
Platform-Agnostic Learning-Based Scheduling
Andreas Prodromou1, Ashish Venkat2, and Dean M. Tullsen1

1 University of California, San Diego
{aprodrom,tullsen}@ucsd.edu

2 University of Virginia
venkat@virginia.edu

Abstract. Heterogeneous architectures have become increasingly com-
mon. From co-packaging small and large cores, to GPUs alongside CPUs,
to general-purpose heterogeneous-ISA architectures with cores imple-
menting different ISAs. As diversity of execution cores grows, predictive
models become of paramount importance for scheduling and resource al-
location. In this paper, we investigate the capabilities of performance pre-
dictors in a heterogeneous-ISA setting, as well as the predictors’ effects on
scheduler quality. We follow an unbiased feature selection methodology to
identify the optimal set of features for this task, instead of pre-selecting
features before training. Finally, we incorporate our findings in ML-based
schedulers and evaluate their sensitivity to the underlying system’s level
of heterogeneity. We show our schedulers to perform within 2-11% of
an oracular scheduler across a variety of underlying heterogeneous-ISA
multicore systems without modification.

1 Introduction

Modern multicore architectures employ cores that are increasingly heterogeneous
in terms of their microarchitectural characteristics. These architectures, dubbed
single-ISA (Instruction Set Architecture) heterogeneous multicores [7, 8], im-
prove the throughput and efficiency of mixed workloads, by catering to their
diverse execution characteristics, such as variability in instruction-level paral-
lelism, cache access patterns, branch behavior, etc. Heterogeneous-ISA multicore
architectures [4, 17, 2, 16, 1, 10, 15] further exploit an additional degree of free-
dom by allowing multiple co-packaged ISAs. These architectures benefit from a
phenomenon called ISA affinity – the inherent preference of an application code
region to efficiently execute on a particular ISA [17, 4]. By synergistically exploit-
ing ISA affinity and microarchitectural heterogeneity, these architectures provide
significant (> 30%) additional gains in performance and energy efficiency.

This increasing trend in on-chip heterogeneity has only further highlighted
the critical need for intelligent workload scheduling, since the potential perfor-
mance and power benefits of these architectures arrive from smart job-to-core
assignment. State-of-the-art scheduling mechanisms rely on predictive models to
make active performance predictions for any code region in execution, and fur-
ther leverage such predictions to make appropriate job allocation decisions [13,
3, 18]. This work advances state-of-the-art scheduling mechanisms by develop-
ing learning-based schedulers that are flexible enough to operate efficiently, re-
gardless of the degree of heterogeneity that the underlying hardware exhibits –
including both microarchitectural heterogeneity and ISA-heterogeneity.

On a single-ISA heterogeneous multicore, the performance difference of a
code region can be vastly different across different cores depending upon their

2 Andreas Prodromou, Ashish Venkat, and Dean M. Tullsen

microarchitectural diversity. ISA heterogeneity further exacerbates the difficulty
of performance prediction due to the more complex set of parameters that po-
tentially affect performance. This paper deals with the challenging problem of
scheduling mixed workloads on general-purpose heterogeneous-ISA architectures
that employ fully disjoint ISAs (ARM’s Thumb, x86-64, and Alpha) as proposed
by Venkat and Tullsen [17].

This paper examines a variety of machine learning techniques to perform
cross-core and cross-platform performance prediction, where the target core
potentially differs in terms of its CPU microarchitectural traits, cache orga-
nizations, ISA, inorder/out-of-order execution semantics, vector support, and
floating point support. These ML-based predictors are trained on an extensive
simulation-based dataset [17] to capture the interaction between an application’s
execution characteristics and the architectural and microarchitectural traits of
the underlying hardware, and further project the execution of any given code
region on arbitrary processor hardware. The dataset includes 72 SPEC simpoint
workloads, each simulated on 600 different cores executing multiple ISAs. To
the best of our knowledge, this is the most extensive heterogeneous-ISA, cycle-
accurate, simulation-based dataset in the literature.

The contributions of this work are:
1. Design of accurate ML-based cross-core and cross-platform performance pre-

dictors, which are to the best of our knowledge, the first predictors to effec-
tively cross general-purpose ISA boundaries.

2. In-depth characterization of ML-based performance predictors.
3. Demonstration of an effective ML-based heterogeneous-ISA job scheduler.

