnect overhead [19], [21].

We design a set of core k-mer matching operations for Sieve
using simple Boolean logic. Sieve has very little hardware
overhead compared to other PIM architectures, because k-
mer matching, which is mainly accomplished by exact pattern
matching, can be supported by a minimal set of Boolean logic.

Trade-offs of Different Sieve Designs. To explore opti-
mal Sieve designs, we compare the placement of custom k-
mer matching logic at three different levels in the DRAM
hierarchy: from the I/O interface of the DRAM chips (Sieve
Type-1) to the local row buffer of each subarray (Sieve Type-
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Fig. 4: K-mer matching in existing in-situ accelerators
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Fig. 5: K-mer matching in Sieve using Single-Row Activa-
tion and vertical data layout.

3), and Type-2 as the middle ground where several subarrays
share one k-mer matching unit. Recall that a DRAM bank’s
transistor layout is highly optimized for storage, and inserting
extra logic, however minimal, requires significant redesign
effort. Type-1, illustrated in Figure 12, keeps the bank layout
intact, and thus is the least intrusive design. However, it suffers
from the lowest parallelism and the highest latency, because
the comparison is restricted to a column of bits rather than
the entire row. Sieve Type-2 increases parallelism and energy
efficiency over Type-1 by accessing a row of bits. Type-3
leverages subarray-level parallelism (SALP) [28], providing
the highest performance potential, but it comes at the cost of
the highest design complexity and hardware overhead.

Novel Data Layout and Pattern Matching Mechanism.
We show that our column-wise k-mer data layout and row-
wise matching mechanism, combined with early termination
outperforms prior in-situ accelerators that rely on multi-row
activation and conventional row-wise mapping. The majority
of the k-mer matching workload is exact pattern matching,
which can be performed using bulk bitwise XNOR between
two operand DRAM rows. The prior arts such as Ambit and
DRISA implement XNOR operation by first ANDing two rows
along with a third control row (populated with 1s or 0s),
and send the results to an additional logic. In the following
analysis, we only consider the timing delay of the AND
operation to give advantage to the previous in-situ PIM work.
Ambit [20] is used as a baseline. Both Ambit and 1T1C-
based DRISA [19] are inspired by the same work [29] for
in-situ AND procedure. Thus, their performance for k-mer
pattern matching is similar. Ambit performs bulk bitwise AND
in reserved DRAM rows (see Figure 4). Assuming a DNA
base is encoded with two bits (by NCBI standard [30]), a
common k value of 31, and a typical DRAM row width of
8192 bits, then each row fits 128 k-mer patterns if k-mers
are stored in a row-wise manner. To search a query against a
group of references, Ambit first copies 128 reference patterns
from the data region to RRef. It then makes 128 copies of
the same query in RQuery. Since the target operation is AND,
the control row (RCtrl) is populated with 0s (copied from a

preset row). Next, a triple-row activation is performed on RRef,
RQuery, and RCtrl. Finally, the result bits are copied to another
row RResult. One row-wide AND takes 8 row activations and
4 precharge commands from setting up to completion, which
is 8× tRAS+4× tRP =∼ 340ns for a typical DRAM chip.

In contrast to these approaches, ComputeDRAM [31] en-
ables in-memory computation in commodity DRAMs, without
the need for integrating any additional circuitry. The key to this
approach is the fact that issuing a constraint-violating sequence
of DRAM commands in rapid succession leaves multiple rows
open simultaneously, allowing row-wide copy, logical AND,
and logical OR operations to be performed via bit line charge
sharing, essentially free of hardware cost.

While all of these approaches can be leveraged to perform
k-mer matching, our analysis suggests that significant gains
in performance and energy efficiency can be achieved by em-
ploying the column-major approach we propose in this work,
that not only eliminates the need for multi-row activation, but
also enables a synergistic early termination mechanism that
inhibits further row activations upon finding a match.

More specifically, Sieve does not compare a full-length
query k-mer against a set of full-length reference k-mers at
once. Instead, it compares a query with a more extensive set of
references in a shorter time window (1×tRAS+1×tRP =∼
50ns), but progresses only one bit at a time (see Figure
5). Reference bits in Sieve are laid out column-wise, along
bitlines. Thus, a single row activation transfers 8K bits into
the matchers embedded in row buffers for comparison. Each
matcher has a one-bit latch to keep track of the matching
result. The next row is activated, and a new batch of reference
bits is compared, until ETM (introduced next) interrupts when
all latches return zero.

Processing only one bit at a time does not hurt Sieve’s
performance, because it leverages parallelism across the rows;
i.e., it performs 8K comparisons at once. The vertical data
layout greatly expands the initial search space (128 reference
k-mers to 8192 reference k-mers), and our early termination
mechanism (ETM) quickly eliminates most of the candidates
after just a few row activations. Besides the latency reduction
for each row-wide pattern matching by adopting single-row
activation (∼340 ns to ∼50 ns), Sieve also reduces activation
energy, since raising each additional wordline increases the
activation energy by 22% [20]. Thus, even if the same data
mapping strategy is applied, the multi-row activation-based
approach is still slower and less energy efficient than Sieve
simply because of the internal data movement. Note that the
internal data movements associated with multi-row activation
is unavoidable, because the operand rows have to be copied
to the designated area. Furthermore, arbitrarily activating three
rows inside the DRAM requires a prohibitively large decoder
(possibly over 200% area overhead [19]), and activating more
than one row could potentially destroy the original values.

