
IP is Dead, Long Live IP for Wireless Sensor Networks

Jonathan W. Hui
University of California at Berkeley

Arch Rock Corporation
jwhui@cs.berkeley.edu

David E. Culler
University of California at Berkeley

Arch Rock Corporation
culler@cs.berkeley.edu

ABSTRACT
A decade ago as wireless sensor network research took off many
researchers in the field denounced the use of IP as inadequate and
in contradiction to the needs of wireless sensor networking. Since
then the field has matured, standard links have emerged, and IP
has evolved. In this paper, we present the design of a complete
IPv6-based network architecture for wireless sensor networks. We
validate the architecture with a production-quality implementation
that incorporates many techniques pioneered in the sensor network
community, including duty-cycled link protocols, header compres-
sion, hop-by-hop forwarding, and efficient routing with effective
link estimation. In addition to providing interoperability with exist-
ing IP devices, this implementation was able to achieve an average
duty-cycle of 0.65%, average per-hop latency of 62ms, and a data
reception rate of 99.98% over a period of 4 weeks in a real-world
home-monitoring application where each node generates one appli-
cation packet per minute. Our results outperform existing systems
that do not adhere to any particular standard or architecture. In light
of this demonstration of full IPv6 capability, we review the central
arguments that led the field away from IP. We believe that the pres-
ence of an architecture, specifically an IPv6-based one, provides a
strong foundation for wireless sensor networks going forward.

Categories and Subject Descriptors
C.2.1 [Computer-Communications Networks]: Network
Architecture and Design—Wireless communication; C.2.2
[Computer-Communications Networks]: Network Protocols;
C.2.6 [Computer-Communications Networks]: Internetwork-
ing—Standards

General Terms
Design, Measurement, Performance, Reliability, Security, Stan-
dardization

Keywords
network architecture; internet; internetworking; wireless; sensor
networks; IP; IPv6; 6LoWPAN; media management

1. INTRODUCTION
As wireless sensor network (WSN) research took shape, many

researchers in the field argued forcefully that “while many of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SenSys’08, November 5–7, 2008, Raleigh, North Carolina, USA.
Copyright 2008 ACM 978-1-59593-990-6/08/11 ...$5.00.

lessons learned from Internet and mobile network design will be ap-
plicable to designing wireless sensor network applications ... sensor
networks have different enough requirements to warrant reconsid-
ering the overall structure of applications and services” [19]. The
Internet architecture was denounced for several reasons including
the following [19]:

• The severe “resource constraints may cause us to give up the
layered architecture”.

• “The sheer numbers of these devices, and their unattended
deployment, will preclude reliance on a broadcast commu-
nication or the configuration currently needed to deploy and
operate networked devices.”

• Localized algorithms and in-network processing will be re-
quired to achieve robustness and scalability.

• “Unlike traditional networks, a sensor node may not need an
identity (e.g., an address).” Naming will be data-centric.

• “Traditional networks are designed to accommodate a wide
range of applications.” WSNs will be tailored to the sensing
task at hand.

In addition, it was argued that to tackle the challenges of WSNs
the traditional interfaces and layers of system abstraction should
not be assumed [24]. By providing a framework for defining ab-
stractions and allowing the community to progress, new network
abstractions were expected to emerge [30]. Indeed, by introducing
the Active Message Dispatch ID at the head of each message, rather
than a conventional header format, TinyOS [49] lead away from IP.
The vast array of protocols developed by the community operate at
the link layer, rather than the network layer. The serial interface to
a basestation mote favored the use of application level gateways at
the root of the WSN, so WSNs were organized in a manner similar
to IrDA and USB, rather than an IP subnet similar to Ethernet or
WiFi.

Since those beginnings, the field has matured substantially, a
huge collection of protocols have been invented and evaluated, and
we have gained experience in how WSNs are used in practice.

Over this same period, the Internet has evolved as well. In 1998,
RFC 2460 defined IPv6 [12]. The large address space not only
provided for a huge number of devices, it eliminated many of the
artificial naming constraints. This enabled the definition of an adap-
tation layer in RFC 4944 (6LoWPAN) that carried the meaning of
IPv6 addresses in a compact form using small IEEE 802.15.4 short
addresses [34]. The IPv6 prefix generalized the notion of a subnet.
The various layer-two bootstrapping, discovery, and autoconfigura-
tion mechanisms used with IPv4 were consolidated into the IPv6
framework and went directly at the issue of vast numbers of unat-
tended devices in a changing environment. Finally, the systematic
use of options provided for compact headers in the common case,

while permitting a natural means of extending IP where the existing
standards do not fully solve the problem at hand.

This paper provides three primary contributions:

1. We develop a complete IPv6-based network architecture for
WSNs that allows end-to-end communication between nodes
and any IP device at the network layer.

2. We develop a software architecture that preserves IP’s lay-
ered protocol model, defining the services, interfaces, and
their interactions that can incorporate many of the techniques
developed within the WSN community.

3. We present the implementation of a complete, efficient, and
production-quality IPv6 solution for WSNs and show that
this general network architecture can outperform existing
systems that do not adhere to any particular standard or ar-
chitecture.

We start by providing a high-level overview of the network archi-
tecture, describing the expected network organization and defining
the IP link, and then show how to support the architecture efficiently
using many techniques that have been pioneered in the WSN com-
munity. Starting with the link, we describe the mechanisms nec-
essary for the network-layer to efficiently form a network, config-
ure routes, and forward datagrams. We then develop an adaptation
layer that compacts IPv6 datagrams and fragments them when they
do not fit in a single IEEE 802.15.4 frame. At the network layer,
we describe adaptations to Neighbor Discovery and Autoconfigu-
ration used to configure and maintain IPv6 networks; mechanisms
used to efficiently forward datagrams while maintaining high end-
to-end delivery rates; and a routing protocol that maintains small
and constant state with little communication overhead. Using a
production-quality implementation, we evaluate the performance of
a real-world application deployment. Comparing the results to ex-
isting data, we show that this implementation achieves lower energy
cost, lower per-hop latency, and higher data reception rate while
communicating more data. Finally, we revisit the assumptions that
have formed the basis of so much WSN research.

2. RELATED WORK
The trend towards connecting embedded devices to the Internet

have also given rise to numerous IPv4 and IPv6 stacks designed
for limited memory and computation capabilities. However, many
of these stacks are concerned with host-only operation, initially
designed to support operation on wired networks. Furthermore,
they often achieved small footprint through application-specific op-
timizations, sacrificing generality and RFC-compliance [5].

uIP changed the perception that an RFC-compliant IP stack was
too heavyweight for small embedded devices and demonstrated the
feasibility of such a stack stack for 8-bit microcontrollers [14]. uIP
has evolved to include a low-power link built on IEEE 802.15.4,
showing that IP was feasible for WSNs. However, the proof-of-
concept implementation did not take advantage of the numerous
mechanisms developed within the WSN community [16].

Seeing that it was possible to implement IP on small devices,
the IETF formed the 6LoWPAN working group to map IPv6 and
supporting protocols to low-power wireless nodes using an IEEE
802.15.4 interface. The working group has since produced RFC
4944 that specifies how IPv6 datagrams are carried in 802.15.4
frames, supporting fragmentation and header compression [25, 34].
Our initial work significantly influenced the design of RFC 4944.
In this paper, we continue our effort to complete an IPv6-based net-
work architecture for WSNs.

Traditional IP Network

Low-Power Wireless Subnet
WSN Node

Border Router

Handhelds

Desktops

Servers

Industrial
Controllers

Figure 1: Extending the Internet Architecture. Communicating
natively with IPv6, nodes can communicate end-to-end with each
other and any arbitrary IP device over the wide-area at the network
layer. Border routers connect WSNs to other IP networks using
traditional wired or wireless (e.g., WiFi and satellite) links and do
not require any application-specific state.

MSRLab6 [27] and NanoStack [42] validated the feasibility of
RFC 4944 in WSNs, but do not completely address broader is-
sues of the IPv6 network architecture (e.g., configuration and man-
agement, forwarding, and routing). Mayer et. al. outlined possi-
ble ways to support these broader issues, but do not validate their
thoughts using an actual implementation [32]. None of these ad-
dress operation over duty-cycled links nor do they incorporate ex-
isting WSN techniques. All of them also emulated a single IP link
that spans the entire WSN, which requires additional configuration,
forwarding, and routing mechanisms at the link layer. In this pa-
per, we develop a complete IPv6-based network architecture, that
maintains configuration, forwarding, and routing within the net-
work layer. Using many existing WSN techniques, we show that
our implementation can outperform existing systems that do not
adhere to any particular standard or architecture.

In general, WSN research has focused much more on network
protocol algorithms and mechanisms, rather than on networking
in the broader sense. Much of this work did not constrain them-
selves to an architecture, leading to the development of numerous
application-specific networking protocols that were hard to com-
pose. Existing work sought to provide a communication architec-
ture that could combine these disjoint networking protocols by plac-
ing the narrow-waist of the protocol stack at the link layer [15, 17,
38]. But by being agnostic to the network protocol in use, these
architectures do not define broader networking issues of discovery,
naming, addressing, configuration, and management.

Instead, based on our work, we believe that a communication ar-
chitecture for WSNs should keep the narrow-waist at the network
layer. IPv6 provides such an architecture: the IPv6 forms of layer-
ing, addressing, header formats, configuration, management, rout-
ing, and forwarding provide the necessary structure for designing
and implementing mechanisms at all layers of the stack. The pres-
ence of an architecture allows designers and implementors to focus
and improve the implementation in the process. We have seen such
benefits with other widely-adopted architectures such as RISC and
UNIX. In this paper, we show how to adapt the IPv6 network archi-
tecture to WSNs and demonstrate what we can achieve with such
an architecture.

3. AN IPV6 ARCHITECTURE
IPv6 is the designated successor of IPv4 as the network proto-

col for the Internet [12]. Expecting to continue the exponential in-
crease of IP hosts, scalability is a primary goal of IPv6. The IPv6
address space is much larger at 128-bits to alleviate the IPv4 ad-
dress shortage. Autoconfiguration (autoconf) allows hosts to au-
toconf IP addresses and other configuration parameters without a
human in the loop [9, 35, 47]. Various layer-two protocols (e.g.,
ARP and DHCP) have been pulled into the IPv6 framework [47].
IPv6 also supports a richer set of communication paradigms, in-
cluding a scoped addressing architecture and multicast into the core
design [11]. IPv6 reflects the advancement of link technologies, by
increasing the minimum link MTU requirement to 1280 bytes. Un-
questionably, IPv6 defines a lot more functionality than IPv4. The
obvious question then is: why IPv6 for WSNs?