2 Motivation
Cross-Platform Performance Prediction. Job schedulers benefit from ac-
curate performance predictions. On a complex system, trial and error scheduling
on a complex system (many threads, diverse cores) is (1) unlikely to find the op-
timal schedule, and (2) likely to sample many poor schedules (sacrificing perfor-
mance) before finding good ones. A scheduler that can predict the performance
of any given application on any core can intelligently distribute jobs for maximal
throughput without the overhead of sampling all possible permutations.

Intuitively, we expect that a system’s level of heterogeneity can affect the
difficulty of the scheduling problem. In other words, it should be easier to create
good schedulers for systems with lower diversity. For predictive schedulers, the
prediction error should have a smaller impact on realizing efficient schedules on
less diverse systems. This paper proposes and formalizes techniques to quanti-
tatively estimate the Ease-of-Scheduling (EoS) on any given heterogeneous
multicore, and further showcase it as an objective function that represents an
unbiased way of selecting heterogeneous-ISA multicore benchmark systems.

We find that a system’s scheduling difficulty level (EoS), a performance pre-
dictor’s accuracy, and a scheduler’s efficiency (one that internally uses said pre-
dictor) are intertwined in often unpredictable ways. For example, less accurate
predictors do not guarantee worse schedulers, and more accurate predictors do
not guarantee better ones. We address this ambiguity by first identifying multi-
core systems that cover a wide spectrum of heterogeneity, and then focusing on

Platform-Agnostic Learning-Based Scheduling 3

training accurate per-core performance predictors. We finally aggregate our arse-
nal of tools (diverse systems, a variety of predictors, and schedulers) to measure
the efficiency, overheads, and performance of our learning-based schedulers.

Limitations in Prior Work. This paper also identifies and addresses some
common limitations in prior prediction-based scheduling proposals. First, mul-
ticore systems under test are often predefined and do not change throughout
each proposal, resulting in inflexible solutions with low potential adaptability.
Second, a closely related and frequently-observed drawback is the use of small
datasets on which predictors are trained and evaluated. Note that large datasets
are difficult to construct, particularly if the data is accumulated via simulations
(slow). In studies where profiling is used, the hardware cannot be significantly
varied, so a large dataset would require tens of thousands of benchmarks.

Several prior studies select one machine learning algorithm, often a linear
model, which according to our findings is not necessarily the best option for
most cases. Discussion of other available algorithms and how well they perform
in the presented use cases is often omitted. Aside from the limited exploration
of available algorithms, researchers often pre-select the input features of their
models. This selection tends to reflect the collective knowledge of this field and
includes variables that have been identified in the past to track dynamic char-
acteristics. However, with modern execution environments we are able to collect
significantly more measurements, especially if simulations are used. Furthermore,
even though feature selection often requires significant skill and time investment,
some ML algorithms are particularly good at filtering features and internally dis-
carding those that have no impact on the final prediction.

In this work, we address these drawbacks. First, our EoS-based system se-
lection allows us to demonstrate the adaptability of our schedulers. Second, we
use the largest available dataset that fits our needs. Third, we use three different
machine learning algorithms as predictors. Fourth, we never hand-select features
for training – instead, we allow our machine learning models to (brute-force) ex-
plore the dataset during training and decide which features they should be using
to optimize their prediction accuracy. We show that our methodology results in
predictive models that generalize and adapt to a variety of underlying systems
without modification.

3 Related Work
Single-ISA heterogeneous architectures are proposed by Kumar, et al. [7], with
processor manufacturers currently offering heterogeneous products [5, 6, 14]. Schedul-
ing and resource management for these architectures has been extensively stud-
ied, as well (examples include [13, 3, 12] and more).

The primary focus of this work, general-purpose heterogeneous-ISA multi-
core architectures [4, 17, 15], include microarchitecturally heterogeneous cores
that implement different ISAs and have been demonstrated to result in sig-
nificant added benefits compared to its single-ISA counterpart. The ISAs we
use in this study are Thumb, Alpha, and x86-64. Recently, the composite-
ISA architecture [15] has demonstrated how a heterogeneous-ISA CMP can
be based on feature-diverse variations of a single ISA, significantly alleviat-
ing concerns regarding their commercial viability. This research would apply

4 Andreas Prodromou, Ashish Venkat, and Dean M. Tullsen

to composite-ISA architectures as well. Beyond performance and energy bene-
fits, exploiting heterogeneous-ISA architectures has been shown to improve se-
curity against code-based attacks, such as Return-Oriented Programming, by
frequently switching ISAs [16]. Systems combining CPUs and GPUs (or acceler-
ators) in the same package are also examples of heterogeneous-ISA architectures
[11], however they are beyond the scope of this work.