The Motivation for Early Termination.Activating con-
secutive rows in the same bank results in highly unfavorable
DRAM access patterns that are characterized by long delays
(due to more row cycles) and high energy costs (row opening
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Fig. 7: Sieve Overview. (a) DRAM banks. (b) Type-2
Zoom-in. Subarray group facilitates inter-subarray data
copy, and a compute buffer is added for each subarray
group which has the matcher circuits. (c) Type-3 Zoom-
in. Similar to Type-2 but the matchers reside in the local
row buffers. (d) Matcher. (e) Data layout of subarray. Each
subarray is partitioned into three regions for storing k-mer
pattern groups, payload offsets, and payloads.

dominates DRAM energy consumption [32]).
We identify a novel optimization opportunity that exploits

the concept of the Expected Shared Prefix (ESP), which
describes the first mismatch location between two random
sequences. On average, for DNA sequences between 1k and
16k bases, the first mismatch is known to occur between the
sixth and the eighth base [33]. The ESP is even smaller than
six for short k-mers, as shown in in Figure 6. For random
k-mers extracted from metagenomics reads, when matched
against reference k-mers, 97% of the first mismatch can be
found within the first five bases (first 10 bits if each base is
encoded by two bits).

IV. SIEVE ARCHITECTURE

This section describes the three Sieve designs. We introduce
Types-2 and 3 first, as they exploit greater parallelism, and
follow it up with Type-1 due to difference in design details.

A. Sieve Type-2 and Type-3

Figures 7 (b) and (c) show the functional block diagrams of
Type-2/3. They differ mainly in the placement of the add-on
logic (e.g., matching circuitry) at the bank vs. subarray level,
but share the same data mapping scheme.

Data Layout. K-mer patterns are encoded in binary (A:
00, C: 01, G: 10, T: 11) and transposed onto bitlines, for
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Fig. 8: Column Finder in Type-2/3. Segments with k-mer
hits are shown in red, otherwise green.

column-wise placement, as described in the previous section.
Bit cells within each subarray are divided into three regions
(Figure 7 (e)). However, we note that no physical modification
is made to the bit cells. Region-1 stores the interleaved
reference and query k-mers. Region-2 stores the offsets to
the starting address of payloads (one for each reference k-
mer), allowing us to precisely locate the payloads. Region-3
stores the actual payloads such as taxon labels. Data in Region-
2/3 is stored in conventional row-major format. The main
motivation to co-locate patterns and payloads is to minimize
contention and achieve higher levels of parallelism. If patterns
are densely packed into several dedicated banks/subarrays, all
matching requests will be routed to them, creating bank access
contention and serializing such requests.

Region-1 is further broken down into smaller pattern groups
and a batch of 64 (different) query k-mers are replicated in
each pattern group in the middle (red in Figure 7(e)). This
is because the transmission delay of long wires inside DRAM
chips prevents us from broadcasting a query bit to all matchers
(discussed next) during one DRAM row cycle. All pattern
groups in a subarray work in the lockstep manner. The exact
size of a pattern group is equivalent to the number of matchers
that a query bit can reach in one DRAM row cycle. In this
example (DDR3 micron 32M 8B x4 sg125), it happens to
be 576 (512 reference k-mers + 64 query k-mers). The number
of query k-mers per batch is determined by the chip’s prefetch
size. In this example, a chip with a prefetch size of 8 bytes
writes 64 bits with a single command. A chip with smaller
(larger) prefetch size has smaller (larger) batch size. After a
batch of query k-mers finishes matching in a subarray, they are
replaced by a new batch. The total number of write commands
needed to replace a batch of 64 k-mers can be computed as
(# of pattern groups / subarray) × (k × 2).

Matcher. We enhance each sense amplifier in a row buffer
with a matcher shown in Figure 7 (d). The matcher of Type-
2/3 is made of an XNOR gate, an AND gate, and a one-bit
latch. The XNOR gate checks if the reference bit and the
query bit at the current base are equal. The bit latch stores
the result of the XNOR operation, indicating if a reference
and a query have been matched exactly up until the current
base. The value in each bit latch is set to 1 initially (default
to match). The AND gate compares the previous matching
result stored in the bit latch with the current result from the
XNOR gate and updates the bit latch accordingly, capturing the
running outcome bit-by-bit. Finally, we allow the matcher to
be bypassed or engaged by toggling the Match Enable signal.
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Fig. 10: Type-3 Timing Analysis. WL, SA, and PRE
indicate latencies associated with raising the wordlines,
enabling sense amplifiers and precharging the rows. (a)
ETM and matchers operations overlap with row opening.
(b) ETM is on the critical path only when there is a hit,
as it needs extra cycles to identify the hit. Then the BSRs
are shifted, followed by a copy into the RS. CF operates
in parallel with row opening and ETM for the next k-mer.

When a row is opened, both query and reference bits are
sent to sense amplifiers. A subarray controller [19] (sCtrl)
then selects which query to process among the 64 queries
in the subarray. Each pattern group has a 1-bit shared bus
connecting all matchers. The selected query bit is distributed
to all matchers in a pattern group through this shared bus.

Early Termination Module (ETM). The ETM interrupts
further row activation by checking if the entire row of latches
is storing zeros. The k-mer matching process continues if at
least one latch stores 1. The natural way is to OR the whole
row of latches. However, the challenge of this approach is that
each OR gate adds to the latency, and during one DRAM row
cycle, only a small fraction of result latches can propagate their
results through OR gates. We propose a solution that breaks
the row of latches into segments and propagates partial results
in a pipelined fashion. (shown in Figure 9). One segment
register (SR) is inserted for every 256 latches to implement the
pipeline. During one DRAM row cycle, each segment takes
the value from the previous SR, ORs it with all its latches,
and outputs the value to the next SR. Notice that in Figure 9,
although at row cycle 3, all latches store zeros, the last SR
still holds 1. An extra cycle is needed to flush the result

