

Composite-ISA Cores: Enabling Multi-ISA Heterogeneity using a Single ISA

Ashish Venkat, Harsha Basavaraj, Dean Tullsen

Hardware (traditionally homogeneous) Software (rapidly evolving, more complex, and diverse)

Hardware (traditionally homogeneous) Software (rapidly evolving, more complex, and diverse)

As we continue to shrink transistors, power density will shoot up.

Power efficiency is key

Hardware (leakage-limited era)

As we continue to shrink transistors, power density will shoot up.

Cost of Generality

Hardware (leakage-limited era)

Hardware (more and more specialized)

Hardware Specialization

– Domain-specific specialization:

accelerate the performance of a particular class of computation

Hardware Specialization

– Domain-specific specialization:

accelerate the performance of a particular class of computation

- Microarchitectural heterogeneity:

use small power-efficient and large high performance cores that cater to diverse execution characteristics

Hardware Specialization

- Domain-specific specialization:

accelerate the performance of a particular class of computation

Intel HD Graphics (CPU+GPU)

AMD APU (CPU+GPU)

Huawei Kirin

(Neural Acceleration)

Google Cloud TPU (ML acceleration)

Microsoft Catapult (Bing search acceleration)

- Microarchitectural heterogeneity:

use small power-efficient and large high performance cores that cater to

diverse execution characteristics

(A57 + A53)

Intel Go[™] **Qcomm Snapdragon** (Xeon + Atom)

SAMSUNG Exynos7.

Samsung Exynos 7 (A73 + A53)

Apple A11 (Monsoon+Mistral)

ÉA11

Hardware Specialization vs Programmability

	8 8 8 8	Memor	у Со	ntroller		
Misc HO	Core	Core	Qaeae	Core	Core	∑i-wo HO 0
QP I 0		Shared	1 L3 (Cache		Ϋ́ Ι 1

Traditional Hardware

Traditional Programming/Execution Model

Hardware Specialization vs Programmability

Specialized Hardware

Rapidly diverging Programming/Execution Model

Hardware Specialization vs Programmability

How can we benefit from more specialization while preserving our traditional models of programming?

Evolution of Architectural Heterogeneity

*Rakesh Venrar, Krätthfewkos Nosth Briskundis Briskandis Ratha Randen Ration Parany Dauliskan, Milsen, Asplos 12, ISCA 14, ASPLOS 16, ISCA 18

Our contention is . . .

- Restricting cores to a single ISA eliminates an important dimension of heterogeneity
- ISAs are designed for different goals:
 - High performance (e.g., x86-64)
 - Low power (e.g., ARM)
 - Reduced code size Thumb ISA saves 30% in instruction fetch energy
 - Domain specific instructions
 - Compute bound vs memory bound
 - Instruction-level parallelism vs Data-level parallelism

Harnessing ISA Diversity (ISCA 2014)

• Exploits ISA Affinity

- Application code regions have a natural ISA preference

- Enables ISA-microarchitecture co-design
 - Significant synergy in combining heterogeneous ISAs w/ heterogeneous hardware
- 21% Performance Improvement and 23% Energy Savings on average

Why is cross-ISA process migration a hard problem?

- Different machine code
- Different data formats (types, widths, endianness, alignment)
- Different register sets
- Different stack frame layouts

Other deployment concerns

- Multi-vendor Licensing
- Legal Barriers
- Verification Costs
- Differences in ABI
- Heterogeneous Memory Consistency Models

This research . . .

Composite-ISA Cores: Enabling Multi-ISA Heterogeneity using a Single ISA

- Avoid multi-vendor licensing issues.
- Significantly reduces binary translation costs.
- Greater flexibility allows us to match/supersede the performance and efficiency advantages of multi-vendor ISA heterogeneity.