Barabalace, et al. [2, 1] propose Popcorn Linux, an OS that facilitates running
and migrating applications on general-purpose heterogeneous-ISA systems. Our
work assumes similar support. Popcorn Linux includes a basic scheduler that
relies on application instrumentation to generate a mapping of functions to cores.
LACross [18] is a cross-platform scheduler that uses the LASSO linear regression
algorithm to predict a phase’s performance and power. LACross is shown to
provide efficient resource management on two heterogeneous machines.

4 Dataset Overview

We use a Gem5 and McPAT simulation-based dataset of 43200 samples, con-
sisting of 72 workloads simulated on 600 cores (200 microarchitecturally-diverse
cores for each ISA - Thumb, Alpha and x86-64) [17]. Participating features can
be separated into two main categories: (1) workload profiling features, and (2)
core microarchitectural specifications. In this section we provide more details
regarding the dataset we use.

4.1 Workloads and Core configurations

Each workload in our dataset is a Simpoint phase of 100 million (Alpha) instruc-
tions. Table 1 presents a description of the 600 cores in this dataset. Further
details on how configuration points were chosen by the creators of this dataset
can be found in [17].

 Benchmark # of Phases

bzip2 9

gcc 8

gobmk 8

hmmer 5

lbm 1

libquantum 7

mcf 9

milc 9

sjeng 7

sphinx 9

Design Parameter Design choices

ISA Thumb, Alpha, x86‐64

Execution Semantics In‐order, Out‐of‐Order

Branch Predictor Local, Tournament

Reorder Buffer ‐ Register File
(ROB ‐ Int. regs ‐ FP regs)

64‐96‐64, 128‐160‐96

Issue Width ‐ Functional Units

(Width ‐ Int. ALUs ‐ Int. mult ‐
FP ALUs ‐ FP mult ‐ SIMD)

1‐1‐1‐1‐1‐1
1‐3‐2‐2‐2‐2
2‐3‐2‐2‐2‐2
4‐3‐2‐2‐2‐2
4‐6‐2‐4‐2‐4

Load Store Queue Sizes 16, 32 entries

Cache Hierarchy

(L1 ‐ L2 ‐ L3)
32K/4 32KB, 4‐way

32K/4 ‐ 32K/4 ‐ 4M/4
32K/4 ‐ 32K/4 ‐ 8M/8
64K/4 ‐ 64K/4 ‐ 4M/4
64K/4 ‐ 64K/4 ‐ 8M/8

Table 1: Description of core configuration points. Adapted from the design
space exploration presented in [17].

4.2 Dataset Partitions

Dynamic workload features can vary according to the core they execute on; for
example, instruction count will be constant within an ISA, but different across
ISAs, while cache misses will vary by core features and ISA. This section of the

Platform-Agnostic Learning-Based Scheduling 5

dataset contains profiling measurements obtained via simulations. Specifically,
each workload is characterized by 30 features, which are presented in Table 2a.

In addition to dynamic workload features, cores in our dataset are also charac-
terized by 18 static features that describe their microarchitecture. These features
are typically available from the manufacturer. Table 2b presents more details.

Feature Names (grouped) Description

APPID
Unique workload identifier.

Never used for testing or training

INT_R, FP_SIMD_R, BR_R,
LOAD_R, STORE_R

Dynamic count of five instruction types:
Int, fp or simd, branch, load, store

INT_N, FP_SIMD_N,
BR_N, LOAD_N, STORE_N

Normalized dynamic instruction count

OPS Total number of operations. Varies across ISAs

<TYPE>_HITS_R,
<TYPE>_MISS_R,
<TYPE>_MISS_N

Raw count of hits and misses, and miss ratio.
TYPE=$I (I‐cache), $D (D‐cache), L1 ($I & $D), L2.

Total of 12 features in this group.