Column Finder (CF). Unless interrupted by the ETM,
the row activation continues until all bases of a query are
checked. If a query is previously matched to a reference, one

and only one latch in a row buffer stores one. The Column
Finder identifies the column (bitline) that is connected to that
latch. The column numbers are needed to retrieve offsets,
and subsequently, payloads. Our solution is to shift a row
of latched bits until we find a one. The challenge of this
approach is to design a shifter with reasonable hardware cost
and latency. In the worst case, where the matched column
(reference k-mer) is located at the end of the row, the CF
needs to shift an entire row of latched bits. We propose a
pipelined, two-level shifter solution for CF. Figure 8 illustrates
this. The CF circuits are re-purposed mainly from those of the
ETM. For each ETM segment, a MUX 1 and a 1-bit Backup
Segment Register (BSR) 2 are added (Figure 8 (a)). BSRs and
SRs maintain the same values and are updated simultaneously
during the ETM operation. Zero in a BSR means that its
associated segment does not contain a match, and one implies
it does. Further, we add another set of bit latches called the
Reserved Segment (RS) shown in Figure 8 (c), which includes
the same amount of 1-bit latches and OR gates as a segment.

For Column Finder, the BSRs are first shifted until we find
a one, to narrow down the appropriate segment that contains a
match ( 3 in Figure 8 (b)). We then copy this segment over to
the Reserved Segment (RS) where the final round of shifting
happens 4 . From this point on, all ETM segments are freed to
support the pattern matching for the next k-mer, while the CF
works in the background to retrieve the column number (see
Figure 10 (b)). The shifting of bits in RS is overlapped with
the matching of the subsequent k-mer. We point out two details
here. First, after the last row activation for a given query k-mer
finishes, ETM takes up to 256 DRAM row cycles to flush the
pipeline in the worst case, when the one is at the very end.
During this time, no new row activation is issued, and the CF
operation is stalled until ETM completes. Second, note that
each k-mer hit takes up to 4800 DRAM cycles, while the CF
operation takes up to 1032 DRAM cycles in the worst-case
scenario. Therefore, we observe no contention at the CF, even
when there are two consecutive hits in the same subarray.

Sieve Type-2. While Type-2 retains most of the high-level
design from Type-3 (ETM, data mapping, matching circuits,
etc.), it differs in one key aspect – instead of integrating logic
to all subarrays at the local row buffer level, logic is added
to a subarray group – a subset of adjacent subarrays within a
bank (e.g., 1/2, 1/4, 1/8 of subarrays) connected through high
bandwidth links (isolation transistors). Each subarray group is
equipped with a compute buffer, which retains much of the
capabilities (k-mer matching, ETM, and column finding) of a
local row buffer in Type-3 without its sense amplifiers. Unlike
type-3, where k-mer matching is performed locally at each
individual subarray, Type-2 processes k-mer matching inside
the compute buffer regardless of the target subarray query k-
mers get dispatched to. This involves transferring a row of bits
across subarrays to reach the compute buffer at the bottom of
the subarray group. To enable fast row copy across subarrays,
we leverage LISA [34], albeit adapted to the folded-bitline
architecture that Sieve is built upon. We validate the feasibility
of our design with a detailed circuit-level SPICE simulation.
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Figure 11 illustrates the process of transferring a row from
the source subarray to its compute buffer – (a) the DRAM row
in the subarray 0 is activated and the data is latched onto its
local sense amplifiers, (b) when the bitlines of subarray 0 are
fully driven, the links between the subarray 0 and subarray
1 are enabled. Due to charge sharing between the bitlines of
subarrays 0 and 1, the local sense amplifiers in the subarray 1
senses the voltage difference between the bitlines and amplifies
it further, as a result of which, (c) local sense amplifiers in both
subarrays 0 and 1 start driving their bitlines to the same voltage
levels, and finally, (d) when both sets of bitlines in subarrays
0 and 1 reach their fully driven states, the isolation transistors
between them are disconnected and the local sense amplifiers
in the subarray 0 are precharged. The process is repeated until
the data reaches the computed buffer. Note that – (1) only
two sets of local sense amplifiers are enabled at any time in a
bank, and (2) as validated in our Spice simulation, the latency
of activating the subsequent sense amplifiers (tSA in Figure
11 is much smaller (∼ 8X) than activating the ones of the
source subarray (tRAS). The latency for one row to cross a
subarray (except for the first one) is referred to as ”hop delay”
which consists of enabling the isolation transistors (link) and
the activation of the sense amplifiers.

K-mer Matching Walkthrough. We use Type-3 as an
example to illustrate the k-mer matching process. Once a row
is selected for activation, both the query and the reference
bits are sent to the local row buffer for comparison using the
mechanisms described above. The ETM checks all segments
and propagates the values of Segment Registers (SRs) to
determine if a match is found.Once a match is found, the
payload associated with that k-mer pattern is retrieved as
follows. The CF first determines the segment number by
shifting all BSRs. It then gets the column index by shifting all
1-bit latches in that segment until the one is found. The column
number is calculated as segment number × (# of columns /
segment) + column index and sent to subarray controller to
index into the payload address offsets.

B. Sieve Type-1

Sieve Type-1 is not a quintessential in-situ architecture,
due to the lack of processing unit embedded in row buffers.
However, Type-1 preserves the overall high-level ideas, such
as the data layout, ETM, and the matching unit. In addition,
Type-1 is the least intrusive implementation of Sieve because
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Fig. 12: Sieve Type-1. A query k-mer is sent to the Query
Register, and a row activation is issued. 1. The controller
logic uses the column address to select a batch and indexes
into the SRAM Buffer to get the batch result bits entry. 2:
The query bit, the reference bits, and the result bits are
sent to the Matcher Array. 3: Matchers write back to the
result bits entry stored in the SRAM Buffer.

it does not change the physical layout of DRAM banks. The
bank I/O width is 64 bits, and each row is 8192 bits. Thus,
a row is divided into 128 batches. A batch is a set of bits
retrieved by a DRAM read burst of a read command. Batch
size varies depending on the column width, which can be 32,
64, or 128 bits. Next, we introduce each component of Type-1.