Outline

ISA Feature Set Derivation

- Start with a baseline (x86-like) superset ISA
- Customize along 5 different dimensions
 - Register Depth
 - Register Width
 - Addressing Mode Complexity
 - Predication
 - Data-Parallel Execution
- 26 different composite ISAs

Feature Diversity: Register Depth

- The number of programmable registers exposed by the ISA
- Performance/Power Implications:
 - Impacts a number of machine-specific and machine-independent compiler optimizations
 - Increasing the register depth from 16 to 32 results in 10.3% fewer loads, 3.7% fewer stores, 3.5% fewer integer arithmetic, and 2.7% fewer branches.
 - Greater register depth typically implies a larger register file

"x86-64 only" heterogeneous multicore			
x86-64 (16 regs)	x86-64 (16 regs)	x86-64 (16 regs)	
	x86-64 (16 reg	gs)	

Feature Diversity: Register Width

- Wider Types (64-bit)
 - Allows access to larger virtual memory
 - May allow for better register usage via sub-register coalescing (improves performance)
 - Potentially larger cache working set (e.g., when pointers are members of a large structure)
- Smaller Types (32-bit)
 - Require emulation of wider types (hurts performance)
 - Enable compact register files (consumer 6.4% less power than a 64-bit organization)

"x86-64 only" heterogeneous multicore				
x86-64 (64-bit)	x86-64 (64-bit)	x86-64 (64-bit)		
	x86-64 (64-bi	t)		

Composite-ISA heterogeneous multicore				
x86 (32-bit)	x86 (32-bit)	x86-64 (64-bit)		
	x86-6	54 (64-bit)		

Feature Diversity: Addressing Mode Complexity

- Reduced set of addressing modes (microx86 a RISC version of x86)
 - 1:1 macro-op to micro-op encoding (simpler decoders)
 - 9.8% reduction in peak power and 15.1% reduction in area
- Complete set of addressing modes (CISC x86)
 - Compact code generation (fewer instruction cache accesses)
 - Multiple bandwidth optimizations (micro-op cache, micro-op fusion, loop buffer, etc.)

"x86-64 only" heterogeneous multicore				
x86-64 (CISC)	x86-64 (CISC)	x86-64 (CISC)		
	x86-64 (CISC)		

Feature Diversity: Predication

- Partial Predication
 - x86 already implements partial predication via CMOV instructions (predicated on condition codes)
- Full Predication
 - Any instruction can be predicated on any architectural register
 - Enables more aggressive if-conversion (6.5% fewer branches and 0.6% more integer arithmetic)
 - Allows the designer to choose simpler branch predictors in tightly power-constrained environments

"x86-64 only" heterogeneous multicore				
x86-64 (CMOV)	x86-64 (CMOV)	x86-64 (CMOV)		
	x86-64 (CMOV)			

Composite-ISA heterogeneous multicore				
x86-64 (full	x86-64 (CMOV)	(fu	x86-64 ull predication)	
predication)	x86-64 (CMOV)			~

Feature Diversity: Data-Parallel Execution

- microx86 cores do not implement SIMD instructions
 - Saves 7.4% in peak power and 17.3% in area
 - Execute a pre-compiled scalarized version when available
 - Migrate to an x86 core that implements SIMD during vector phases

ISA Encoding

- Standard ISA extension methodology
- Two new prefix bytes (for predication and register depth) that leverage unimplemented opcodes
- Compiler/Assembler is code density-aware

Decoder Design

- Impact on the x86 front end
 - More Prefix Decoding Logic
 - Wider queues and buffers
 - Wider Micro-Op Cache
 - Mix of simple/complex macro-op decoders (microx86 vs x86)
- Decoder Power and Area estimates with our customizations
 - Pre-decoder (Full RTL Design): 0.87% increase in peak power and 0.65% in area
 - Smallest ISA (microx86-32) consumes 0.66% less
 peak power and 1.12% less area than x86-64
 - Largest ISA (superx86) consumes 0.3% more peak power and 0.46% more area than x86-64

Outline

ISA Feature Set Exploration

Compiler and Runtime Strategy

Architectural Design Space Exploration

Compiler Strategy

Composite-ISA Features:

- Data Parallelism: {SIMD, no SIMD}
- Register Width: {32-bit, 64-bit}
- Addressing Mode Options: {x86, microx86}
- Register Depth: {8, 16, 32, 64 registers}
- Predication: {partial (CMOV), full predication}