We claim that IPv6 is better suited to the needs of WSNs than
IPv4 in every dimension. The generality and extensibility of the
IPv6 network architecture allows us to utilize mechanisms that have
become so pervasive in the WSN community. Sampled-listening,
Trickle-based dissemination, hop-by-hop feedback, and collection
routing are only a few of the mechanisms that allow us to implement
an IPv6-based network architecture that is more efficient than other
existing solutions. Furthermore, we believe IPv6 allows more effi-
cient implementations than IPv4. The structure of IPv6 addresses
are more amenable to cross-layer compression. Inclusion of nec-
essary functionality (e.g., DHCP) that were previously outside the
IP framework allows us to utilize the same packet processing, for-
warding, and routing used for delivering any other IP datagram.
Autoconf and ICMPv6 were designed to address scalability, visi-
bility, and unattended operation, all features necessary in produc-
tion WSNs. IPv6 does require some adaptation to better support
operation in WSNs, and IPv6’s support for a simple header options
framework in almost every core protocol allows us to do just that.

3.1 Architecture Overview
In this paper, we show that the IPv6 network architecture is gen-

eral enough that it can be applied efficiently in the WSN space.
We consider a network organization where a WSN is composed of
a collection of low-power wireless nodes that may require multi-
hop communication to reach each other. Each WSN node serves
as an IP router, but typically operates with a single interface. As
shown in Figure 1, we assume that WSNs will typically operate
on the edge of IP networks, acting as stub networks with all nodes
assigned a common prefix. While nodes may be mobile, they gen-
erally remain within the WSN.

The WSN may be connected to other IP networks through one or
more border routers that forward IP datagrams between different
media. Connectivity to other IP networks may be provided through
any arbitrary IP link, including Ethernet, WiFi, GPRS, or satellite.
Border routers may also implement IPv4-to-IPv6 translation to sup-
port interoperability with IPv4 networks. Because border routers
forward datagrams at the network layer, they do not maintain any
application-layer state. Other ad-hoc network architectures (e.g.,
ZigBee) require stateful and complex application gateways to con-
nect WSNs to other networks. These application gateways must
understand any application profiles that may be used in the WSN,
and any changes to the application protocols used in the WSN re-
quire changes on the gateway. In contrast, border routers remain
agnostic to the set of applications deployed in the network.

IP’s layered model means that peers communicate in terms of the
capabilities provided by the layer below. The link must allow the
network to achieve high “best-effort” datagram delivery, enabling
end-to-end mechanisms to achieve reliable transport, all to provide

NET

Forwarder

Forwarding Table

LNK

Neighbor Table
Media Management Control Link Stats

Addr Period Phase Pending RSSI PRRD
at

a

Router
ICMPv6

Discovery
Autoconf

Queue Routing Table

TRN UDP TCP

APP DHCPv6HTTP Telnet DNSSNMP

A
d
ap

ta
ti
o
n
 a

n
d
 C

o
m

p
ac

ti
o
n

Send
Manager

PHY IEEE 802.15.4

A
ck

Figure 2: Software Architecture. Each node implements a full
network stack, respecting IP’s layered model while using the proper
mechanisms to support efficient communication in WSNs.

applications with an effective communication channel. However,
IP does not specify the mechanisms used to implement those capa-
bilities. This flexibility allows us to select the appropriate mech-
anisms that allow us to implement an IPv6-based network archi-
tecture in an efficient way and while the mechanisms themselves
are not application-specific, their use may be. We utilize many
techniques pioneered in the WSN community and cast them in a
software architecture that preserves the layering and functionality
separation, as shown in Figure 2. The following sections describe
each component in detail.

3.2 Avoiding IP Link Emulation
An IP link is defined by those nodes that are reachable over a

single IP hop. Reachability may be provided by a direct connection
at the physical layer (e.g., basic Ethernet) or emulated over differ-
ent physical communication domains (e.g., switched Ethernet). In
either case, IP-based protocols generally assume three properties:

• Always-on: The IP link provides a connectionless commu-
nication service, allowing a node to communicate with any
other node attached to the same IP link at any time without
the need to establish a connection.

• Best-Effort Reliability: The link must allow the network
layer to achieve high “best-effort” datagram delivery and en-
able end-to-end mechanisms to achieve reliable transport.

• Single Broadcast Domain: The IP link provides transitive
reachability for all nodes on the link (if A can send to B and
B can send to C, then A can send to C).

These basic assumptions of IP links are supported by the vast ma-
jority of link technologies in use today (e.g., Ethernet, WiFi, and
point-to-point). In many cases, the properties are emulated by for-
warding the message at the link layer to achieve greater reliabil-
ity or forwarding the message to make the link appear as a single
broadcast domain. However, as we have seen with ATM networks,
IP link emulation has not always been met with success [2]. A les-
son learned from the ATM experience is that link emulation can
place too much policy in the link layer, and does not give the net-
work layer necessary visibility into complex link-layer dynamics.

Drawing on the ATM experience, our IP link model exposes only
basic functionality to the network layer. We equate an IP link to
those neighbors reachable within a single radio transmission. The
result is a WSN composed of overlapping link-local scopes. Doing
so violates the single broadcast domain assumption, but gives IP-
based protocols the necessary visibility into the radio connectivity

to meaningfully discover and communicate with their radio neigh-
bors, and ultimately allow routing or app-level protocols to build
higher-level structures based on the link connectivity. We also ex-
pose aspects of the unreliable nature of wireless communication to
the network layer, giving the network layer better control of for-
warding policies.

4. LINK LAYER
While IEEE 802.15.4 specifies a low-power wireless link stan-

dard with numerous implementations on the market, the industry
has not yet come to agreement on a link protocol for duty-cycled
operation in a multihop network. As this is required for interop-
erability at higher layers, we develop a duty-cycled link protocol,
while keeping in mind the use of an IPv6 network layer above. Xu
et. al. observed that idle-listening completely dominates system
energy consumption when the radio is not duty-cycled [53]. Low-
power radios consume as much power when receiving, or even just
listening, when compared to transmitting [45].

To reduce the idle-listening cost, the radio must be duty-cycled
and hence a transmitter can only send packets to a receiver at spe-
cific times. The coordination of receiver-transmitter schedules, we
term Media Management Control (MMC), and is orthogonal to
Medium Access Control (MAC), which defines how to arbitrate ac-
cess to the media between simultaneous transmitters. When links
operate at less than 1% duty-cycle, channel contention is rare. In
the remainder of this section, we develop a duty-cycled link proto-
col and a software abstraction that presents the MMC to the IPv6
network layer. In following sections, we describe how the network
layer makes use of the MMC.

4.1 Emulating an Always-On Link
An always-on link provides a connectionless communication ser-

vice. The always-on property allows nodes to communicate without
establishing or maintaining any link-layer state for each other and
supports the ability to discover neighboring nodes with low latency,
probe neighbor reachability at any time, and does not require state
synchronization. In general, these capabilities enable a more robust
network.

Two mechanisms have emerged from existing work in duty-
cycled links: sampled listening [18, 28, 37] and scheduling [50, 54].
Sampled listening trades reduced listening cost for increased trans-
mission cost, assuming that transmissions are typically rare. Sam-
pled listening monitors the channel periodically using short receive
checks (often implemented by measuring the RSSI) to determine if
a frame is being transmitted by a neighboring node. A node trans-
mits frames by lengthening its transmissions to be as long as the
receiver’s sample period. Sampled listening supports the always-on
abstraction - nodes do not maintain any state to communicate with
neighbors. In contrast, scheduling involves synchronizing time and
schedules across nodes so that nodes know a priori when the re-
ceiver’s media is enabled. Scheduling removes the need to lengthen
transmissions, but comes at the cost of needing to establish and
maintain state for each neighbor. Indeed, scheduling can be used
to optimize sampled listening, and we apply similar techniques to
increase efficiency [18, 55].

Our goal in designing a duty-cycled link is to consume minimal
power while providing the following IP-friendly properties:

• Always-On: Nodes should be able to communicate without
establishing a connection or requiring any existing state.

• Low Latency: Transmission delays to any neighboring node
should be low.

• Broadcast Capable: Nodes should be able to broadcast
frames to all neighboring nodes, regardless of node density.

• Synchronous Acks: The link should allow IP to achieve high
“best-effort” datagram delivery.

4.2 Media Management Control
Our MMC builds on B-MAC [37] and WiseMAC [18]. Sampled-

listening provides the baseline communication mechanism, sup-
porting a robust always-on abstraction and broadcast communica-
tion. We also employ scheduling techniques to reduce transmis-
sion costs, channel utilization, and overhearing. However, we im-
prove on WiseMAC by embedding addressing and timing informa-
tion into the wakeup signal, allowing us to significantly reduce the
cost of channel samples, receiving frames, and overhearing mes-
sages. We also add streaming capabilities to increase throughput
and further lower transmission costs. Finally, we expose the link’s
capabilities through a simple, but expressive link abstraction de-
rived from SP [38]. While we specifically address IEEE 802.15.4,
the protocol is not fundamentally constrained to it.

4.2.1 Sampled Listening
Sampled listening requires two primitives: (i) a wakeup sig-

nal when transmitting and (ii) channel sampling. Because exist-
ing 802.15.4 radios provide a packet-based interface, we imple-
ment the chirp signal using short chirp frames [6]. The chirp is an
802.15.4-compliant frame and contains a destination address and
a rendezvous time that indicates the time remaining until the ac-
tual data frame transmission. Addressing information significantly
reduces overhearing costs, as unintended destinations can abort re-
ception early. The rendezvous time allows the destination to power
down until the data frame begins transmission. This reduces the
receive cost to that of receiving a chirp frame and the data frame,
making the receive cost independent of the chirp signal length.

4.2.2 Synchronous Acks
For IP to efficiently achieve high best effort datagram delivery,

synchronous acks must be used in low-power devices where loss
rates greater than 10% are common. Unfortunately, the ack frame
defined in 802.15.4 is insufficient for use in production networks:
(i) the ack frame contains no addressing information, which can
lead to false positives in acked transmissions; (ii) ack frames can-
not be secured, allowing an attacker to easily inject acks [41]; and
(iii) ack frames cannot carry a payload, which is useful for hop-
by-hop feedback needed by various protocols. Instead, we define a
new ack frame as a IEEE 802.15.4 data frame. Because the new ack
frame is a data frame, the already defined addressing and security
mechanisms can be used. The new ack frame can also carry a pay-
load, which we utilize for scheduling optimizations and network
layer optimizations in Section 7 and Section 8.

4.2.3 Scheduling
Nodes may monitor the channel sample period of their neighbors

to reduce the chirp signal length. We include the sample period
and phase in the payload of each ack. Using these acks, a node
can synchronize to any neighbor after a single acked transmission.
If the destination’s schedule is known, the chirp duration can be
reduced to a small synchronization guard time, which is progres-
sively loosened based on the expected drift rate up to the receiver’s
sample period. More frequent communication reduces the average
transmission cost, as synchronization occurs more frequently. Lo-
calized scheduling provides greater flexibility, robustness, and in-
creases channel efficiency when channel sample schedules do not
overlap. Unlike purely scheduled approaches, the local schedules

act as a hint and is required to communicate. Note that localized
scheduling does not preclude the use of global coordination. A
central manager can be used to collect and modify the schedules of
individual nodes.