SRAM Buffer (SB). SB stores the match result bits,
organized in a 2D array. The number of entries is equal to
the number of batches, and the entry width is the batch size.
Before matching, all batch result bits are preset to one, and
are updated as the matching progresses, again capturing the
running match outcome. Figure 12 highlights the result of
batch two, where zero indicates a mismatch.

Matcher Array (MA). MA consists of 64 matching units.
It compares a query bit with the reference bit using an XNOR
gate, and updates (writes back) the result bit by ANDing the
match result bit stored in SB with the output from XNOR.

Skip Bits Register (SkBR). SkBR is used for ETM. It
contains one bit for each batch indicating if we need to process
the current batch. All bits in SkBR are preset to one. As
the matching progresses, more and more bits in SkBR is set
to zero, meaning more and more batches will be skipped.
Without SkBR, each row activation is followed by 128 batch
comparisons. Since most comparisons result in mismatches,
SkBR leads to significant energy and latency reduction.

Start Batch Register (StBR). StBR reduces processing
time further. Due to the ETM, Type-1 checks the skip bits
to find proper batches to send to the MA. The search time is
one DRAM cycle per skip bit. In the worst case where only the
last batch is valid, 127 DRAM cycles are wasted to check all
the previous skip bits. With the help of the StBR, whose value
points to the first batch that needs to be processed, Type-1 can
quickly determine the first batch to open.



Column Finder and Payload Retrieval. The control logic
first checks the skip bits to locate the batches that contain a
one, given the one-to-one mapping between batches and skip
bits. A small shifter is applied to get the index of the matched
column in the batch. The column number is calculated as
(batch index) * (batch size) + (column index), and is then
used by the control logic to get offsets and payload.

C. System Integration

We consider both Dual-Inline Memory Module (DIMM),
and PCIe form factors for integrating Sieve into a host. While
PCIe incurs extra communication overhead due to packet
generation, DIMM suffers from limited power supply. A
typical DDR4 DIMM provides around 0.37 Watt/GB [35] of
power delivery and 25 GB/s of bandwidth, which is sufficient
for Type-1. To satisfy the bandwidth and power requirement,
Type-2 needs at least PCIe 3.0 with 8 lanes, and Type-3 needs
at least PCIe 4.0 with 16 lanes.

We use a 32 GB Type-2 Sieve to illustrate how Sieve
communicates with the host using a PCIe interconnect. Unlike
Type-1, which communicates with the host on individual
k-mer requests, Type-2/3 uses a packet-based protocol that
delivers hundreds of k-mer requests per PCIe packet. A PCIe
Type-2/3 accelerator maintains a (PCIe Input Queue) and a
(PCIe Out Queue) for sending/receiving PCIe packets, and a
response ready queue (RRQ) to hold serviced k-mer requests.
The CPU scans the query sequences to generate k-mers, and
for each k-mer, it makes a 12-byte request that contains
the pattern, sequence ID, destination subarray ID, and other
header information. Each PCIe packet contains 340 requests,
assuming 4 KB PCIe packet payload size. Each Sieve bank
buffers 64 requests. To fully saturate the capacity of a 32 GB
Sieve, the depth of the PCIe queue is set to 24 (24 PCIe
packets × 340 requests / packet ≈ 16 ranks × 8 banks / rank
× 64 requests / bank). Sieve removes the PCIe packets from
PCIe Input Queue, unpacks them, and distributes requests to
the target banks. A finished request gets moved to the RRQ.
Once the RRQ is full, a batch of PCIe packets is moved to
the PCIe Out Queue. Sieve sends an interrupt to the CPU if
the packets are waiting in the PCIe Out Queue or if there are
empty slots in the PCIe Input Queue.

The entire space of Sieve is memory-mapped to host as
a noncacheable memory region, avoiding virtual memory
translation and cache coherence management. Regardless of
configuration (DIMM or PCIe), a program interacts with the
Sieve device through the Sieve API, which supports calls
to transpose a conventional database into the format needed
for column-wise access (this can be stored for later use and
is thus a one-time cost); load a database into the Sieve
device; and make k-mer queries. The API implementation
requires a user-level library and an associated kernel module
or driver to interface to the Sieve hardware. The exact API and
implementation are a subject to future work. K-mer databases
are relatively stable over time, so once a database is loaded
into the Sieve device, it can be used for long periods of time,
until the user wishes to change a database. The same databases

are often standard within the genomics community, high reuse
can be expected to amortize the cost of database loading.

D. K-mer to Subarray Mapping

Without an appropriate mapping scheme, each query needs
to be broadcast across all regions of the accelerator. A naı̈ve
mapping scheme would involve looking up an index table
that maps queries to banks (Type-1) or subarrays (Type-2/3).
Such a scheme would quickly stop scaling, as the size of
such an index table increases exponentially with the length
of a k-mer. We design an efficient and a scalable indexing
scheme, wherein the size of the index table scales linearly
with the main memory capacity rather than the length of a k-
mer. More specifically, the reference k-mers in each subarray
are sorted alphanumerically from left to right, and then each
entry in our index table maintains an 8-byte subarray ID along
with the integer values of the first and the last k-mers at the
respective subarray (identified by the index). Upon receiving
a matching request, Sieve first converts the query k-mer to its
integer representation, and consults the index table to select the
bank/subarray that contains a match. While Type-2/3 exploit
different levels of parallelism, they share the same indexing
scheme, i.e., if Type-2 only provides the bank address to our
indexing scheme, a query needs to be checked against every
subarray in that bank. The size of the index table stays well
under 2 MB even for Type-2/3 with 500 GB of capacity, which
is reasonable for a dedicated bioinformatics workstation.