FETCH, ISSUE Dynamic fetch and issue rates

REF_IPC Performance measurement (in aIPC)

MISSPRED Branch missprediction rate

D_PROC_PWR,
D_CORE_PWR

Dynamic processor and core power consumption
(McPat)

 (a) Dynamically-collected features

Feature Names Description

CPUID
Unique core identifier.

Never used for testing or training.

ISA (THUMB, ALPHA, X86) Core’s ISA. Categorical feature.

SEMANTICS (IO, OOO) In‐order or Out‐of‐Order. Categorical feature.

BR_PRED (LOCAL, TMNT)
Core’s branch predictor, local or tournament.

Categorical feature.

WIDTH Core’s width

ROBSIZE Reorder buffer size

INTREGS, FPREGS Number of int and fp registers

LSQSIZE Load‐Store Queue size

L1SIZE, L2SIZE Cache sizes for L1 (kB) and L2 (LLC, MB)

INTALUS, FPALUS Number of int and fp ALUs

INTMULTDIV, FPMULTDIV Number of int and fp multiply‐divide units

SIMD Number of SIMD units

AREA Core’s area (McPat)

PEAKPOWER Core’s peak power (McPat)

 (b) Statically-collected features

Table 2: Dataset features: Workload profiling features (a) are collected from all
600 cores. CPU-microarchitectural features (b) describe each core.

4.3 Data Splitting Into Training and Test Sets

Due to the properties of this dataset, splitting it into a training and test set is
a challenge. If not careful, we can leak information between the two sets, often
resulting in unrealistically accurate predictors. We find that if a workload A
runs on CPUs 1 and 2, both samples must reside in the same set. Otherwise, the
trained predictor has full information about workload A when making predic-
tions. Similarly, workload A and workload B, on any pair of CPUs, where A and
B are different phases of the same benchmark, should also not be split across
training and test, since phases may share code and certainly share the dataset.

We address these issues by employing a Leave-One-Group-Out (LOGO) cross-
validation methodology. Following the LOGO strategy, one group is assigned as
the test set, while all other groups form the training set. Training and testing
are performed in a loop, with each group assigned as the test set at least once.
We define each benchmark, with all its phases and including runs on all cores as
a LOGO group.

5 Experimental Methodology

The scope of this work is twofold. First, we seek to explore a variety of ML-based
predictors, each under numerous combinations based on their internal configu-
ration parameters. Second, we want to study the efficacy of these predictors in
the context of job scheduling.

5.1 Predictor Evaluation Methodology

In this work, we study three ML-based performance predictors:

6 Andreas Prodromou, Ashish Venkat, and Dean M. Tullsen

Flag Description

Scale Performs data scaling

Whiten Performs data whitening

RefCore Reference core selection (1‐600)

KeepRAW Keeps features with raw values (e.g. INT_R)

KeepPower Keeps profiled dynamic power features

KeepL1 Keeps L1 cache features

KeepL2 Keeps L2 cache features

Target Sets the prediction target (typically, aIPC)

KeepRefTarget Keeps the profiled target (aIPC) value

KeepFI Keeps Fetch/Issue rate measurements

TreeDepth Used with tree‐based algorithms

 Table 3: Configuration flags description (ML Suite)

– Ridge Regression (RR), a variant of Linear Regression that penalizes
large coefficients, providing increased protection against overfitting.

– Decision Trees (DT) algorithms that generate a binary decision tree dur-
ing training, with each decision node predicated on exactly one input feature.

– Random Forests (RF) that generate a collection of decision trees dur-
ing training. When queried for a prediction, an average of the decision tree
responses is returned.

Our trained models accept two inputs: (a) application-specific features (ob-
tained via profiling on a “reference” core), and (b) target core-specific features.
They output a performance prediction for the given application-core pair mea-
sured in Alpha Instructions-Per-Cycle (αIPC). When dealing with multiple
ISAs, IPC is not a fair metric since the number of dynamically executed instruc-
tions can vary drastically across ISAs. We use Alpha as our base for comparison,
allowing us to fairly track execution progress. Due to the use of a reference core,
our predictors operate in a one-to-many fashion and are capable of extrapolating
runtime performance, from the reference core to any target core in our dataset.