4.2.4 Streaming
To increase throughput and energy efficiency, we apply stream-

ing of multiple frames per channel sample [37]. Utilizing
802.15.4’s Frame Pending bit, a transmitter can signal that another
data frame will immediately follow. A node can then send data
frames back-to-back without delay after sending a single chirp sig-
nal, allowing both sender and receiver to amortize wakeup costs
across multiple frames.

4.3 Link Software Abstraction
From an IP perspective, none of the link mechanisms described

here are specific to IP, although their selection was guided by IP.
The purpose of the abstraction is to take guidance from the network
layer to optimize link-layer performance and enable the network
layer to support efficient end-to-end datagram delivery. We build
on our earlier work with SP [38], but simplify the abstraction be-
cause we assume a single network layer above. By exposing capa-
bilities rather than specific mechanisms, the abstraction preserves
the layered model.

As shown in Figure 1, the link layer maintains a neighbor ta-
ble that holds link-specific state about neighbors, including link ad-
dresses, schedules, frame pending indicator, and link quality statis-
tics. The MMC uses an LRU policy when inserting new neighbors,
but allows the network layer to pin neighbors that are most relevant
from a routing perspective. Link quality information includes both
physical layer (RSSI) and link success rates that the network layer
can use in selecting routes (Section 8). In addition to the neigh-
bor table, the link abstraction augments the data-path by providing
feedback on each transmission and reception. The link indicates
whether a transmission attempt was acked and, if so, provides RSSI
of the ack. The link also provides RSSI for each received frame.

5. ADAPTATION & COMPRESSION
The IEEE 802.15.4 frame only supports 127 bytes of payload

and around 80 bytes in the worst case (when including extended
addressing and full security information). IPv6 has a base header
of 40 bytes and a minimum link MTU requirement of 1280 bytes.
As a result, we must use an adaptation layer to fragment IPv6 data-
grams when they do not fit within a single frame and compress IPv6
headers to make header overhead reasonable. In the layered archi-
tecture, this adaptation layer sits at layer 2.5 (between the link and
network).

We took an initial step at such an adaptation layer in RFC 4944,
defining a format for fragmenting IPv6 datagrams and compress-
ing IPv6 headers [34]. In this section, we build on our work by
generalizing the header compression to support additional commu-
nication paradigms. Our header compression can reduce a 48 byte
UDP/IPv6 header down to 6 bytes in the best case.

5.1 Header Compression
Unlike traditional IP header compression, RFC 4944 header

compression is stateless and places no binding state between a
compressor/decompressor pair. Stateless compression gives WSN
nodes the necessary flexibility to communicate with any neighbor
in compact form at any time. RFC 4944 compresses headers in two
ways. First, by making assumptions about common values for IPv6
header fields in WSNs (Version is 6, Traffic Class and Flow Label
are 0, Next Header is UDP, TCP, or ICMPv6, and IPv6 prefixes are

0 1 2 3 4 5 6 7

1 1 1 1 1 0
Src
Port

Dst
Port

6LP_NHC (UDP)6LP_IPHC
0 1 2 3 4 5 6 7

VTF
Nxt
Hdr

Hop Limit
Source
Address

Dest
Address

Figure 3: Header Compression Format. The encoding formats
specify what fields are carried inline.

link-local). Second, by removing redundant information across lay-
ers (Payload Length and Interface Identifiers (IID) are derived from
the link header). Eliding the IID is an example where IPv6 makes
the architecture more feasible than IPv4. RFC 4944 also defines
UDP header compression using similar techniques.

Nodes must be configured with global addresses to communicate
over multiple hops. However, RFC 4944 does not efficiently com-
press headers when communicating outside of link-local scope or
when using multicast. Any prefix other than the link-local prefix
must be carried inline. Any suffix must be at least 64 bits when car-
ried inline even if derived from a short 802.15.4 address. To provide
better compression over a broader range of scenarios, we generalize
RFC 4944 compression by defining a new compression format for
IPv6 headers (6LP_IPHC) and arbitrary next headers (6LP_NHC).

5.1.1 IPv6 Header Compression
6LP_IPHC compresses global prefixes by assuming that an en-

tire WSN is assigned a Common Global Prefix (CGP), which can be
done using mechanisms defined in Section 6. Nodes use this shared
context to elide the prefix whenever communicating with the CGP.
The other commonly used prefix is the link-local prefix. To sup-
port both simultaneously, we utilize different 6LoWPAN Dispatch
Types to distinguish between the CGP and link-local prefix [34].

The 6LP_IPHC encoding is only 1 byte. Two bits are used for
each IPv6 address, indicating one of four possibilities: (i) full 128-
bit address carried inline, (ii) 64-bit IID carried inline, (iii) bottom
16-bits of IID carried inline, and (iv) fully elided. When the prefix
is elided, it is assumed to be the CGP or link-local prefix. The en-
coding uses one bit to indicate whether Version, Traffic Class, and
Flow Label are elided. One bit is used to indicate if Next Header is
elided and 6LP_NHC is in use. Two bits are used to compress the
Hop Limit, indicating whether 1, 64, 255, or carried inline.1

IPv6 multicast is core to the IPv6 architecture and frequently
used for discovery and configuration (Section 6). We compress
well-known multicast addresses down to 16 bits by dividing the
short address namespace: the first bit being 0 indicates a unicast
address whereas the first three bits being ‘101’ indicates a multicast
address. Of the remaining 13 bits in the compressed multicast ad-
dress, 4 bits carry the multicast scope inline and 9 bits are used to
identify the well-known multicast address.

5.1.2 Next Header Compression
When the IPv6 Next Header is compressed, a 6LP_NHC encod-

ing follows the compressed IPv6 header. The 6LP_NHC encod-
ing starts with a variable-length identifier that indicates the Next
Header value and compression format. This paper initially defines
UDP header compression within this framework. Like RFC 4944,
the encoding uses 1 bit to compress the upper 12 bits of each UDP
port but always elides UDP Payload Length, compressing an 8-byte
UDP header down to 4 bytes in the best case.

5.1.3 Compression Efficiency
6LP_IPHC and 6LP_NHC can compress a 48-byte UDP/IPv6

header down to 6 bytes when communicating over link-local uni-

1Chosen values are those most commonly used by IPv6 protocols.

cast, 8 bytes with link-local multicast, 11 bytes with global unicast
and multicast within the WSN, and 25 bytes when communicating
with arbitrary IP devices outside the WSN. With stateful compres-
sion at the border routers, the format can support a 11-byte header
when communicating with arbitrary IP devices outside the WSN.
Using ICMP, the border router can establish short address identi-
fiers for arbitrary IP devices with WSN nodes.

6. ICMPV6, DISCOVERY, & AUTOCONF
The IP network layer includes three fundamental services: (i)

configuration and management, (ii) forwarding, and (iii) routing.
In this section, we discuss the first of those three. IPv6 anticipated
the need to configure and manage large numbers of nodes, which
is paramount in WSNs. The ICMPv6 framework supports a family
of network layer control and management protocols [9]. Utilizing
these, rather than creating specialized link-layer equivalents, pro-
vides the necessary functionality to manage a robust network. But
while IPv6 has the right concepts, the solutions defined in RFCs
were designed to operate over a single IP link supporting a single
broadcast domain. In this section, we describe necessary extensions
to existing discovery and autoconf mechanisms.

6.1 Neighbor Discovery (ND)
IPv6 nodes use ND to discover each other’s presence, determine

each other’s link-layer addresses, find routers, and configure net-
work parameters. Routers periodically multicast Router Advertise-
ments (RA) to announce their existence and propagate network pa-
rameters to all hosts on the link (e.g., global prefixes for generating
global addresses). However, as currently defined, RAs are only
intended to operate over a single IP link and do not propagate infor-
mation over multiple IP links. To effectively configure a WSN with
overlapping link-local scopes, we extend RAs to propagate network
parameters over multiple hops with little resource demand.

Border routers are the point of entry to WSNs and network pa-
rameters originate at border routers. Our architecture extends the
use of RAs to disseminate network parameters over multiple hops.
Maintaining network parameters is a state consistency problem,
and we use the Trickle algorithm to provide low maintenance over-
head [31]. The Trickle period resets whenever new parameters are
discovered or Router Solicitation (RS) messages are received. To
support Trickle, we extend RA options by including a sequence
number that indicates freshness of the information. Nodes always
accept information with the latest sequence number. Trickle is sim-
ple and scalable, and allows us to avoid many of the magic constants
specified in existing standards [35]. We envision that Trickle can be
applied to other IP protocols with similar benefits.

We further reduce the overhead of ND by making simplifying
assumptions. Because IIDs embed link-layer addresses, nodes do
not need to resolve and maintain address mappings when commu-
nicating with neighbors. Our ND does not maintain reachability in-
formation for neighboring nodes, as WSN protocols may have their
own notion of reachability and have more information on which
neighbors are meaningful. Using other established mechanisms to
maintain IPv6 address uniqueness (described in the following sec-
tion) allows us to avoid using ND for detecting duplicates. As a
result, the need for communicating Neighbor Solicitation and Ad-
vertisement messages is reduced to discovering neighboring hosts.

6.2 Autoconfiguration
IPv6 anticipated the need for easy configuration and manage-

ment of node addresses and other parameters. IPv6 defines both
stateless [47] and DHCPv6 [13] autoconf methods - the former
disseminates parameters to all nodes in a network, while the lat-

(1)(2)

(3)

(4)

(1) Request
(2) Relay Request
(3) Relay Reply
(4) Reply

Figure 4: DHCPv6 Autoconfiguration. DHCPv6 allows selec-
tive distribution of IPv6 addresses and configuration parameters to
individual nodes. Relay Agents form an application overlay, allow-
ing nodes to communicate over link-local scope before receiving a
global address.

ter selectively assigns parameters to individual nodes. Unlike tradi-
tional IPv6 networks, the addresses must be unique within the entire
WSN. Node mobility or changing connectivity make it insufficient
to only maintain uniqueness among neighboring nodes.

Stateless autoconf generates IPv6 addresses by concatenating a
prefix with an IID, the latter derived from 802.15.4 link addresses.
While the link-local prefix is well-known, global prefixes are com-
municated using RA messages. The challenge is ensuring that the
configured address is unique within the WSN, which works best
when the uniqueness of link addresses is maintained by the link
layer (e.g., PAN coordinator). In this case, stateless autoconf is
attractive because nodes can configure addresses with very low
network-layer cost - that of receiving a single RA. However, the
link layer must also implement configuration, forwarding, and rout-
ing simply to manage addresses across the WSN.