E. Sieve: Putting it all together

For Type-2/3, the host reads the input query sequences and
extracts k-mer patterns. For each k-mer, the k-mer to subarray
index table is consulted to locate the destination subarray, and
a k-mer request is made, as described in Section IV-C. A
number of k-mer requests that need to be sent to the same
subarray is grouped into one “batch”. The exact number of k-
mer requests per batch is equal to the number of query k-mers
in a pattern group (64 in our example). These query batches
are placed in a buffer, ready to be shipped to the PCIe device
buffer by DMA. PCIe bundles several such batches into one
PCIe packet (also described in Section IV-C) sent to the Sieve
device. Sieve dispatches each batch of query k-mers to the
destination subarray, and replaces an already processed query
k-mer batch with a new (to-be-processed) batch.

Individual k-mer requests in the same batch potentially
complete at different times as (1) they get issued out-of-
order (as soon as their bank/subarray becomes available), and
(2) each request may involve checking a different number of
rows. Thus, response packets may arrive out-of-order at the
host, where their sequence IDs and payloads are examined, as
part of a post-processing step. Upon completion of all k-mer
requests for a given sequence, the accumulated payloads are
fed into a classification step, as illustrated in Figure 2. Note
that there is no additional reordering step required at the host
end as the accumulated payloads are typically used to build a
histogram of taxons for a given DNA sequence.



TABLE I: Workstation Configuration

CPU Model Intel(R) Xeon(R) E5-2658 v4
Core/ Thread/ Frequency 14/ 24/ 2.30 - 2.80 (GHz)
L1 (KB)/L2 (KB)/L3 (MB) $ 32 / 256 / 35
Main Memory DDR4-2400MHz
Memory Organization 32GB / 2 Channels / 2 Ranks
GPU Model Pascal NVIDIA Titan X

TABLE II: Query Sequence Summary
Query files # Sequences Seq Length # k-mer
HiSeq Accuracy.fa (HA) 1.0e4 sequences 92 bases 6.2e4 k-mers
MiSeq Accuracy.fa (MA) 1.0e4 sequences 157 bases 1.27e6 k-mers
simBA5 Accuracy.fa (SA) 1.0e4 sequences 100 bases 7.0e5 k-mers
HiSeq Timing.fa (HT) 1.0e8 sequences 92 bases 6.2e8 k-mers
MiSeq Timing.fa (MT) 1.0e8 sequences 157 bases 1.27e10 k-mers
simBA5 Timing.fa (ST) 1.0e8 sequences 100 bases 7.0e9 k-mers

V. METHODOLOGY

Workloads. We use Kraken2 [36] and CLARK [6] for the
CPU baseline, and cuCLARK [37] for the GPU baseline. We
use MiniKraken 4GB (4GB), MiniKraken 8GB (8GB), NCBI
Bacteria (2785 genomes 6.24GB). The query sequences are
summarized in Table II, and K is set to 31.

Baseline Performance Modeling. We report our worksta-
tion configurations in Table I. The GPU baseline is idealized
because (1) the energy and latency of data transfer from host
to GPU are not included, and (2) the on-board memory is
assumed to always be large enough to avoid running each
query multiple times. The baseline DRAM energy consump-
tion is estimated by feeding memory traces associated with
k-mer matching functions, obtained using Hopscotch [38], to
DRAMSim2 configured to match our workstation. The CPU
energy is measured using the Intel PMC-power tool [39], then
scaled down by 30% to exclude the interference from other
system components, and the GPU energy is measured using
NVIDIA Visual Profiler [40] as it is performed in [41] to
characterise the multi-GPU inference server energy efficiency
and scaled down by 50% to exclude energy spent on cooling
and other operations, consistent with the methodology from
DRISA [19].

Circuit-level SPICE Validation. Of all the Sieve com-
ponents, only the Matchers are in direct contact with the
sense amplifiers’ BLs. In the presence of the Matcher circuit,
the load capacitance on the BL is increased. We use SPICE
simulations to confirm that Sieve works reliably. The sense
amplifier and matcher circuits are implemented using 45nm
PTM transistor models [42]. Because of the relatively small
input capacitance of the matcher circuit (∼0.2 pf), in com-
parison with the BL capacitance (∼22pf), the matcher has a
negligible effect on the operation of the sense amplifiers.We
find that, after the row activation and when the BL voltage is
at a safe level to read, the result of the matcher is ready after
less than 1 ns. To validate correct operation of links in Type-
2, we use our DRAM circuit model to simulate transfer of
data between local row buffers of two adjacent subarrays. In
both simulations, the initial charge of the cell is varied across
different values to consider the effect of DRAM cell charge
variations. Even in the worst case, the matcher and the link

between two subarrays cause no bit flips or distortions.
Energy, Area, and Latency Modeling. We estimate the

power and latency overhead of each Sieve component using
FreePDK45 [43]. Further, we use OpenRAM [44] to model
and synthesize the SRAM buffer in Type-1. We use scaling
factors from Stillmaker, et al. [45] to scale down results to the
22nm technology node, and use the planar DRAM area model
proposed by Park, et al. [46] to estimate area overhead.

Modeling Sieve. We assume a pipelined implementation
of Sieve, where the host (CPU) performs pre-processing (k-
mer generation, driver invocation, and PCIe transfer) and post-
processing (accumulation of response payloads for genome
sequence classification), while Sieve is responsible for k-
mer matching. Our analysis confirms that the latency of this
pipeline is limited by k-mer processing on Sieve. In particular,
k-mer matching on Sieve is either comparable to (for Type-3)
or slower than (for Types-1/2) both pre- and post-processing
steps on the CPU, so the CPU is always able to send enough
k-mer requests to Sieve to keep it fully utilized.