Workloads are characterized using 30 features in our dataset. It is possible
that not all these features are necessary for accurate predictions. Furthermore,
highly-correlated features or features at different scales can also have a negative
impact, requiring appropriate data whitening and data scaling, respectively. Our
predictor configuration methodology defines 10 boolean flags (Table 3). Each flag
controls the amount of information available during training. For example, the
“keepL1” flag defines whether the input to the ML model will include L1 cache
information (size, number of misses, etc). The “RefCore” flag defines which of
our 600 cores will be used as the reference (profiling) core. To reduce the number
of experiments, we allow the RefCore flag to take two values: It can either use a
mid-range Alpha core (core #300), or a mid-range x84-64 core (#500).

We perform a brute force exploration over the space generated from our
flags. Consequently, we explore 1024 different configurations of the RR model,
and 5120 versions of the DT and RF models (×5 since we also explore 5 different
values of tree depth). Finally, we identify the most accurate predictor of each
algorithm. Throughout our methodology, we avoid pre-selecting and hardcoding
the features of our exploration. Instead, our ML models explore all possible
configurations and “decide” which features lead to the most accurate predictions.

Platform-Agnostic Learning-Based Scheduling 7

5.2 Scheduler Evaluation Methodology

Workload Execution Protocol. We enforce a workload execution protocol to
ensure fairness during our experiments. For each system-scheduler combination
we study, we execute 200 randomly chosen workloads from our dataset. A new
workload appears as soon as a previous workload completes its execution, such
that at any given time, the number of in-flight workloads equals the number of
cores in the underlying system. For larger experiments (e.g. Ease-of-Scheduling),
we draw a list of 200 workloads before the experiment begins and we use the
same list for every sub-experiment. This way we can ensure fairness in comparing
systems and schedulers.

Choosing Benchmark CMP Systems. To train robust performance pre-
dictors that can adapt to varying hardware heterogeneity, it is important to
choose diverse benchmark multicore systems; not only in terms of microarchi-
tecture, but also with respect to the resulting scheduling difficulty. We can expect
that systems with similar cores will be easier to schedule than one with more
diverse cores. For this work, we select three 4-core, three 8-core and three 16-core
heterogeneous-ISA CMP benchmark systems. Specifically, we select an easy, a
medium, and a hard system, that exhibit varying degrees of scheduling difficulty.

We devise an experiment, called “Ease of Scheduling”, to rate systems in
terms of their scheduling difficulty. EoS relies on the fact that a random scheduler
will perform closer to an optimal scheduler (that provides the best performance)
on easier systems (e.g., a homogeneous multicore system). As the system’s di-
versity grows, a random scheduler’s efficiency will reduce compared to that of
the optimal scheduler.

Using our dataset, we randomly draw heterogeneous-ISA multicore systems.
Specifically, we draw 2500 4-, 8- and 16-core systems for a total of 7500 systems.
On each system, we apply our workload execution protocol and we use a random
scheduler. We repeat the experiment 300 times to minimize noise from random
decisions. Finally, we compare the average performance against that of the op-
timal scheduler. Figure 1 shows our results. Each system is characterized by its
EoS rating (Y-axis) and its per-core performance in αIPC (X-axis).

Ease-of-Scheduling is an unbiased selection mechanism, since we cannot influ-
ence the ranking of systems. With benchmark systems ranging from the easiest
4-core to the most difficult 16-core system, we (1) efficiently cover a wide range
of underlying systems, and (2) can demonstrate that our predictive schedulers
adapt well to a variety of underlying systems.

Our results also verify our intuition: Easier systems tend to have more bal-
anced cores in terms of performance, while more difficult systems typically have a
small number of high-performance cores and a large number of low-performance
cores. We omit presenting the microarchitectural configuration of each multi-
core benchmark system (total of 84 cores), due to space restrictions. However,
we note that some of the microarchitectural traits of each system can be inferred
from their EoS rating.

8 Andreas Prodromou, Ashish Venkat, and Dean M. Tullsen

0.0 0.5 1.0 1.5 2.0 2.5 3.0
(Oracular) aIPC Per Core

0.0

0.2

0.4

0.6

0.8

1.0

E
a
se

 o
f

S
ch

e
d
u
lin

g
 (

E
o
S
)

4 Cores
8 Cores
16 Cores

Fig. 1: Randomly-drawn heterogeneous-ISA systems rated in terms of scheduling
difficulty. From each cluster, the highest (easiest), median, and lowest (hardest)
points are chosen as benchmark systems.