By using DHCPv6, we can directly leverage the IPv6 infrastruc-
ture that we’ve built, rather than requiring additional functionality
at the layers below. DHCPv6 allows nodes to request information
from a central server, providing a flexible framework to distribute
configuration parameters. Because the server maintains a central
view of all nodes in the network, it can trivially ensure the unique-
ness of both link-local and global addresses. Interestingly, DHCPv6
operates naturally in a multihop WSN without extensions. Ev-
ery WSN router operates as a DHCPv6 Relay Agent, forwarding
replies between clients and a DHCPv6 server. Relay Agents create
an application-level overlay, allowing clients to communicate re-
quests as they would in traditional networks, as shown in Figure 4.

7. FORWARDING
The IP architecture elegantly separates forwarding from routing.

The forwarder is responsible for receiving datagrams from an in-
terface, performing next hop lookups in a forwarding table, and
submitting the message to the appropriate interface. The router is
responsible for managing entries in the forwarding table. In con-
trast to much WSN work, which typically integrates forwarding
and routing together, our IPv6-based architecture for WSN main-
tains the separation, as shown in Figure 2.

The IP network layer must provide high best-effort datagram de-
livery and enable end-to-end mechanisms to achieve reliable trans-
port. But IP does not take a position on the use of specific mecha-
nisms or the software architecture used to implement them. For-
warding mechanisms can have a significant influence on overall
performance and is well studied in both wired and wireless con-
texts. Many IP-based mechanisms have been proposed to improve
throughput, efficiency, and fairness of the network. Some rely on
interactions with transport-layer mechanisms [33]. Others address

issues in dealing with relatively high loss rates in wireless links [3].
Significant work in WSNs have addressed similar issues outside the
IP context [26, 51].

A key concept common to much existing work in wireless net-
works is the use of hop-by-hop mechanisms for reliability and flow
control. Compared to end-to-end mechanisms (e.g., TCP), hop-by-
hop mechanisms have greater visibility in network conditions, are
more capable of addressing highly variable link qualities in both
spatial and temporal dimensions, and do not require costly end-to-
end communication.

The primary goals of our forwarder design is to provide energy
efficient and high end-to-end success rates. Energy efficiency is
the ratio of the best achievable energy cost relative to the realized
energy cost of delivering a datagram. Existing forwarder designs
address throughput, fairness, or efficiency, but none address energy
efficiency. Existing work often equates number of transmissions
with energy efficiency, but doing so does not consider that trans-
mission costs vary by an order of magnitude or more depending
on what optimizations the link layer can apply. Most existing ef-
forts with hop-by-hop forwarding rely on broadcasts or snooping
to communicate feedback. Broadcast transmissions can be signifi-
cantly more expensive than unicast. Snooping requires nodes to lis-
ten to all neighboring transmissions, which is costly in duty-cycled
operation.

7.1 Unicast Forwarder
To maximize energy efficiency and reliability, the unicast for-

warder applies three orthogonal mechanisms: hop-by-hop recovery,
streaming, and congestion control. Because these mechanisms of-
ten trade increased energy efficiency for increased latency, the for-
warder also applies simple QoS mechanisms that allow upper layers
(i.e., transport) to select the forwarding policy. Because IP does not
specify the mechanisms or software architecture, we were able to
select and compose those mechanisms that allow efficient forward-
ing in WSNs. The mechanisms we use to implement IP forwarding
are not specific IP. The only portion that is IP specific is the use of
options headers within the datagram.

7.1.1 Hop-by-Hop Recovery
Hop-by-hop recovery is used to increase energy efficiency and

end-to-end delivery rates. Dropped datagrams may be due to link
transmission failures or queue overflows and can prevent the net-
work layer from achieving high best-effort delivery rates or the
transport layer from achieving efficient end-to-end reliability. Our
hop-by-hop recovery takes a custody-transfer approach, with link-
layer acks indicating whether or not the network-layer was able to
accept the message. Piggybacking network-layer information on
link acks provides effective feedback without relying on broadcast
or continuous snooping.

Contrary to traditional IP forwarding implementations, the net-
work layer (not the link) is responsible for retransmitting datagrams
and allows the network layer to support re-routing. The forwarder
performs a next-hop lookup on every transmission attempt. Do-
ing so allows the forwarder to take advantage of changes the router
may make to the forwarding table, and allows the router to be fairly
dynamic in those changes. This is especially important in WSNs
where link qualities may be highly variable.

7.1.2 Streaming
The forwarder uses streaming to reduce the average transmis-

sion cost and intentionally delays latency-tolerant datagrams to in-
crease the benefits of streaming. When submitting datagrams to
the link, the forwarder indicates whether other packets for the same

next-hop destination will follow. While delaying datagrams will
increase queue occupancy, hop-by-hop recovery prevents dropped
datagrams due to queue overflows. Streaming also takes advantage
of the temporal properties of link quality - if the first transmission
succeeds, it is likely that the remaining transmissions will succeed.
Finally, streaming reduces overall channel utilization, by eliminat-
ing wakeup signals.

7.1.3 Congestion Control
The forwarder employs mechanisms to detect and mitigate con-

gestion, as congestion can cause queues to become full and de-
crease energy efficiency due to forwarding failures. Congestion is
detected when the queue is full, which differs from existing ap-
proaches that indicate congestion before the queue is full for three
reasons [20]: (i) hop-by-hop recovery prevents dropped messages
due to queues overflows, (ii) allowing full use of the queue maxi-
mizes streaming benefits, and (iii) congestion feedback utilizes the
same network-layer information contained in link acks. Conges-
tion control uses the feedback to adjust transmission rates using an
additive-increase, multiplicative decrease control. Because data-
grams are not dropped until the next-hop can accept it, congested
nodes will appropriately apply back-pressure all the way to the ap-
plication source if necessary.

7.1.4 Quality of Service
The forwarder’s mechanisms of reliable forwarding, streaming,

and congestion control may induce higher latencies due to forward-
ing delays or higher queue occupancies. There are times, how-
ever, when communication latency is more important than energy
efficiency. To address this, we include three basic QoS mecha-
nisms that allow upper layers to specify whether energy efficiency
is of concern. First, upper layers must explicitly tag datagrams
as latency-tolerant to take advantage of the energy-saving mech-
anisms. Unmarked datagrams are never delayed for streaming and
retransmission timeouts are less conservative. Second, upper layers
may tag datagrams as high priority to allow the forwarder to evict
low priority messages when full. Finally, the forwarder permits
queue reservations for different traffic classes, allowing the for-
warder to provide some level of service to different traffic classes.
Information about the datagram is placed in an IPv6 Hop-by-Hop
Option header. When no information is known, forwarders assume
the datagram is not latency-tolerant, has low priority, and is as-
signed a default traffic class.

7.2 Multicast Forwarder
The multicast forwarder implements a simple controlled flood

using Trickle [31]. Trickle’s sequence number is included in an
IPv6 Hop-by-Hop Option header. Nodes buffer a single datagram
for continuous retransmissions until the maximum transmission pe-
riod is reached. Retransmitting the most recent datagram increases
the delivery rates and suppression reduces the cost of forwarding.

8. ROUTING
The router is responsible for establishing reachability, forming

paths to destinations that minimize some routing metric by main-
taining forwarding table entries, as shown in Figure 2. Ad-hoc wire-
less networks make routing challenging because there is no strictly
defined topology. Instead, the router must infer a topology from
varying link connectivity and account for links that are neither good
nor bad but in between. Resource constraints add to the challenge
by limiting how often the router can probe neighbors and how much
routing information it can maintain or communicate.

Traditional IP Router

Figure 5: Utilizing Default Routes. By utilizing default routes in
both directions, WSN nodes maintain small and constant routing
state with low communication overhead.

Traditional routing protocols for wired and wireless networks
are ill-suited for WSNs. State-of-the-art protocols for wired net-
works rely on complete link-state information that require large
amounts of memory [22] or complex synchronization protocols to
converge quickly [1]. MANET protocols are designed for ad-hoc
networks with high and uncorrelated mobility, relying on floods
to discover routes and recover from link failures [8, 36]. Pro-
posed protocols for large-scale ad-hoc networks often reduce state
by constraining the routing topology and sacrificing route optimal-
ity [52]. Location-based protocols embed location information into
the names of nodes so that nodes only need to maintain the locations
of their neighbors, but binds names to the underlying topology [29].

Some WSN routing protocols directly address the range of link
qualities by incorporating link quality estimates in the routing met-
ric. Some protocols use physical layer measurements provided by
(e.g., RSSI or LQI), but these measurements often have high vari-
ance and may not provide a good correlation to PRR [40]. Other
protocols send control messages to directly compute PRR, but re-
quire more time, energy, and state to compute [52]. Recent work
shows that these two methods can be combined effectively [21].

Limited resources mean that nodes must perform routing with
partial information. In an IP framework, this means that nodes have
next-hop information for a limited set of destinations and a default
route for all others. IP requires basic routability but takes no po-
sition on how those routes formed or if they are optimal. In this
section, we show that the IP framework aligns well with typical
WSN constraints and workloads. Routers configure default routes
towards a border router, as shown in Figure 5. Border routers main-
tain host routes to every node in the WSN by learning the default
route graph and reversing the links. By concentrating routing effort
at the border routers, our routing protocol maintains small and con-
stant state on WSN nodes with almost no control message overhead,
yet provides optimal routes when communicating with traditional
IP devices outside the WSN.

8.1 Default Routes

8.1.1 Discovering Routes
The default router maintains a routing table, separate from the

forwarding table. This distinction is important in WSNs, as the
routing table is used to evaluate potential routes without being used
for forwarding. The router uses RA messages to discover candi-
date routes and communicate routing information to neighboring
nodes. The routing information includes the sender’s distance in
hops and estimated number of transmissions (ETX) [10] relative to
the nearest border router, however other metrics may be included in
to support more complex decision algorithms.

8.1.2 Managing the Routing Table
The router inserts potential routes into the routing table with the

eventual goal of selecting one as the default route. To gather link
quality information for those routes, the router pins the associated
entries in the link layer’s neighbor table. Doing so also allows the
link layer to apply energy-saving optimizations when transmitting
to those neighbors. The router uses measured PRR as a link qual-
ity estimate, but computing PRR requires state, energy, and time.
Nodes inserted into the routing table initially begin with no existing
knowledge of the PRR to that node. However, each transmission to
a node updates its measured PRR and increases confidence in the
link quality estimate.

The router accounts for the range of link quality confidence by
sorting the routing table based on path cost and confidence in the
link quality estimate, the top entry providing a good combination of
both. In some cases, the router will choose a route that advertises a
higher path cost than others simply because it has higher confidence
in the link quality estimate. The router removes entries when the
link quality estimate drops below a threshold.