We model the pre- and post-processing steps using the
baseline CPU described in Table I. We treat the classification
step as a separate pipeline by itself, as (1) the algorithm
differs for each application, and (2) it is independent of
k-mer matching, which is the primary focus of this work.
Thus, we forgo modeling the effort required for genome
classification and other post k-mer processing. For modeling
the k-mer matching itself, we use a trace-driven, in-house
simulator with a custom DRAMSim2-based front-end. The
simulator also models PCIe communication overhead, using
standard PCIe parameters [47]. We use a Micron DDR4 chip
(DDR4 4Gb 8B x16) as the building block for Sieve. DRAM
parameters are extracted from the same datasheet and modified
to account for the estimated latency and energy overhead of
matchers, ETM, column finder, and segment finder.

VI. EXPERIMENTAL RESULTS

A. Energy, Latency, and Area Estimation

Energy Evaluation. Table III summarizes the dynamic
energy and static power of each Sieve component. Type-3
incurs additional power consumption for each DRAM row ac-
tivation. However, using formula 10a from Micron’s technical
documentation [35], we find that Sieve consumes only 6%
more energy for each row activation than a regular DRAM,
because the area and the load of the extra transistors we
introduce is so small compared to the sense amplifier and the
bitline drivers. We further break down this energy overhead to
understand the effect of the different Sieve components. We
find that the Matcher Array (MA) and the ETM dominate the
energy consumption, capturing 78.9% and 15.8% of the 6%
energy overhead incurred by Sieve, with the energy spent by
the Segment Finder and the Column Finder being negligible
(less than 5%). Type-1 adds no overhead on top of the regular
DRAM row activation, because no modification is made to the
row buffer, and it is less energy-intensive than Type-2/3.

Latency Evaluation. Table III shows the latency of each
Sieve component. For Type-1, we assume that (1) accessing



TABLE III: Sieve Components Energy and Latency Analysis

Component Dynamic
Energy (pJ)

Static Power
(uW)

Latency
(ns)

(T1) 64-bit MA 0.867 1.4592 0.353
(T1) QR, SkBR, StBR 1.92 5.28 0.154
(T1) SRAM Buffer 5.12 4.445 0.177
(T2/3) 8192-bit MA 181.683 0.289 0.535
(T2/3) ETM Segment 73.5 56.185 43.653
(T2/3) Segment Finder 2.44 0.294 0.362
(T2/3) Column Finder 20.69 28.16 0.152

the SRAM buffer and the Query Register can be overlapped
entirely with a column read command (∼15 ns) that retrieves a
batch of reference bits, and (2) although the pattern matching
and register checking are on the critical path, they add negligi-
ble overhead (∼0.5 ns) to the DRAM row cycle (∼50 ns). For
Type-2/3, each ETM segment (256 OR gates) meets the timing
requirement of completing its operation within one DRAM
row cycle. Further, since the segment and column finders are
composed of simple shifters, their latency of operation is well
within one DRAM cycle (0.625 ns).

Area Evaluation. To estimate area the overhead of Sieve,
we use the model proposed by Park et al. [46]. We adopt the
DRAM sense amplifier layout described by Song, et al. [48]
and a patent from Micron [49] for a conventional 4F2 DRAM
layout. The short side and long side of the sense amplifier are
6F and 90F, respectively. In Type-2/3, for the accommodation
of the matcher, ETM, segment, and column finder circuits in
the local row buffer, we add 340F in total on the long side of
the local sense amplifiers. For Type-2, an extra 60F in long
side is added to each sense amplifier for considering the area
overhead of the links between the subarrays.

The area overheads for Type-2 with 1, 64, and 128 compute
buffers (CB) are 1.03%, 6.3% and 10.75%, for an 8-bank
DRAM chip. In Type-3, each local sense amplifier is enhanced
with k-mer matching logic, and for enabling subarray paral-
lelism, a row-address latch is added to each subarray [28],
resulting in 10.90% area overhead. For Type-1, all components
are added to the center strip of our DRAM model. The SRAM
buffer of 8 Kbits (128 Rows X 64 Bits) and matching circuit in
each bank increase the area by 2.4% and 0.08%, individually.

B. Kernel Performance Improvement

Comparison Against Row-major In-Situ Accelerators.
We simulate an ideal row-major baseline which mimics
prior proposals [19], [20], [29] (Row Major in Figure 13),
and an improved row-major accelerator based on Compute-
DRAM [31]. We measure their speedup over the CPU baseline.
We also implement Sieve without ETM (Col-major).

We make the following assumptions for the Row-major,
ComputeDRAM-based, and Col-major accelerators. First, their
latency for locating and transferring payloads is assumed to
be similar to that of Sieve. Second, both architectures are
configured to be the same capacity with the same subarray-
level parallelism. Third, they share the same indexing scheme.
Fourth, we assume that ComputeDRAM has a much shorter
Triple-row Activation latency due to the fact that it issues

memory commands in rapid succession.
Figure 13 shows the results from this experiment. The con-

vention for the workloads on the X-axis is kernel.query.size.
The kernel is either Kraken2 or CLARK, the query files are
listed in Table II, the sizes are 4GB, 8GB, and NCBI Bacterial
reference (6.24GB). We make the following observations.

