UC San Diego

JACOBS SCHOOL OF ENGINEERING

Computer Science and Engineering

CONTEXT-SENSITIVE FENCING: Securing speculative execution via microcode customization

Mohammadkazem Taram, Ashish Venkat, Dean Tullsen University of California San Diego, University of Virginia

PERFORMANCE V.S. SECURITY

PERFORMANCE V.S. SECURITY

PERFORMANCE V.S. SECURITY

- ► Leak secrets via side-channels + speculative execution
- Any modern processor with a Branch Predictor is vulnerable

int Kernel_api_(int x) {

y = array2[array1[x] * 64];

int Kernel_api_(int x) { if (x < array1_size) //bounds check</pre> y = array2[array1[x] * 64];

int Kernel api_(int x) { Mispredicted if (x < array1_size) //bounds check y = array2[array1[x] * 64]; //not taken/fallthrough code

int Kernel api (int x) { Mispredicted if (x < array1_size) //bounds check y = array2[array1[x] * 64]; //not taken/fallthrough code

Too late to recover — data is exposed via side-channels

Restricting Speculation Using Fences and Barriers:

Restricting Speculation Using Fences and Barriers:

if (x < array1_size)</pre>

y = array2[array1[x] * 64];

Restricting Speculation Using Fences and Barriers:

- if (x < array1 size)</pre>
 - speculative fence;

y = array2[array1[x] * 64];

Restricting Speculation Using Fences and Barriers:

y = array2[array1[x] * 64];Up to 10x Performance Overhead!

O. Oleksenko, B. Trach, T. Reiher, M. Silberstein, and C.Fetzer. 2018. You Shall Not Bypass

Surgically injects fence micro-ops

Surgically injects fence micro-ops

Only When Necessary

• • • •

Surgically injects fence micro-ops

Right Type of Fence Only When Necessary

Surgically injects fence micro-ops

Only When Necessary

"Context-Sensitive Decoding: On-Demand Microcode Customization for Security and Energy Management" ISCA 2018, IEEE Micro Top Picks 2019

"Context-Sensitive Decoding: On-Demand Microcode Customization for Security and Energy Management" ISCA 2018, IEEE Micro Top Picks 2019

• • • •

• • • •

• • • •

• • • •

CONTEXT SENSITIVE FENCING

Surgically injects fence micro-ops

Right Type of Fence No Recompilation

Only When Necessary

BUT WHAT FENCE SHOULD WE USE?

Existing Intel Fences

Type of Fence	Instruction Opcode	Description
Privileged Serializing Instructions	INVD	Invalidate Internal Caches
	INVEPT	Invalidate Translations from EPT
	INVLPG	Invalidate TLB Entries
	INVVPID	Invalidate Translations Based on VPID
	LIDT	Load Interrupt Descriptor Table Register
	LGDT	Load Global Descriptor Table Register
	LLDT	Load Local Descriptor Table Register
	LTR	Load Task Register
	MOV	Move to Control Register
	MOV	Move to Debug Register
	WBINVD	Write Back and Invalidate Cache
	WRMSR	Write to Model Specific Register
Non-Privileged Serializing Instructions	CPUID	CPU Identification
	IRET	Interrupt Return
	RSM	Resume from System Management Mode
Memory Ordering Instructions	SFENCE	Store Fence
	LFENCE	Load Fence
	MFENCE	Memory Fence

• • • • •

BUT WHAT FENCE SHOULD WE USE?

Existing Intel Fences

	0			
Type of Fence	Instruction Opcode	Description		
Privileged Serializing Instructions	INVD	Invalidate Internal Caches		
	INVEPT	Invalidate Translations from EPT		
	INVLPG	Invalidate TLB Entries Accessitations Based on VPID Load Interrupt Descriptor Table Register		
$0 \rightarrow \pi Regime Pr$	ivi eged	ACCESSIations Based on VPID		
		Load Interrupt Descriptor Table Register		
	LGDT	Load Global Descriptor Table Register		
	LLDT	Load Local Descriptor Table Register		
		Lold TD Registrate and		
Clobber Architectural Registers				
	MOV	Move to Debug Register		
	WBINVD	Write Back and Invalidate Cache		
	WRMSR	Write to Model Specific Register		
Enforced E	arvint	he Pine ine		
	RET C	Interrupt Return		
	RSM	Resume from System Management Mode		
Memory Ordering Instructions	SFENCE	Store Fence		
	LFENCE	Load Fence		
	MFENCE	Memory Fence		
	MFENCE	Memory Fence		

• • • • •

EXISTING FENCES: SERIALIZING INSTRUCTIONS (SI)

- Enforced early in the pipeline
- ► Examples:
 - All Serializing Instructions
 - ► Intel's MFENCE
 - ► Intel's SFENCE

EXISTING FENCES: INTEL LFENCE

- ► Enforced early in the pipeline
- ► Example:
 - ► Intel's LFENCE

LATE ENFORCEMENT FENCES

Macro-op Stream

- Shifts fence enforcement towards the leaking structure
- ► Reduces the impact on other instructions