8.1.3 Selecting Default Routes
In most cases, the top entry in the routing table is selected as

the default route. However, the router may choose to deviate from
this choice for two reasons. First, the router may choose to re-route
by configuring an alternate route when a few consecutive transmis-
sion to the top candidate fails. Second, the router may choose to
probe another candidate that may potentially provide a better route
to increase confidence in its link quality estimate. The router ran-
domly selects a small fraction of forwarded datagrams to serve as
link quality probes and uses hop count information to avoid creat-
ing loops. By using existing data traffic, the router does not need
to generate explicit control messages to generate link quality esti-
mates. Furthermore, link quality estimates only occur when paths
are being utilized and the amount of link quality information scales
with the data traffic.

8.1.4 Maintaining Route Consistency
Route information can become inconsistent and lead to routing

loops or suboptimal routes. To address this problem, the forwarder
tags each datagram with the expected hop count and ETX of the
next hop using an IPv6 Hop-by-Hop Option. Receiving a lower
than expected hop count signals the possibility of a routing loop.
Receiving a significantly different ETX indicates the possibility of
inefficient routes, but does not necessarily indicate the presence of
routing loops. In both cases, the router resets the RA Trickle timer
to update route information more quickly.

Compared to ETX, hop count provides a more effective mecha-
nism for loop detection. Hop count has less variability because it
is not subject to varying link qualities on the path. Furthermore, an
increase in ETX may only indicate that an increased path cost down
stream has not yet fully propagated upstream. The router also uses
hop count to avoid routing loops when selecting alternate routes for
re-routing or load balancing. The use of hop count when detecting
routing loops makes the detection mechanism independent of the
route metric and thresholds for detecting inefficient paths.

8.2 Host Routes
Border routers maintain host routes to every node in the WSN

and route datagrams to WSN nodes by inserting an IPv6 Routing
Header that contains a path to the destination. WSN nodes need
not maintain any routing information for anything other than their
default routes. Because default routes are selected based on their
bidirectional connectivity, border routers can easily generate host

routes by learning the default route graph and reversing its links.
WSN nodes provide the border router with default route informa-
tion by including a Record Route Option (RRO) in the IPv6 Hop-
by-Hop Option header of any datagram. The RRO contains a list of
IPv6 addresses, identifying hosts that have forwarded the datagram.
Because all nodes have the same prefix, the RRO only requires 2
bytes per entry. The same compression methods used in Section 5
apply not only to layer 2.5, but also to layer 3. Nodes that have
recently forwarded an RRO suppress their own transmissions, al-
lowing the overhead to scale with the number of leaves rather than
the number of nodes.

In some cases, multiple border routers may be desirable to in-
crease redundancy in egress points for the WSN or energy effi-
ciency by reducing the average number of hops to an egress point.
Because nodes individually select default routes to a single border
router, the each border router may only contain host routes for a
subset of the WSN. Border routers must effectively communicate
their host route state to other border routers. This may be done by
advertising host routes using standard IP routing protocols or by
proxying Neighbor Discovery [46]. This choice in utilizing stan-
dard mechanisms emphasizes the advantage of directly supporting
the IPv6 architecture.

8.3 Routing Overhead
The routing protocol configures both default and host routes with

minimal resource requirements. The only communication require-
ments are occasional broadcasts from routers and unicast transmis-
sions from leaf nodes to border routers. Using Trickle, the number
of broadcast transmissions is low in steady state and scales well
with density (around a couple transmissions per hour in a given
radio region). Overall communication overhead in practice is re-
duced further by piggybacking on already existing traffic. The
router piggybacks routing information on RAs and utilizes ambi-
ent data traffic to generate link quality estimates, enable loop and
sub-optimal route detection, and provide default route information
to border routers.

By pushing routing state to the border routers, the routing state
on WSN nodes is small and constant - that required for configur-
ing default routes (64 bytes). Routing state at border routers scales
with the number of WSN nodes, but border routers generally have
greater memory capacity. In Section 10, we provide empirical data
for energy and memory requirements of an actual application de-
ployment.

The tradeoff with minimal state and communication is routing
stretch. The worst case routing stretch is bounded by 2D and oc-
curs for neighboring nodes furthest from the border router, where
D is the network diameter. However, the worst-case is the easiest
case to optimize for. Discovering and inserting neighbors into the
forwarding table reduces the worst-case bound to D. Generalizing
this includes n-hop neighbors, reducing the worst-case bound to
2D
1+n

. Due to the physical nature of WSNs, far away nodes are less
likely to communicate and it may not be worth the additional cost of
maintaining near-optimal routes across all nodes. Nodes could also
provide more complete link state information to the border router
and the border router could assist in providing forwarding table en-
tries to WSN nodes.

9. TRANSPORT LAYER
The transport layer provides end-to-end communication between

application end points. It is hard to ignore the ubiquity of UDP and
TCP, and for this reason, it is almost a requirement to implement
them. Doing so allows WSN nodes to communicate end-to-end
with existing and unmodified IP devices. But because we’ve pre-

Component ROM RAM
CC2420 Driver 3149 272

802.15.4 Encryption 1194 101
Media Access Control 330 9

Media Management Control 1348 20
6LoWPAN + IPv6 2550 0

Checksums 134 0
SLAAC 216 32

DHCPv6 Client 212 3
DHCPv6 Proxy 104 0

ICMPv6 522 0
Unicast Forwarder 1158 315

Multicast Forwarder 352 4
Message Buffers 0 2048

Router 2050 64
UDP 450 6
TCP 1674 48

Table 1: ROM and RAM Requirements for Communication
Components.

served the IPv6 network architecture, protocol layering, and high
best-effort datagram delivery with low latency, implementing RFC-
compliant UDP and TCP is straightforward. But as with traditional
IP networks, other transport protocols may be invented that are
designed specific applications. Having an established architecture
only helps to frame the problem.

10. EVALUATION
To evaluate our IPv6 architecture for WSNs, we implement all

of the functionality described in this paper from the link through
the transport layer. We evaluate both high-level systems aspects of
our IPv6-based network architecture and in-depth aspects of critical
details. Our implementation is built using TinyOS 2.x [49] on the
TelosB platform [39]. The TelosB consists of a 16-bit TI MSP430
MCU with 48KB ROM and 10KB RAM and a 2.4 GHz, 250 kbps
TI CC2420 IEEE 802.15.4 radio. We use AES-128 authentication
and encryption (CCM, ENC-MIC-32), as this is important in any
production deployment.

A complete, production-quality implementation that provides all
of the functionality described in this paper and support for one UDP
socket and one TCP connection consumes 24,038 bytes of ROM
and 3,598 bytes of RAM. These numbers include the entire run-
time required to support the IPv6 network stack (e.g., OS-level ser-
vices). The breakdown for communication-specific components is
shown in Table 1 and are similar to uIP [14].

We use the implementation to conduct a detailed power analysis
of the IPv6-based network architecture. To evaluate the sensitivity
to a number of parameters, we build a power model for the network
layer using empirical data from link-layer communication primi-
tives. We then validate the power model using a real-world low-
rate data collection application and show that it outperforms what
has been demonstrated to date.

10.1 Link Energy Cost
We model the average power draw of the complete system Ptotal

using the listen, receive, and transmit costs by

Ptotal = Plisten + Prx + Ptx.

Listen represents the baseline power draw for a node and places
a upper bound on the node’s lifetime. We model the average power
draw for listening Plisten using the sleep power draw Psleep, the
channel sample frequency fsample, and channel sample energy cost
Esample by

Plisten = Psleep + fsampleEsample.

0 1 2 3 4
0

5

10

15

20

25

Time (ms)

C
ur

re
nt

 (
m

A
)

(a) Channel Sample

0 5 10 15 20
0

5

10

15

20

25

Time (ms)

C
ur

re
nt

 (
m

A
)

(b) Receive Len=127B

0 5 10 15
0

5

10

15

20

25

Time (ms)

C
ur

re
nt

 (
m

A
)

(c) Transmit Len=127B

0 50 100 150
0

5

10

15

20

25

Time (ms)

C
ur

re
nt

 (
m

A
)

(d) Transmit Chirp=125ms

Primitive Cost
(uJ)

Sample (Esample) 54
Overhear (Eoh) 108
Receive (Erx) 593
TX No Chirp (Etx) 630
TX 125ms Chirp (Ectx) 6670
Chirp Base (Ecb) 119
Chirp Delta (Ecd) 46

(e) Energy Cost of Primitives

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

Sample Period (s)

A
ve

ra
ge

 P
ow

er
 (

m
W

)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

D
ut

y
C

yc
le

 (
%

)

(f) Listen

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

Receive Frequency (pkts/m)

A
ve

ra
ge

 P
ow

er
 (

m
W

)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

D
ut

y
C

yc
le

 (
%

)

(g) Receive

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

Transmit Frequency (pkts/m)

A
ve

ra
ge

 P
ow

er
 (

m
W

)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

D
ut

y
C

yc
le

 (
%

)

Chirp
Sync
No Chirp

(h) Transmit

Figure 6: Link Power Model. Figures (a)-(d) show the TelosB’s instantaneous current draw over time for representative link primitives.
Figure (e) shows the energy cost of each primitive by integrating the current-draw profile. Figure (f) shows the average power draw when
only listening. Figures (g) and (h) show the average power draw when receiving and transmitting relative to the packet rates and assumes
Tsample = 0.5s. The model predicts the measured values to within 2% on average.

In this model, we always assume worst-case frame sizes of 127
bytes for both receive and transmission costs. Receive represents
the average power draw due to receiving data frames. The receive
cost is independent of chirp length and we model the cost using the
reception frequency frx and the reception energy cost Erx by

Prx = frxErx.

Transmit represents the average power draw due to transmitting
data frames. The transmit cost is dependent on the chirp duration,
which is equal to the channel sample period when the receiver’s
schedule is unknown or sending broadcasts. When the receiver’s
schedule is known, the chirp length is a guard time that increases
over time but resets when receiving an ack from that neighbor. The
minimum guard time for our implementation is 2ms and we as-
sume a frequency tolerance f∆ = ±20ppm. We simplify the power
model for transmissions by accounting for the frequency of broad-
cast messages ftxb and the frequency of unicast messages ftxu.
The transmit costs are given by

Ptxb = ftxb

„
Etx + Ecb + Ecd

1

fsample

«
Ptxu = ftxu

„
Etx + Ecb + Ecd

„
2 +

f∆

ftxu

««
.

Using empirical measurements for low-level communication
primitives, we build a model that accurately reflects average power
draw of the entire hardware platform. The communication primi-
tives at the link layer are: channel sample, overhear, receive, and
transmit. We measured the current draw profile for each primi-
tive by using an oscilloscope to measure the voltage drop over time
across a sense resistor placed in series with the TelosB’s power sup-
ply. We plot representative profiles in Figures 6(a)-6(d).