First, row-major perform similarly to column-major without
ETM (slightly worse), but for different reasons. Column-major
must activate all the rows that store k-mer data (64 rows if
k=32). Row-major and ComputeDRAM stop when it finds a
hit, but requires ∼10X more writes to set up the comparison,
as each query k-mer must be replicated across the length of
the row. Second, ComputeDRAM is able to outperform both
the row-major and column-major (without ETM) approaches,
owing to its fast triple-row activation. Third, the column-major
approach used in Sieve allows it to benefit from our ETM
strategy (that provides an additional speedup of 5.2X to 7.2X),
in contrast to both row-major and ComputeDRAM designs
that lack such an opportunity. We conclude that the chief
contribution of column-major layout is therefore 1) in enabling
ETM and 2) in amortizing the setup cost across a pattern group
of 64 writes. The row-major design performs slightly worse
than Type-3 without ETM because, in the event of a k-mer
mismatch, both designs on average open roughly the same
number of rows (62 8192-bit rows), but the row-major design
stops when it finds a hit. We note that, from our evaluation,
real sequence datasets are typically characterized by low k-mer
hit rates (around 1%), thus favoring Sieve designs.

Leveraging ComputeDRAM to build a column-major k-mer
matching accelerator entails solving many challenges. If we
populate the query section with the same query, we will need
128×64 write commands per query (630X more than Sieve).
Populating the query section with different queries brings more
challenges. For example, there could be more than one match,
impacting our ability to design an efficient indexing scheme.
We note that addressing these challenges while maintaining the
performance, efficiency, and cost benefits of these approaches
is the subject of future work.

Improvement Over CPU. Figure 14 shows the average
speedup and energy savings. All results are normalized to CPU
measurement. In this experiment, we constrain the memory
capacity of all designs to 32 GB. For Type-2, we consider
all possible numbers of compute buffers per bank and select
the midpoint of 16 (T2.16CB). We present the performance
of other Type-2 configurations in Section VI-B. For Type-3,
we choose the best performer, which supports 8 concurrently
working subarrays (T3.8SA). While clearly more energy-
efficient, Type-1 offers limited speedup (1.01X to 3.8X) for
8 out of 9 benchmarks, showing that for many workloads,
there is significant additional performance potential that can
be tapped via an in-situ approach. However, we also point
out that Type-1 is likely to outperform CPU/GPU as its mem-
ory capacity grows (more banks thus more parallelism and
bandwidth), while the similar memory-capacity-proportional
performance scaling is hard to achieve in a non-PIM tra-
ditional architecture [50], due to the memory wall. Type-3
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Fig. 15: Comparison with GPU baseline.

designs offer a speedup and an energy savings of as much
as 404.48X and 55.89X respectively, over the CPU baseline.
Note that this is in comparison to a Type-2 design that offers
a speedup of 55.49X and an energy reduction of 28.11X over
the CPU baseline, clearly showcasing the substantial benefits
that can be realized by exploiting finer-grained parallelism at
the subarray-level. We also find that Sieve is sensitive to the
characteristics of the application. For example, the C.MT.BG
benchmark performs worse than C.ST.BG benchmark as the
number of k-mer matches for C.MT.BG is 3.28X higher
than C.ST.BG benchmark, resulting in more row activations,
increasing the overall query turnaround time and energy.
Furthermore, recall from Section IV that our early termination
mechanism interrupts row activations as soon as we detect a
mismatch, minimizing the overall turnaround time and energy
consumption for workloads with fewer k-mer matches.

Improvement Over GPU. Figure 15 shows the speedup
and energy savings of various Sieve designs (32 GB) over
the GPU baselines. Type-1 is 3X to 5X slower than the
GPU but more energy efficient, and Type-2 is only modestly
faster (2.59x to 9.43x). However, as the memory capacity
of Sieve and dataset size increase, Type-1/2 are likely to
outperform the GPU unless GPU memory capacity scales
as fast, because all reference datasets can fit onto Sieve,
avoiding the repetitive data transfer from host memory to GPU
board. Type-3 dramatically outperforms the GPU, because it
leverages subarray-level parallelism. Type-3 offers speedups
of 33.13X–55.0X and energy savings of 83.77X–141.15x.

Effect of Increased DRAM Bandwidth. Simply increasing
bandwidth to DRAM in the CPU and GPU baselines is
not sufficient to address the performance bottleneck in k-
mer matching, because we find that it is not bottlenecked
by bandwidth. While it is memory-intensive (high percentage
of loads in the ROB), memory bandwidth is underutilized
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Fig. 16: Average cycles spent to process CPU benchmarks.

because each MSHR is unable to serve multiple loads and
the available MSHRs are quickly depleted, stalling subsequent
loads in the ROB and preventing the bandwidth from being
fully saturated. Even if we overprovision those Broadwell
cores with enough MSHRs to sustain all outstanding memory
accesses, and all loads are served concurrently with a memory
latency of 40 ns to reach the same level of throughput as Type-
3, the workstation has to be equipped with over 215 cores, not
only resulting in a substantial increase in power consumption,
but a considerable wastage in DRAM bandwidth as only a
small portion of the retrieved cache line is useful. cuCLARK
is highly optimized, so we suspect that GPUs are constrained
by similar bottlenecks as CPUs, although we have not yet
pinpointed the exact set of microarchitectural structures.

C. Sensitivity Analysis

Number of Subarrays per Bank. We analyze the impact of
subarray-level parallelism on performance and energy by com-
paring various Type-3 design configurations (see Figure 16) at
different memory capacities and number of subarrays per bank.
The results are averaged across all benchmarks. Supporting all
subarrays performing k-mer matching simultaneously without
increasing the area overhead significantly is not yet feasible,
due to power delivery constraints. However, for this experi-
ment, we assume this is not an issue. In any case, although
Sieve’s k-mer matching throughput increases with more con-
current subarrays, the speedup plateaus after 8 subarrays—
probably because most bank-access conflicts can be resolved
by a small number of subarrays [28].