LATE ENFORCEMENT FENCES

Macro-op Stream

- Shifts fence enforcement towards the leaking structure
- ► Reduces the impact on other instructions

LATE ENFORCEMENT FENCES

Macro-op Stream

- Shifts fence enforcement towards the leaking structure
- ► Reduces the impact on other instructions

NEWLY PROPOSED FENCES

- Load-Store Queue LFENCE (LSQ-LFENCE)
- Load-Store Queue MFENCE (LSQ-MFENCE)
- ► Reservation Station Fence (RSFENCE)
- ► Cache Fence (CFENCE)

CACHE FENCE (CFENCE)

- ► Allows all the load and stores to pass
- CFENCE labels any subsequent load as a non-modifying load
- allows non-modifying loads to pass through the CFENCE
- ► Non-modifying loads are restricted from modifying the cache state.

a *non-modifying load* ogh the *CFENCE* om modifying the cache state

Non-Modifying Non-Modifying

CACHE FENCE (CFENCE)

Cache Controller

Normal Load

. . . .

CACHE FENCE (CFENCE)

. . .

Cache Controller

Non-Modifying Load

. . . .

RESULTS — FENCE ENFORCEMENT POLICIES

Our CFENCE reduces the incurred performance overhead by 2.3X, bringing down the execution time overhead from 48% to 21%.

2.001.95 1.901.851.801.75≝ 1.70 ⊢ 1.65 1.65Execution 1.601.551.50Normalized 1.451.401.351.301.251.201.151.10 -1.051.00

CONTEXT SENSITIVE FENCING

Surgically injects fence micro-ops

Right Type of Fence No Recompilation

Only When Necessary

- Liberal Injection
 - Injects fences before all the loads of a program
 - completely stops speculation

jeq **1**d add **ld 1d**

- Liberal Injection
 - Injects fences before all the loads of a program
 - completely stops speculation

jeq Fence **ld** add Fence **ld** Fence **1d**

- Basic Block-Level Fence Insertion*
 - Speculation begins with a branch prediction
 - ► A fence between branch and subsequent loads

* Targeted Optimization — Only protects against variant 1

ediction uent loads jeq Fence **ld** add Fence **ld** Fence **1d**

. . . .

- ► Basic Block-Level Fence Insertion
 - Speculation begins with a branch prediction
 - ► We want a fence between each branch and subsequent loads

* Targeted Optimization — Only protects against variant 1

jeq Fence **ld** add **1d ld**

- ► Taint-Based Fence Insertion
 - Even one fence per basic block is too conservative
 - > Attacker performs operations based on untrusted data (e.g., attacker controlled out of bound index)

 - Insert fences for only vulnerable loads that operate on untrusted data Dynamic Information Flow Tracker (DIFT)

DLIFT- AN INFORMATION FLOW TRACKER FOR SPECTRE ERA

- ► Classic Information Flow Trackers
 - Maintain and Evaluate Taints at Late Stages of the Pipeline
 - Not so useful for Spectre!

DLIFT- AN INFORMATION FLOW TRACKER FOR SPECTRE ERA

- Classic Information Flow Trackers
 - Maintain and Evaluate Taints at Late Stages of the Pipeline
 - ► Not so useful for Spectre!

DLIFT- AN INFORMATION FLOW TRACKER FOR SPECTRE ERA

- Classic Information Flow Trackers
 - Maintain and Evaluate Taints at Late Stages of the Pipeline
 - ► Not so useful for Specific Ct

The Threat before

It's too late.

Register	Tainted
rax	No
rbx	No
Spoculativo Tai	a + Mata

Speculative Taint Map

Reg. File

Execute

Commit

Commit Logic

Register	Tai
rax	ľ
rbx	Y

Register	Tainted
rax	No
rbx	No
Speculative Tair	t Man

Speculative Taint Map

Reg. File

Execute

Commit

Commit Logic

Register	Tai
rax	ľ
rbx	Y

Commit

Commit Logic

Register	Tai
rax	ľ
rbx	Y

Commit

Commit Logic

Register	Tai
rax	ľ
rbx	Y

Commit

Commit Logic

Register	Tai
rax	1
rbx	Y

Execute ld t1, (%rbx) add t1, %rax, %rax **Taint Evaluator** Taint **Taint** TLB

Commit

Commit

Logic

Under-Tainted?

Register	Tai
rax	N
rbx	Y

Under-

Commit

Commit

Logic

-Tainted?	

Register	Taiı
rax	N
rbx	Y

RESULTS — FENCE FREQUENCY OPTIMIZATION

► Taint-Based CFENCE injection reduces the performance overhead to just 7.7%

CONTEXT-SENSITIVE FENCING

Low Performance Overhead

CONTEXT-SENSITIVE FENCING

Low Performance Overhead

No Recompilation

CONTEXT-SENSITIVE FENCING

Low Performance Overhead

No Recompilation

Minimal Changes to Processor

THANKS! QUESTIONS?