Integrating the current-draw profile and multiplying by the sup-
plied voltage gives the energy cost of each primitive, shown in Fig-
ure 6(e). The rendezvous time in chirp frames reduces the receive
cost and makes the cost independent of the chirp duration. The
inclusion of addressing information in chirp frames significantly
reduces overhearing costs. Transmission without chirps is slightly

more costly than receiving for the same data frame length due to the
carrier-sense and ack frame processing. As expected, transmissions
with chirps are costly and is dominated by the chirp length. By
measuring the energy cost for two different chirp lengths, we can
compute the fixed Ecb and marginal Ecd costs for sending chirps.

We verify the models for listen, receive, and transmit by mea-
suring the average power draw of a node only doing those respec-
tive operations. As shown in Figures 6(f)-6(h), the model predicts
the measured values to within 2% on average. These results show
significantly less average power draw than other results using the
CC2420 radio. Much of the savings is due to the low cost of chan-
nel samples, which only requires the receiver to be on for 640 us.2

X-MAC has a channel sample cost 30 times larger because it inserts
acks into the preamble stream and does not support synchroniza-
tion [6]. Current LPL implementation variants in TinyOS 2.x are
not optimized to minimize gaps between transmissions, resulting in
a minimum channel sample duration that is 10 times larger [49].
SCP-MAC presented similar but limited results for basic primitives
for the MicaZ platform [55].

10.2 Network Energy Cost
To model the average power draw for a node maintaining net-

work connectivity, we need to determine the frequency of transmit-
ting broadcast and unicast messages as well as receiving messages.
The only control messages generated by the network layer are the
ICMPv6 RA messages and Record Route messages. While RA
messages are broadcast messages sent using Trickle, we simplify
the model by assuming fra = τh

2
where τh = 30m (the maxi-

mum Trickle period). RRO messages are unicast periodically, with
frequency frr . We do not model message suppression.

2From the CC2420 datasheet [45], it takes 192us to enable the
receiver, another 128us before the RSSI measurement becomes
valid, and two TX-RX turnaround times (192us each) due to the
CC2420’s receive-after-transmit implementation. Slightly shorter
times are seen in practice because datasheets represent the worst-
case. Significant improvements can be made if the radio’s design
supported continuous transmissions.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

Sample Period (s)

A
ve

ra
ge

 P
ow

er
 (

m
W

)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

D
ut

y
C

yc
le

 (
%

)

Transmit
Receive
Listen

(a) Sample Period (Router)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

Sample Period (s)

A
ve

ra
ge

 P
ow

er
 (

m
W

)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

D
ut

y
C

yc
le

 (
%

)

Transmit
Receive
Listen

(b) Sample Period (Host)

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

Descendants (nodes)

A
ve

ra
ge

 P
ow

er
 (

m
W

)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

D
ut

y
C

yc
le

 (
%

)

Transmit
Receive
Listen

(c) Descendants

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

Neighbors (nodes)

A
ve

ra
ge

 P
ow

er
 (

m
W

)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

D
ut

y
C

yc
le

 (
%

)

Transmit
Receive
Listen

(d) Density

Figure 7: Network Maintenance Costs. Each figure shows the power draw of listen, receive, and transmit. Figure (a) shows power draw
of a router over Tsample with D = 5 and N = 5. Figure (b) shows power draw for a host-only node over Tsample with D = 0 and N = 5.
Figure (c) shows power draw for a router over D with Tsample = 0.5s and N = 5. Figure (d) shows power draw for a router over N with
Tsample = 0.5s and D = 5.

Transmission and reception frequency depend on a number of pa-
rameters. The frequency of forwarding messages depends on how
many nodes route through a given node, and is determined by the
descendants D of a node. The number of neighboring routers N
affects the receive cost due to the RA reception frequency fra. The
relationships are by

frx = Nfra + Dfrr

ftxb = fra

ftxu = (1 + D)frr.

Using the model, we analyze the average power draw of a node
doing nothing except maintaining network connectivity. We plot
the average power draw for routers and hosts (hosts neither nei-
ther forward datagrams nor send RA messages) as a function of
channel sample period, descendants, and node density in Figure 7.
Figure 7(a) shows the average power draw of a router relative to
the channel sample period, achieving a duty-cycle of about 0.23%
when Tsample = 1s. As the channel sample period increases, the
listen cost decreases and the receive cost remains constant. The
transmit cost increases because the RA broadcast scales with the
channel sample period. A host-only node benefits greatly by not
needing to transmit RA messages, achieving a duty-cycle of about
0.16% when Tsample = 1s, as shown in Figure 7(b). Figure 7(c)
shows the average power draw of a router relative to D. Both Prx

and Ptx increase linearly, but Plisten still accounts for the majority
of Ptotal even when D = 20. Figure 7(d) shows the average power
draw of a router relative to the number of neighbors. Both Prx and
Ptx increase linearly, but at a much slower rate than with D.

10.3 Application Energy Cost
To evaluate the average power draw of a node in an application

environment, we consider the low rate data-collection workload
typical to many WSN applications. Both host-only and router nodes
source UDP datagrams with a fixed period to an external data server
through border routers. The two parameters that affect transmis-
sion and reception frequency are: (i) the frequency of application
datagrams sourced by individual nodes fapp and (ii) the number of
collection flows D that a node is forwarding (for host-only nodes,
this is zero). Augmenting the model, the frequency relationships
are given by

frx = Nfra + D (frr + fapp)

ftxb = fra

ftxu = (1 + D) (frr + fapp) .

We plot average power draw relative to the datagram generation
rate in Figure 8.

Figures 8(a) and 8(b) display the average power draw of a router
and host-only node, breaking out the baseline power required for

Deployment Year RP (m) DC Latency (s) DRR
GDI [43] 2003 20 2.2% 0.54-1.085 28%
Redwoods [48] 2004 5 1.3% 300 49%
FireWxNet [23] 2005 15 6.7% 900 40%
WiSe [44] 2006 30 1.6% 60 33%
Dozer [7] 2007 2 1.67% 15 98.8%
SensorScope [4] 2008 2 1.11% 120 95%
IPv6 2008 1 0.65% 0.125 99.98%

Table 2: Performance of prior WSN deployments. Report period
(RP) is the time delay between data transmissions. Duty cycle (DC)
is the fraction of time the radio spent in the active state. Worst-
case per-hop latency is determined by the radio’s wake period. The
data reception rate (DRR) is the fraction of data received at the
collection point.

maintaining the network. In both cases, the network and link layers
account for a significant fraction of the average power draw and
listening forms the largest component. For a host-only node, the
application accounts for a small fraction of the average power draw
even when fapp > 2 packets per minute. For the router, application
traffic accounts for more than half of the average power draw when
fapp > 1.5 packets per minute.

To validate the power model, we used a real-world home moni-
toring application. The application consists of 15 nodes deployed in
refrigerators, solar power inverters, outdoors, and indoors in or near
the intended sense point. Nodes periodically report environmental
data (e.g., temperature and humidity) as well as a variety of sensors
attached to each node. Each node also reports network statistics,
including uptime, active time for the radio and MCU, number of
datagrams sourced, and routing topology. Application traffic was
about one datagram per minute per node, each datagram nearly fill-
ing a full 802.15.4 frame. We logged network statistics over a con-
tinuous 4 week period. The routing topology consisted of 7 nodes
within 1-hop of the border router, the remaining half being 2 to 3
hops away. The link was configured with Tsample = 0.125s. Us-
ing this information, we compute the average duty-cycle for each
node. All nodes had an average duty-cycle between 0.59% and
0.74%. Because the power model does not account for suppression
mechanisms, the empirical numbers are lower than predicted. We
achieved this with a high success rate for datagrams delivered to the
server. All but one node had a success rate above 99.94% with an
aggregate success rate of 99.98%.

We compare results from our application deployment to pub-
lished data from prior WSN deployments in Table 2, showing that
we were able to achieve better performance in average duty-cycle,
per-hop latency, and data reception rate with a higher traffic load.
NanoStack, another 6LoWPAN-based IPv6 stack, uses the standard
IEEE 802.15.4 MAC and does not support duty-cycled operation
for forwarding nodes [42]. Similarly, ZigBee [56] does not sup-

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

Data Rate (pkts/m/node)

A
ve

ra
ge

 P
ow

er
 (

m
W

)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

D
ut

y
C

yc
le

 (
%

)

App − tx
App − rx
Baseline

(a) Router

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

Data Rate (pkts/m)

A
ve

ra
ge

 P
ow

er
 (

m
W

)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

D
ut

y
C

yc
le

 (
%

)

App − tx
App − rx
Baseline

(b) Host-Only

0.6 0.7 0.8
0

1

2

3

4

5

Duty Cycle (%)

N
um

be
r

of
 N

od
es

Host
Router

(c) Duty Cycle

99.8 99.9 100 100.1
0

2

4

6

8

10

Success Rate (%)

N
um

be
r

of
 N

od
es

(d) Success Rate

Figure 8: Application Power Consumption. Figures (a) and (b) show average power draw for a router and host, respectively, over fapp

with Tsample = 0.5s, D = 5, and N = 5. Figures (c) and (d) show data from a deployed home monitoring application over a continuous
4-week period with Tsample = 0.125s. Figure (c) shows a histogram of average duty-cycles over all four weeks with the model’s prediction
for host-only and router nodes. We achieved better results than predicted, as the model does not account for suppression. Figure (d) shows
a histogram of the packet success rate by the server.

port duty-cycled operation for forwarding nodes and also does not
provide end-to-end IP interoperability. uIP [14, 16] showed the fea-
sibility of IP in WSNs, but existing work focused more on CPU per-
formance rather than overall system energy consumption and net-
working performance in a typical WSN setting.

10.4 Goodput and Latency
We also evaluate the goodput and latency performance of link-

local and global communication over UDP and TCP. Streaming op-
timizations allowed our implementation to achieve higher goodput
than other duty-cycled solutions. Figure 9(a) shows the achievable
goodput for UDP is 9 kbytes/s for link-local and 1.7 kbytes/s over
three hops. However, the achievable throughput is still much lower
than the theoretical 250 kbps, due to the use of AES-128 encryption
and software-based acks. Figure 9(b) shows the achievable goodput
over TCP is 1.9 kbytes/s for link-local and 1.2 kbytes/s over three
hops, which is significantly lower than UDP because TCP requires
communication in both directions. Figures 9(c) and 9(d) shows that
the expected communication latency measured with Ping is linear
with Tsample. With synchronization, communication latency de-
pends on when the next channel sample occurs at the receiver.