Composite-ISA Encoding Prefixes and Options

Feature Affinity

Migration Strategy

implements features {w, x, y, z} {x, y}

Feature Upgrade

- Common Case (91.5% of migrations)
- No binary translation required

Feature Downgrade

- Minimal binary translation required
- Average Performance Impact: 0.46%

Outline

ISA Feature Set Exploration

Compiler and Runtime Strategy

Architectural Design Space Exploration

Design Space Exploration Choice of micro-architectural parameters

Design Parameter	Design Choice
Execution Semantics	In-order, Out-of-order
Issue Width	1, 2, 4
Branch Predictor	2-level local, gshare, tournament
Instruction Queue Size	32, 64 entries
Reorder Buffer Size	64, 128 entries
Physical Register File Configurations	(96 INT, 64 FP/SIMD), (64 INT, 96 FP/SIMD)
Integer ALUs	1, 3, 6
Integer Multiply/Divide Units	1, 2
FP/SIMD ALUs	1, 2, 4
FP Multiply/Divide Units	1, 2
Load/Store Queue	16,32 entries
Instruction Cache	32KB 4-way, 64KB 4-way
Private Data Cache	32KB 4-way, 64KB 8-way
Shared Last Level (L2) cache	4-banked 4MB 4-way, 4-banked 8MB 8-way

4680 distinct single core design points and a 102.5 trillion 4-core configurations

49733 core hours on the 2 petaflop Comet Cluster at the San Diego Supercomputing Center 35

Multi-programmed Workload Throughput

- Homogeneous (x86-64)
- Single-ISA Heterogeneous (x86-64 + Hardware Heterogeneity)
- Heterogeneous-ISA (x86-64 + Alpha + Thumb + Hardware Heterogeneity)
- Composite-ISA (x86-64 + Hardware Heterogeneity + Full Feature Diversity)

We generally gain more from ISA feature diversity than hardware heterogeneity

Benefits of composite-ISA cores come from:

- Feature affinity: different code regions have a natural affinity for one feature or another
- ISA-microarchitecture co-design: squeeze in more powerful cores into the same budget

Benefits of composite-ISA cores come from:

- Feature affinity: different code regions have a natural affinity for one feature or another
- ISA-microarchitecture co-design: squeeze in more powerful cores into the same budget

Benefits of composite-ISA cores come from:

- Feature affinity: different code regions have a natural affinity for one feature or another
- ISA-microarchitecture co-design: squeeze in more powerful cores into the same budget

Benefits of composite-ISA cores come from:

- Feature affinity: different code regions have a natural affinity for one feature or another
- ISA-microarchitecture co-design: squeeze in more powerful cores into the same budget

Benefits of composite-ISA cores come from:

- Feature affinity: different code regions have a natural affinity for one feature or another
- ISA-microarchitecture co-design: squeeze in more powerful cores into the same budget

Benefits of composite-ISA cores come from:

- Feature affinity: different code regions have a natural affinity for one feature or another
- ISA-microarchitecture co-design: squeeze in more powerful cores into the same budget

Feature Sensitivity

The best performing designs typically employ most features.

Processor Transistor Investment

Multi-programmed Workload Efficiency

- Homogeneous (x86-64)
- Single-ISA Heterogeneous (x86-64 + Hardware Heterogeneity)
- Heterogeneous-ISA (x86-64 + Alpha + Thumb + Hardware Heterogeneity)

Composite-ISA (x86-64 + Hardware Heterogeneity + Full Feature Diversity)

- > 31% energy savings and 35% reduction in EDP at ZERO performance loss
- > We gain performance and save energy simultaneously

In summary . . .

Composite-ISA Cores: Enabling Multi-ISA Heterogeneity using a Single ISA

- Effectively avoids multi-vendor licensing issues, verification, binary translation costs
- Gives the processor designer and the compiler a rich set of ISA feature options
- Greater flexibility allows us to match/supersede the performance and efficiency advantages of multi-vendor ISA heterogeneity.

Composite-ISA Cores: Enabling Multi-ISA Heterogeneity using a Single ISA

Ashish Venkat, Harsha Basavaraj, Dean Tullsen