6 Results

This section presents the results of our study. We first evaluate our ML-based
performance predictors as standalone modules. We then examine schedulers that
incorporate these schedulers.

6.1 Performance Predictors

ML Space Exploration: Training Accurate Performance Predictors.
We present the results of our exploration over the three Machine Learning (ML)
algorithms we use and over the design space generated by our configuration flags,
as described in Section 5.1. After running all possible configurations, we identify
the most accurate trained model from each algorithm.

Table 4 presents the prediction accuracy comparison between the three win-
ners. Since we want our performance predictors to be as close to ground truth
as possible, we chose to focus on two metrics – Mean Absolute Error (MAE),
the average distance of predictions from reality, measured in αIPC , and Stan-
dard Deviation (STD), the distribution of prediction errors from each predictor.
Using MAE and STD we are essentially describing a bell curve that character-
izes prediction error for each predictor. Finally, we report accuracy on both the
previously unseen test set, as well as the known training set. Since we intend
to use these predictors within schedulers, it is safe to assume that a scheduler
will occasionally be faced with a known workload, in which case the training set
accuracy is relevant.

When dealing with unseen test set queries, we measure roughly equal accu-
racy across our winner models. When queried with known data, our linear (RR)
model’s accuracy remains around the same level as with its test set queries. On
the other hand, tree-based predictors report very low MAE and STD for training
set queries. Unlike linear models, tree-based predictors have more capacity to

Platform-Agnostic Learning-Based Scheduling 9

Model Test Set Train Set
MAE STD MAE STD

RR 0.23 0.3 0.21 0.26
DT 0.22 0.35 0.07 0.04
RF 0.19 0.31 0.03 0.04

Table 4: Accuracy comparison of three predictors (MAE measured in αIPC)

RR DT RF
0

100

101

102

103

Av
er

ag
e

Tr
ai

ni
ng

 T
im

e
(m

s)

RR DT RF

Av
er

ag
e

Q
ue

ry
 T

im
e

(n
s)

RR DT RF

M
em

or
y

O
ve

rh
ea

d
(K

B)

Fig. 2: Predictor algorithm overhead comparison: Training time (left), Query
time (middle), Memory overhead (right).Y axes shared and in log scale.

characterize larger datasets and adapt to non-linear relationships. We later show
how this improved accuracy leads to significantly more efficient scheduling.

Predictor Overhead Evaluation. This section presents an overhead com-
parison for our three models. We perform the following experiments on a system
with an i7-3770K processor running at 2.9GHz and 16 GB of memory. We use
the algorithm implementations from sklearn [9].

First, we vary the dataset size and train each model 100 times to report
average training overhead. Training times for a dataset of 30k entries are 21ms,
203ms, and 1.4s for RR, DT, and RF respectively (Fig. 2 – left). Training over-
head has little significance in choosing a model, since it happens infrequently.
For extremely large datasets however, RF’s overhead might become prohibitive.

We measure query overhead (Fig. 2 – middle), by asking each trained model
for 55k predictions and report the average time per prediction. Overhead per
query for RR, DT, and RF is 24ns, 29ns, and 667ns respectively. Query over-
head is an important metric, since predictions can be part of the critical path,
especially in the context of job scheduling. RR and DT are comparable, however
RF is significantly slower.

Finally, we measure the memory overhead of each model (Fig. 2 – right).
Linear models only need to store their coefficients’ values. Tree-based models
must store a condition value and a feature identifier for each node. We assume
that all condition and coefficient values require 64 bits and the number of fea-
tures defines the number of bits necessary to represent them. The RR model
needs 960 bits, the DT model 276kB, and the RF model 1.5MB. Overall, RF
is expensive compared to the others. Although it does provide high accuracy,
the predictions do not necessarily translate to a significant gain in scheduler
efficiency, as observed later.