10.5 The Cost of IP
We have shown that an IPv6-based network architecture can be

implemented more efficiently than existing systems that do not ad-
here to a particular architecture. The question remains: what is the
cost of an IPv6-based network architecture? The adaptation layer
requires 6-11 bytes for a typical UDP/IPv6 header. Putting this into
perspective, the marginal cost of transmitting 1 byte is only 1.67uJ
while the cost of transmitting a packet is 630uJ and an order of mag-
nitude greater when sending chirps. Even so, some header overhead
is required by any network architecture (protocol identifiers, end-
to-end integrity checks, and application dispatch). RA messages
require a few transmissions per hour, but similar mechanisms are
necessary for configuration and routing in non-IP settings as well.
Similar with periodic transmissions to a root. Despite this concern
of transmission overhead, we have shown that the idle-listening cost
still dominates in many cases.

11. ARCHITECTURAL RETROSPECTIVE
In the past decade, wireless sensor network research and Internet

architecture, especially IPv6, have both progressed substantially.
Thus, it makes sense to revisit the assumptions that have formed
the basis of so much WSN research. By constructing a high qual-
ity WSN using IPv6 as a foundation, we find that the two areas of
development are in fact highly complementary. Most of the unique
requirements of WSNs are well served by the IPv6 architecture, in

many cases better than by any efforts that were carried out with-
out concern for any particular network standard. However, in sev-
eral instances while the architecture was appropriate, the specific
RFCs and implementations were not. Extensions had to be created
to encompass particular needs, and these extensions are naturally
supported by the systematic use of options.

WSN research has focused much more on network protocol al-
gorithms and mechanisms, rather than on networking in the broader
sense. The IPv6 forms of layering, addressing, header formats, con-
figuration, management, routing, and forwarding provide the miss-
ing structure. And, in many cases the mechanisms developed in
the WSN space provide elegant solutions to problems that have not
been well addressed by conventional IETF approaches. Not only do
we find a close analog to the structures for dissemination and col-
lection that are so common in WSNs, but Trickle mechanisms pro-
vide an elegant means of reaching consensus, responding quickly
to changes, and becoming passive as things quiesce.

In particular, we find that we need not forsake the many virtues of
layering to meet the severe resource constraints of WSN nodes. If
anything, the focus obtained by a layered approach tends to produce
better solutions than when many degrees of freedom are addressed
simultaneously in an ad-hoc manner. We were able to obtain ex-
tremely low power consumption, small footprint, good throughput,
low latency, and high reliability with a layered solution. However,
the interfaces between the layers cannot be oblivious to the nature
of the constraints and challenges, to provide enough expressiveness
for the layers to cooperate effectively.

The sheer numbers of nodes, unattended use, and need for ease
of configuration and management are well aligned with the mech-
anisms provided by ICMPv6. While many aspects of discovery
and configuration in IPv4 relied on external layer 2 services like
BOOTP and DHCP, these have been systematically incorporated
into the IPv6 architecture with enhanced autoconf and discovery
that are enabled by the larger, simpler namespace and multicast sup-
port. We find that ICMPv6 capabilities far exceed anything that has
been proposed specifically for WSNs. Indeed, if WSNs are not to
incorporate the IP architecture, much of this functionality will need
to be reinvented for these networks to go into production.

However, most of these IPv6 solutions assume that all nodes are
a single hop from a designated agent. They needed to be extended
to service the multihop case. Perhaps the surprising result is that
by treating each node as a router and hence defining a network ar-
chitecture of overlapping link-local scopes, the existing IPv6 proto-
cols could be naturally extended with simple options. Going in, it
seemed that emulating the more common single broadcast domain
over multiple hops would preserve more of the existing IPv6 mech-
anisms. Our experience was that we needed to have layer 2 versions

0 4 8 12 16
0

2

4

6

8

10

12

14

Offered Load (kbytes/s)

G
oo

dp
ut

 (
kb

yt
es

/s
)

0

10

20

30

40

50

60

C
ha

nn
el

 U
til

iz
at

io
n

(%
)Link Local

Global (3−hops)

(a) UDP Goodput

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Offered Load (kbytes/s)

G
oo

dp
ut

 (
kb

yt
es

/s
)

Link Local
Global (3−hops)

(b) TCP Goodput

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Sample Period (s)

IC
M

P
v6

 E
ch

o
R

T
T

 (
s) Worst−Case

Average

(c) Link Local Ping

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

Sample Period (s)

IC
M

P
v6

 E
ch

o
R

T
T

 (
s) Worst−Case

Average

(d) Global Ping

Figure 9: Goodput and Latency. Figures (a) and (b) show goodput in kilobytes/second and channel utilization for UDP communication
within link-local and global scope, respectively. Figures (c) and (d) show round-trip time for ICMPv6 Echo Request/Reply messages over
link-local and global scope, respectively.

of this same functionality to support the emulation, so it was much
more natural to keep layer 2 extremely simple and utilize the rout-
ing capability that is by definition built in to layer 3.

While it remains unclear whether localized algorithms and in-
network processing will become prevalent, rather than relatively
straightforward data collection, logging, alarms, and configuration,
the use of an IPv6 architecture as we have formulated it is en-
tirely consistent with this goal. By constructing the architecture as
overlapping link-local scopes that provide global routing, localized
algorithms are simply implemented as UDP datagrams to various
well-defined multicast addresses or to unicast addresses.

It also remains unclear whether naming will become primarily
data-centric and if so whether this will need to be addressed within
the network stack or by application overlays. But regardless, by
providing a clean IPv6 architecture for WSNs, this debate becomes
essentially the same as the data-centric debate in the rest of the In-
ternet. What we did find was that the large, simple address space,
use of multicast groups defined in terms of that address space, and
regularity of the architecture actually made the resource constrained
solution easier than in the IPv4 setting. Compression and elision of
header information where it can be reconstructed from the layer 2
header in the presence of some simple assumptions of shared con-
text becomes straightforward and efficient.

While WSNs are indeed more application specific than tradi-
tional networks, we find that the networking mechanisms and the
architecture are not. What is application specific is how the use of
those mechanisms is optimized and how the network is organized
within that architectural framework. Whether it is deterministic
scheduling of communication or streaming data to reduce overhead,
simple mechanisms that support a wide variety of use can be used
to exploit the application specific structure. However, the mecha-
nisms also provide a more general safety net when the network’s
behavior is not following the specific pattern. For example, it can
be fully operational at low power with always-on behavior while
nodes communicate to determine that schedule. Or, it can fall back
to sample listening when the schedule drifts.

The relatively simple application characteristics that are typical
of WSNs can be exploited to simplify protocols and their imple-
mentations to achieve small resource demand. Such solutions may
be suboptimal for the arbitrary any-to-any transfers that are the pri-
mary design point for conventional networks.

12. CONCLUSION
Supporting IP provides invaluable interoperability with existing

IP devices as well as being able to utilize the broad body of existing
IP tools when connecting WSNs to other IP networks (i.e., firewalls,
proxies, caches, etc.). The presence of a broad-based IPv6 network
architecture in the same technological context as solutions that lack

any architecture means that we can re-examine a much broader set
of research questions. The question of in-network processing, ag-
gregation, and query processing are not constrained by the IPv6
network architecture. However, their effectiveness can be strongly
separated from questions of whether they should be implemented
as application level overlays or somehow more deeply integrated
into the network stack. Many long-standing WSN questions can be
examined in a more general setting, and if the answer is open a TCP
connection or send a UDP datagram, that answer is acceptable as
well.

Similarly, a number of new questions emerge about how the In-
ternet architecture should change or evolve now that it is supporting
a new class of applications. For example, many suggest that neither
UDP or TCP transports are quite right for periodic readings, reports,
and configuration actions. Heterogeneity in deployments becomes
much more natural, since IP routing by definition supports crossing
a variety of links. In these or a wide variety of other studies, the
IPv6 architecture provides a framework to develop specific solu-
tions and the mechanisms for doing so effectively, even with severe
resource constraints, without each study needing to develop yet an-
other MAC, routing protocol, and transport. Thus, it would seem
that the two lines of development are not just technically comple-
mentary, combining may accelerate progress in both.

13. ACKNOWLEDGMENTS
This material is based upon work supported by the National

Science Foundation under grants #0435454 (“NeTS-NR”) and
#0454432 (“CNS-CRI”). Many thanks to Matt Welsh, Prabal Dutta,
and our shepherd Adam Dunkels for their useful feedback.

14. REFERENCES
[1] R. Albrightson, J. Garcia-Luna-Aceves, and J. Boyle. Eigrp-a fast routing

protocol based on distance vectors. 1994.
[2] ATMForum. LANEmulation over ATMVersion-2 LUNI Specification, Dec.

1995.
[3] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz. Improving tcp/ip

performance over wireless networks. In MobiCom ’95: Proceedings of the 1st
annual international conference on Mobile computing and networking, pages
2–11, New York, NY, USA, 1995. ACM.

[4] G. Barrenetxea, F. Ingelrest, G. Schaefer, M. Vetterli, O. Couach, and
M. Parlange. Sensorscope: Out-of-the-box environmental monitoring. In IPSN
’08: Proceedings of the 2008 International Conference on Information
Processing in Sensor Networks (ipsn 2008), pages 332–343, Washington, DC,
USA, 2008. IEEE Computer Society.

[5] J. Bentham. TCP/IP lean: web servers for embedded systems. CMP Media, Inc.,
USA, 2000.

[6] M. Buettner, G. V. Yee, E. Anderson, and R. Han. X-mac: a short preamble mac
protocol for duty-cycled wireless sensor networks. In SenSys ’06: Proceedings
of the 4th international conference on Embedded networked sensor systems,
pages 307–320, New York, NY, USA, 2006. ACM Press.

[7] N. Burri, P. von Rickenbach, and R. Wattenhofer. Dozer: ultra-low power data
gathering in sensor networks. In IPSN ’07: Proceedings of the 6th international
conference on Information processing in sensor networks, pages 450–459, New
York, NY, USA, 2007. ACM.

[8] T. Clausen and P. Jacquet. Optimized Link State Routing Protocol (OLSR).
RFC 3626 (Experimental), Oct. 2003.

[9] A. Conta, S. Deering, and M. Gupta. Internet control message protocol
(icmpv6) for the internet protocol version 6 (ipv6) specification. RFC 4443
(Draft Standard), Mar. 2006. Updated by RFC 4884.

[10] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris. A high-throughput path
metric for multi-hop wireless routing. In MobiCom ’03: Proceedings of the 9th
annual international conference on Mobile computing and networking, pages
134–146, New York, NY, USA, 2003. ACM.

[11] S. Deering, B. Haberman, T. Jinmei, E. Nordmark, and B. Zill. Ipv6 scoped
address architecture. RFC 4007 (Proposed Standard), Mar. 2005.

[12] S. Deering and R. Hinden. Internet protocol, version 6 (ipv6) specification. RFC
2460 (Draft Standard), Dec. 1998.

[13] R. Droms, J. Bound, B. Volz, T. Lemon, C. Perkins, and M. Carney. Dynamic
host configuration protocol for ipv6 (dhcpv6). RFC 3315 (Proposed Standard),
July 2003. Updated by RFC 4361.