Number of Compute Buffers. We explore the
performance-area tradeoff of Type-2 designs, by varying
the number of compute buffers (shown in Figure 17). For
reference, we include Type-1 (the left-most bar T1) and Type-
3 (the right-most bar T3.1SA) designs without subarray-level
parallelism. The middle eight bars represent Type-2 with
1-128 compute buffers per bank. We make the following
observations. First, Type-2 with one compute buffer is faster
than Type-1 (1.39X to 1.94X) but not by a large margin.
For each row activation, in the worst case, Type-1 has to
burst read 128 batches to the matchers, which is similar
to T2.1CB where the opened row needs to ”hop” across
128 subarrays to reach the compute buffer. Since the hop
delay (∼4ns) is faster than a burst latency (tCCD: 5∼7ns),
and both design are equipped with some forms of ETM,
T2.1CB is likely to spend less time on data movement than
Type-1 in the average case. However, the chain activation
of sense amplifiers in Type-2, which relays the row to the
compute buffer, consumes significant energy, making Type-2
with sparse compute buffers less energy efficient. Second,
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Fig. 17: The effect of varying the number of compute
buffers. T = Type, #CB = number of compute buffers.

generally speaking, increasing the number of compute buffers
per bank also increases the speed and energy efficiency
of Type-2. As we have explained previously, adding more
compute buffers reduces the activation of sense amplifiers,
which in turn reduces the delay and energy consumption.
Third, the area overhead scales with the number of compute
buffers per bank. Finally, the speedup and energy reduction
of T2.128CB slightly trails behind those of T3.1SA, because
T2.128CB still requires one hop per row activation. However,
Type-3 also has a higher area overhead than T2.128CB for
enabling subarray-level parallelism.

ETM. To simulate the adversarial case where every query k-
mer has a match, we turn ETM off in Type-2/3, and measure
the speedup and energy reduction over CPU/GPU baselines
(averaged across all benchmarks). Type-2/3 without ETM
are still 1.34x–155.37x faster and 4.15x–36.17x more energy
efficient than CPU, and 1.3X–9.54X faster and 6.60X–18.43X
more energy efficient than GPU.

PCIe Overhead. We use PCIe 4.0 x16 in our simulation.
Overall, PCIe adds 4.6% to 6.7% communication overhead to
the ideal case where k-mer matching requests are dispatched
to the destination bank/subarray as soon as they arrive, and
returned to the host when they complete.

VII. RELATED WORK

In this section we discuss previous work that shares similar
interests concerning Sieve. The concept of PIM dates back
to the 70s [51]. Since then, there have been many proposals
integrating heavy logic into 2D planar DRAM dies [52]–[56].
These early efforts largely remain at their inception stage due
to the challenges of fabricating logic using the DRAM process.
Recently, the 3D-stacked technology, which takes a more prac-
tical approach by placing a separate logic die underneath the
DRAM dies, revitalizes the interests in PIM research. To fully
exploit the benefit of 3D-stacked architectures, many domain
specific accelerators for graph processing [50], [57], pointer
chasing [58], and data analytics [59] have been proposed. We
plan to evaluate Sieve in 3D-stacked context as future work.

Non-DRAM-based In-situ Accelerators. NVM- and
SRAM-based in-situ accelerators such as Pinatubo [60] and
Compute Caches [61] have been proposed, but we choose
DRAM for its maturity and availability, which can lead to

quicker development and deployment cycles. Furthermore,
SRAM generally has a lower capacity than that of DRAM,
a smaller number of subarrays, and shorter row buffers. We
plan to evaluate NVM-based Sieve in future work.

PIM-based Genomics Accelerators. Recently, PIM has
been explored for several algorithm-specific PIM architectures
for genomics. For example, GenCache [16] modifies commod-
ity SRAM cache with algorithm-specific operators, achieving
energy reduction and speedup for DNA sequence aligners.
Medal [17] leverages commodity Load-Reduced Dual-Inline
Memory Module (LRDIMM) and augments its data buffers
with custom logic to exploit additional bandwidth and paral-
lelism for DNA seeding. Radar [18] provides a high scalability
solution for BLAST by mapping seeding and seed-extension
onto dense 3D non-volatile memory. However, these efforts
are not ideal for k-mer matching. GenCache has hardwired
logic in SRAM to compute Shifted Hamming Distance and
Myer’s Levenshtein Distance, which are not used for k-mer
matching. Medal is highly optimized for FM-index based
DNA seeding, which relies on different data structures (suffix
arrays, accumulative count arrays, occurrence arrays) than
those in k-mer matching (associative data structures such as
dictionaries). Radar binds seed-extension, a stage irrelevant to
k-mer matching, with seeding to maximize speedup.

PIM-based Genomics Accelerators. PIM has been ex-
plored for several algorithm-specific architectures for ge-
nomics. For example, GenCache [16] is an SRAM-based ac-
celerator for DNA sequence alignment. Medal [17] augments
the data buffers of commodity DIMM to exploit additional
bandwidth and parallelism for DNA seeding. Radar [18]
provides a high-scalability solution for BLAST by mapping
seeding and seed-extension onto dense 3D NVM. These ef-
forts rely on domain-specific knowledge to achieve maximal
speedup for specific algorithms that are not applicable to k-
mer matching, but are complementary to Sieve.

VIII. CONCLUSIONS

In this work, we identify k-mer matching as a bottleneck
stage in many genomics pipelines, due to its memory-intensive
nature. We propose Sieve, a set of DRAM-based in-memory
architectures to accelerate k-mer matching, by storing ref-
erence k-mer patterns along the bitlines and enhancing row
buffers with a minimal set of Boolean logic for k-mer match-
ing. We optimize Sieve with an Early Termination Mechanism.
Type-1 offers limited benefit over CPUs and GPUs. Type-2
offers extensive speedups over CPUs (3.74x to 76.62x) but
only modest benefit over GPUs (1.33x to 12.97x). Type-3
offers compelling benefits over both, with speedups and energy
savings over the CPU of as much as 389.49X and 93.97X
respectively; and 6.05x and 68.74x over the GPU.
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