6.2 ML-based Schedulers
Performance Comparison of ML-based Schedulers. This section presents
insights derived in the exploratory part of this work. Specifically, we link each of

10 Andreas Prodromou, Ashish Venkat, and Dean M. Tullsen

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E4 E8 E16 M4 M8 M16 H4 H8 H16

Sy
st
em

 P
er
fo
rm

an
ce

(n
o
rm

al
iz
ed

 t
o
 o
p
ti
m
al
 s
ch
e
d
u
le
r)

greedy oracular RF DT RR

Fig. 3: Scheduler performance comparison on Heterogeneous-ISA systems.

our three predictive models to a scheduler and report its efficiency. Each sched-
uler receives an N × N prediction matrix from its predictor and then decides
on the appropriate schedule such that it maximizes the system’s overall perfor-
mance (sum of αIPC from all N core-workload pairs in the chosen schedule).
We compare our schedulers against a greedy (no knowledge of future workloads),
oracular (zero prediction error) scheduler.

We no longer use the LOGO data splitting approach to measure the overall
scheduler efficiency. Instead, we increase the size of the test set and reduce the
size of the training set, by assigning four randomly chosen benchmarks (instead
of one) to be our test set. While our decision can result in reduced predictor
accuracy, it enables a larger selection of previously unseen workloads allowing
us to explore more realistic computation environments.

For this experiment, we randomly select input workloads that create a mix
of 50% unseen and 50% previously seen workloads, resembling a typical IaaS
(Infrastructure-as-a-Service) environment (e.g., Amazon’s EC2) – some users use
EC2 instances to run the same application every time (such as a web server),
while others execute a more diverse mix of workloads (software development).

Figure 3 presents our results, normalized to the optimal schedule (maximum-
achievable overall throughput). We first observe that the RF-based scheduler has
an advantage compared to the other ML-based schedulers. However, the much
cheaper DT-based scheduler scores very close, across all systems. Compared to
RF, DT reports a 2.8% average performance reduction (6.2% max reduction),
while it outperforms RF on the easy 8-core (E8) system by 1.2%. We further
observe that our RF scheduler is within 2.2-11.2% (7.5% on average) from an
oracular scheduler, and DT within 1.6-16.8% (10% average).

Our RR-based scheduler shows significantly reduced performance due to the
reduced training set size. While the (test set) accuracy of all our models drops
due to the reduced training data set, RR is affected the most, with its MAE
doubling and STD increasing by almost 3x. For comparison, tree-based mod-
els only experience 6% MAE and STD degradation from the reduced training
dataset. Furthermore, tree-based prediction accuracy on the training set is ex-
cellent, which provides a significant advantage over RR in this experiment.

Platform-Agnostic Learning-Based Scheduling 11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E4 E8 E16 M4 M8 M16 H4 H8 H16

Sy
st
e
m
 P
e
rf
o
rm

an
ce

(n
o
rm

al
iz
e
d
 t
o
 o
p
ti
m
al
 s
ch
e
d
u
le
r)

greedy oracular RF DT RR

Fig. 4: Scheduler performance comparison on Single-ISA heterogeneous systems.

Performance Comparison on Single-ISA Heterogeneous Systems.
To demonstrate the adaptability of our schedulers to less complex systems, we
also examine single-ISA heterogeneous systems. We repeat the EoS-based system
selection presented in Section 5.2. However, this time we enforce our systems to
only use Alpha cores. We must note that our predictors have not been re-trained
between the two experiments. Figure 4 presents our results.

We first observe that, unlike with heterogeneous-ISA systems, the DT sched-
uler has an advantage over RF. The added complexity of the RF predictor does
not appear to be as beneficial in the single-ISA case. We can also observe that
our linear predictor now reports comparable efficiency as RF and DT (1.5-4.8%).
This happens due to the reduced scheduling difficulty on single-ISA systems
(higher EoS values). Our best scheduler (DT) performs within 0.2-12.5% across
all systems compared to the oracular scheduler (4% on average).

Scheduler Sensitivity to Underlying System. From Figure 3, we ob-
serve that our tree-based (DT, RF) schedulers are affected by the transition
from 4 to 8 cores, but their performance remains almost intact when we move
from 8 to 16 cores. In comparison, the oracular scheduler is affected by both
transitions (4 → 8, 4 → 16), albeit with a smaller impact. These trends are
also observed when our schedulers accompany single-ISA systems (Figure 4).
Our results show that tree-based schedulers were able to mostly overcome (1)
the increase in scheduling difficulty between 8 and 16-core systems, and (2) the
variety of underlying ISAs.