[14] A. Dunkels. Full tcp/ip for 8-bit architectures. In MobiSys ’03: Proceedings of
the 1st international conference on Mobile systems, applications and services,
pages 85–98, New York, NY, USA, 2003. ACM.

[15] A. Dunkels, F. Österlind, and Z. He. An adaptive communication architecture
for wireless sensor networks. In SenSys ’07: Proceedings of the 5th
international conference on Embedded networked sensor systems, pages
335–349, New York, NY, USA, 2007. ACM.

[16] A. Dunkels, T. Voigt, and J. Alonso. Making TCP/IP Viable for Wireless Sensor
Networks. In Proceedings of the First European Workshop on Wireless Sensor
Networks (EWSN 2004), work-in-progress session, Berlin, Germany, Jan. 2004.

[17] C. T. Ee, R. Fonseca, S. Kim, D. Moon, A. Tavakoli, D. Culler, S. Shenker, and
I. Stoica. A modular network layer for sensorsets. In OSDI ’06: Proceedings of
the 7th symposium on Operating systems design and implementation, pages
249–262, Berkeley, CA, USA, 2006. USENIX Association.

[18] A. El-Hoiydi and J.-D. Decotignie. Wisemac: an ultra low power mac protocol
for the downlink of infrastructure wireless sensor networks. In ISCC ’04:
Proceedings of the Ninth International Symposium on Computers and
Communications 2004 Volume 2 (ISCC"04), pages 244–251, Washington, DC,
USA, 2004. IEEE Computer Society.

[19] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century challenges:
scalable coordination in sensor networks. In MobiCom ’99: Proceedings of the
5th annual ACM/IEEE international conference on Mobile computing and
networking, pages 263–270, New York, NY, USA, 1999. ACM.

[20] S. Floyd and V. Jacobson. Random early detection gateways for congestion
avoidance. IEEE/ACM Trans. Netw., 1(4):397–413, 1993.

[21] R. Fonseca, O. Gnawali, K. Jamieson, and P. Levis. Four bit wireless link
estimation. In HotNets VI: Proceedings of the Sixth Workshop on Hot Topics in
Networks, 2007.

[22] M. Gupta and N. Melam. Authentication/Confidentiality for OSPFv3. RFC
4552 (Proposed Standard), June 2006.

[23] C. Hartung, R. Han, C. Seielstad, and S. Holbrook. Firewxnet: a multi-tiered
portable wireless system for monitoring weather conditions in wildland fire
environments. In MobiSys ’06: Proceedings of the 4th international conference
on Mobile systems, applications and services, pages 28–41, New York, NY,
USA, 2006. ACM.

[24] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System
architecture directions for networked sensors. SIGPLAN Not., 35(11):93–104,
2000.

[25] J. W. Hui and D. E. Culler. Extending ip to low-power, wireless personal area
networks. Internet Computing, IEEE, 12(4):37–45, July-Aug. 2008.

[26] B. Hull, K. Jamieson, and H. Balakrishnan. Mitigating congestion in wireless
sensor networks. In SenSys ’04: Proceedings of the 2nd international
conference on Embedded networked sensor systems, pages 134–147, New York,
NY, USA, 2004. ACM.

[27] H. Huo, H. Zhang, Y. Niu, S. Gao, Z. Li, and S. Zhang. Msrlab6: An ipv6
wireless sensor networks testbed. Signal Processing, 2006 8th International
Conference on, 4:–, 16-20 2006.

[28] J. Jubin and J. D. Tornow. The DARPA packet radio network protocols.
Proceedings of IEEE, 75(1):21–32, Jan. 1987.

[29] B. Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing for wireless
networks. In Proceedings of the Sixth Annual ACM/IEEE International
Conference on Mobile Computing and Networking (MobiCom 2000), pages
243–254, 2000.

[30] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo, E. Brewer, and
D. Culler. The emergence of networking abstractions and techniques in tinyos.
In NSDI’04: Proceedings of the 1st conference on Symposium on Networked
Systems Design and Implementation, pages 1–1, Berkeley, CA, USA, 2004.
USENIX Association.

[31] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: a self-regulating algorithm
for code propagation and maintenance in wireless sensor networks. In NSDI’04:
Proceedings of the 1st conference on Symposium on Networked Systems Design
and Implementation, pages 2–2, Berkeley, CA, USA, 2004. USENIX
Association.

[32] K. Mayer and W. Fritsche. Ip-enabled wireless sensor networks and their
integration into the internet. In InterSense ’06: Proceedings of the first
international conference on Integrated internet ad hoc and sensor networks,
page 5, New York, NY, USA, 2006. ACM.

[33] P. P. Mishra and H. Kanakia. A hop by hop rate-based congestion control
scheme. SIGCOMM Comput. Commun. Rev., 22(4):112–123, 1992.

[34] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. Transmission of ipv6
packets over ieee 802.15.4 networks. RFC 4944 (Proposed Standard), Sept.
2007.

[35] T. Narten, E. Nordmark, W. Simpson, and H. Soliman. Neighbor discovery for
ip version 6 (ipv6). RFC 4861 (Draft Standard), Sept. 2007.

[36] C. Perkins. Ad hoc on-demand distance vector (AODV) routing. RFC 3561
(Experimental), July 2003.

[37] J. Polastre, J. Hill, and D. Culler. Versatile low power media access for wireless
sensor networks. In SenSys ’04: Proceedings of the 2nd international
conference on Embedded networked sensor systems, pages 95–107, New York,
NY, USA, 2004. ACM Press.

[38] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S. Shenker, and I. Stoica. A
unifying link abstraction for wireless sensor networks. In SenSys ’05:
Proceedings of the 3rd international conference on Embedded networked sensor
systems, pages 76–89, New York, NY, USA, 2005. ACM Press.

[39] J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling ultra-low power
wireless research. In IPSN ’05: Proceedings of the 4th international symposium
on Information processing in sensor networks, page 48, Piscataway, NJ, USA,
2005. IEEE Press.

[40] J. Polastre, G. Tolle, and J. Hui. Low power mesh networking with telos and
ieee 802.15.4. In SenSys ’04: Proceedings of the 2nd international conference
on Embedded networked sensor systems, pages 319–319, New York, NY, USA,
2004. ACM.

[41] N. Sastry and D. Wagner. Security considerations for IEEE 802.15.4 networks.
In ACM Workshop on Wireless Security (WiSe 2004), October 2004.

[42] Sensinode. Nanostack.
http://sourceforge.net/projects/nanostack/.

[43] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler. An
analysis of a large scale habitat monitoring application. In SenSys ’04:
Proceedings of the 2nd international conference on Embedded networked
sensor systems, pages 214–226, New York, NY, USA, 2004. ACM.

[44] K. Szlavecz, A. Terzis, R. MusÇŐloiu-E., J. Cogan, S. Small, S. Ozer, R. Burns,
J. Gray, and A. S. Szalay. Life under your feet: An end-to-end soil ecology
sensor network, database, web server, and analysis service. Technical Report
MSR-TR-2006-90, Microsoft Research, 2006.

[45] Texas Instruments. Cc2420: 2.4 ghz ieee 802.15.4 / zigbee-ready rf transceiver.
http://focus.ti.com/lit/ds/symlink/cc2420.pdf, Mar. 2007.

[46] D. Thaler, M. Talwar, and C. Patel. Neighbor Discovery Proxies (ND Proxy).
RFC 4389 (Experimental), Apr. 2006.

[47] S. Thomson, T. Narten, and T. Jinmei. Ipv6 stateless address autoconfiguration.
RFC 4862 (Draft Standard), Sept. 2007.

[48] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess,
T. Dawson, P. Buonadonna, D. Gay, and W. Hong. A macroscope in the
redwoods. In SenSys ’05: Proceedings of the 3rd international conference on
Embedded networked sensor systems, pages 51–63, New York, NY, USA, 2005.
ACM.

[49] University of California at Berkeley. Tinyos. http://www.tinyos.net/,
2004.

[50] T. van Dam and K. Langendoen. An adaptive energy-efficient mac protocol for
wireless sensor networks. In SenSys ’03: Proceedings of the 1st international
conference on Embedded networked sensor systems, pages 171–180, New York,
NY, USA, 2003. ACM Press.

[51] A. Woo and D. E. Culler. A transmission control scheme for media access in
sensor networks. In MobiCom ’01: Proceedings of the 7th annual international
conference on Mobile computing and networking, pages 221–235, New York,
NY, USA, 2001. ACM.

[52] A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of reliable
multihop routing in sensor networks. In SenSys ’03: Proceedings of the 1st
international conference on Embedded networked sensor systems, pages 14–27,
New York, NY, USA, 2003. ACM Press.

[53] Y. Xu, J. Heidemann, and D. Estrin. Geography-informed energy conservation
for ad hoc routing. In MobiCom ’01: Proceedings of the 7th annual
international conference on Mobile computing and networking, pages 70–84,
New York, NY, USA, 2001. ACM.

[54] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient MAC protocol for
wireless sensor networks. In 21st Conference of the IEEE Computer and
Communications Societies (INFOCOM), volume 3, pages 1567–1576, June
2002.

[55] W. Ye, F. Silva, and J. Heidemann. Ultra-low duty cycle mac with scheduled
channel polling. In SenSys ’06: Proceedings of the 4th international conference
on Embedded networked sensor systems, pages 321–334, New York, NY, USA,
2006. ACM Press.

[56] ZigBee Alliance. Zigbee. http://www.zigbee.org/.

http://sourceforge.net/projects/nanostack/
http://focus.ti.com/lit/ds/symlink/cc2420.pdf
http://www.tinyos.net/
http://www.zigbee.org/

	Introduction
	Related Work
	An IPv6 Architecture
	Architecture Overview
	Avoiding IP Link Emulation

	Link Layer
	Emulating an Always-On Link
	Media Management Control
	Sampled Listening
	Synchronous Acks
	Scheduling
	Streaming

	Link Software Abstraction

	Adaptation & Compression
	Header Compression
	IPv6 Header Compression
	Next Header Compression
	Compression Efficiency

	ICMPv6, Discovery, & Autoconf
	Neighbor Discovery (ND)
	Autoconfiguration

	Forwarding
	Unicast Forwarder
	Hop-by-Hop Recovery
	Streaming
	Congestion Control
	Quality of Service

	Multicast Forwarder

	Routing
	Default Routes
	Discovering Routes
	Managing the Routing Table
	Selecting Default Routes
	Maintaining Route Consistency

	Host Routes
	Routing Overhead

	Transport Layer
	Evaluation
	Link Energy Cost
	Network Energy Cost
	Application Energy Cost
	Goodput and Latency
	The Cost of IP

	Architectural Retrospective
	Conclusion
	Acknowledgments
	References