7 Conclusions

With the increased adoption of heterogeneity in modern systems, predictive mod-
els invariably enjoy attention from the scientific community for applications in
scheduling, power management, resource management, and resource allocation.
In this work, we first present an exhaustive exploration and analysis of the abil-
ities of ML models to act as cross-core cross-platform performance predictors.
We then use these predictors to implement schedulers that adapt well to the
underlying architectural and microarchitectural heterogeneity without modifica-
tion. Our best schedulers are capable of operating within 2-11% of the efficiency
of an oracular scheduler.

12 Andreas Prodromou, Ashish Venkat, and Dean M. Tullsen

Acknowledgments

The authors would like to thank the anonymous reviewers for their helpful
insights. This research was supported in part by NSF Grant CNS-1652925,
NSF/Intel Foundational Microarchitecture Research Grant CCF-1823444, and a
gift from Huawei.

References

1. Barbalace, A., Lyerly, R., Jelesnianski, C., Carno, A., Chuang, H.r., Ravindran,
B.: Breaking the boundaries in heterogeneous-isa datacenters. In: ASPLOS (2017)

2. Barbalace, A., Sadini, M., Ansary, S., Jelesnianski, C., Ravichandran, A., Kendir,
C., Murray, A., Ravindran, B.: Popcorn: Bridging the programmability gap in
heterogeneous-isa platforms. In: ECCS. p. 29. ACM (2015)

3. Craeynest, K.V., Jaleel, A., Eeckhout, L., Narvaez, P., Emer, J.: Scheduling het-
erogeneous multi-cores through performance impact estimation (pie). In: ISCA.
pp. 213–224 (June 2012). https://doi.org/10.1109/ISCA.2012.6237019

4. DeVuyst, M., Venkat, A., Tullsen, D.M.: Execution migration in a heterogeneous-
isa chip multiprocessor. In: ASPLOS XVII (2012)

5. Greenhalgh, P.: Big. little processing with arm cortex-a15 & cortex-a7. ARM White
paper pp. 1–8 (2011)

6. Kahle, J.: The cell processor architecture. In: MICRO. p. 3. IEEE Computer So-
ciety (2005)

7. Kumar, R., Farkas, K.I., Jouppi, N.P., Ranganathan, P., Tullsen, D.M.: Single-isa
heterogeneous multi-core architectures: The potential for processor power reduc-
tion. In: MICRO (2003)

8. Kumar, R., Tullsen, D.M., Ranganathan, P., Jouppi, N.P., Farkas, K.I.: Single-isa
heterogeneous multi-core architectures for multithreaded workload performance.
In: ISCA (2004)

9. scikit learn: Scikit-learn python library. http://scikit-learn.org/stable/
10. Lim, K., Balkind, J., Wentzlaff, D.: Juxtapiton: Enabling heterogeneous-isa re-

search with risc-v and sparc fpga soft-cores. arXiv preprint arXiv:1811.08091 (2018)
11. Mittal, S., Vetter, J.S.: A survey of cpu-gpu heterogeneous computing techniques.

ACM Computing Surveys (CSUR) 47(4), 69 (2015)
12. Somu Muthukaruppan, T., Pathania, A., Mitra, T.: Price theory based power man-

agement for heterogeneous multi-cores. In: ASPLOS ’14. ACM (2014)
13. Torng, C., Wang, M., Batten, C.: Asymmetry-aware work-stealing runtimes. In:

ISCA 2016 (2016). https://doi.org/10.1109/ISCA.2016.14
14. Variable, S.: A multi-core cpu architecture for low power and high performance.

Whitepaper-http://www. nvidia. com (2011)
15. Venkat, A., Basavaraj, H., Tullsen, D.M.: Composite-isa cores: Enabling multi-isa

heterogeneity using a single isa. In: HPCA 2019 (2019)
16. Venkat, A., Shamasunder, S., Shacham, H., Tullsen, D.M.: Hipstr: Heterogeneous-

isa program state relocation. In: ASLPOS (2016)
17. Venkat, A., Tullsen, D.M.: Harnessing ISA diversity: Design of a heterogeneous-isa

chip multiprocessor. In: ISCA (2014)
18. Zheng, X., John, L.K., Gerstlauer, A.: Accurate phase-level cross-platform power

and performance estimation. In: DAC (2016)

