
fabryq: Using Phones as Gateways to Prototype Internet of
Things Applications using Web Scripting
Will McGrath1,3 Mozziyar Etemadi1,2 Shuvo Roy2 Bjoern Hartmann1

1UC Berkeley
EECS

{mozzi,bjoern}@berkeley.edu

2UCSF Bioengineering
and Therapeutic Sciences

shuvo.roy@ucsf.edu

3Stanford University
Computer Science Department

wmcgrath@stanford.edu

ABSTRACT
Ubiquitous computing devices are often size- and power-
constrained, which prevents them from directly connecting to
the Internet. An increasingly common pattern is therefore to
interpose a smart phone as a network gateway, and to deliver
GUIs for such devices. Implementing the pipeline from em-
bedded device through a phone application to the Internet re-
quires a complex and disjoint set of languages and APIs. We
present fabryq, a platform that simplifies the prototyping and
deployment of such applications. fabryq uses smartphones
as bridges that connect devices using the short range wire-
less technology, Bluetooth Low Energy (BLE), to the Inter-
net. Developers only write code in one language (Javascript)
and one location (a server) to communicate with their device.
We introduce a protocol proxy programming model to control
remote devices; and a capability-based hardware abstraction
approach that supports scaling from a single prototype device
to a deployment of multiple devices. To illustrate the utility of
our platform, we show example applications implemented by
authors and users, and describe µfabryq, a BLE prototyping
API similar to Arduino, built with fabryq.

Author Keywords
Toolkits; ubiquitous computing; swarm devices; prototyping.

ACM Classification Keywords
H.5.2: Prototyping

INTRODUCTION
In the predominant vision of ubiquitous computing (or its
reincarnation as the internet of things or swarm computing),
all kinds of devices, from large to small, become smart and
networked [26, 23]. One important class of ubiquitous com-
puting devices are small, wireless, low-power sensors — for
example those used in medical, fitness, and distributed sens-
ing applications. Many of these devices cannot be directly
connected to the Internet (e.g., via WiFi) because of size and
power constraints. In practice, therefore, ubicomp devices

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
EICS’15, June 23-26, 2015, Duisburg, Germany
ACM 978-1-4503-3646-8/15/06.
http://dx.doi.org/10.1145/2774225.2774835

Embedded 
Device

Smart 
Phone

Cloud
Server

Bluetooth WiFi/4G

Personal Area 
Network

Wide Area 
Network

Figure 1. An example MGC application distributes logic and user inter-
action across embedded device, mobile phone and a cloud server.

Embedded
BLE Stack

Phone’s
BLE Stack

Phone’s
Inet Stack

Custom
Firmware

Fabryq 
Client Lib

Fabryq Phone
Fabryq 
Server

User’s 
Application

Fabryq 
JS API

Server’s
Inet Stack

Bluetooth 
Low Energy

HTTP over
WiFi / 3G

Embedded 
Device

Smart Phone Web Server Web Client

Application
developer’s code
Fabryq framework

Existing network stacks

Off-the-Shelf
BLE Device

Figure 2. With fabryq, developers use off-the-shelf bluetooth devices or
write firmware that exposes devices’ inputs and outputs over Bluetooth;
and high-level application logic in Javascript. The fabryq framework
manages finding the desired hardware device and a mobile phone within
range, and handles all message marshaling.

are often constructed using a three-level architecture consist-
ing of: 1) a very energy efficient, embedded low power device
with a short range radio; 2) a gateway, such as a user’s phone,
which may show a user interface and acts as a router from
short-range networks to the Internet; 3) server code for aggre-
gating data and reasoning across multiple users and devices.
We refer to such applications as MGC (eMbedded–Gateway–
Cloud) apps (see Figure 1). For example, the FitBit fitness
tracking device monitors a user’s motions. On demand, it re-
lays information to a companion application running on the
user’s mobile phone (or PC), which in turn communicates
with servers that the FitBit company maintains. Building and
maintaining such multi-language, multi-platform distributed
systems is complex, error-prone, and requires skills in sev-
eral diverse fields. Thus, experimentation in such devices is
largely reserved to teams of experts, and implementation cy-
cles are long and complex, which prohibits rapid prototyping.
While research has introduced prototyping toolkits that sig-
nificantly increase the speed of design explorations [8, 7, 25],



these toolkits often make power or connectivity tradeoffs that
restrict their use to lab settings or stationary, plug-in products.

In response to these issues, we introduce fabryq, a framework
that facilitates the creation of new Ubicomp devices by han-
dling the complexities of creating new mobile device, server,
and networking code. Specifically, fabryq takes the form of
a mobile application and cloud service. The mobile applica-
tion turns an ordinary smartphone into a bridge that connects
the short range wireless technology of Bluetooth Low Energy
(BLE) with our cloud service via the Internet. fabryq uses
BLE because it is the single short range wireless technology
that is ubiquitously available on modern smart phones and
can thus be widely employed. fabryq applications are written
in Javascript and run in a web browser. fabryq introduces a
protocol proxy programming model — developers write BLE
protocol calls in Javascript as if the target device were locally
connected and always available. The fabryq architecture then
finds a mobile phone within radio reach of the target BLE de-
vice; passes the command(s) through the phone to the target
device, and returns data to a the web application. This allows
the creators of new devices to focus on writing the devices’
firmware and creating new applications with the data from
the devices, rather than writing complex and error-prone net-
working code (see Figure 2).

Our approach deals gracefully with situations where a BLE
device may move into and out of the range of a mobile client
device. When a device is not available, commands are queued
and will be executed in the order that they were issued when-
ever the device comes back into range. BLE’s star topology
ensures that a device can only connect to a single gateway at
once. fabryq handles the connection management and net-
working that make this abstraction possible.

fabryq applications can be run in a browser, on the fabryq iOS
app, or on a server using our agent interface; but in all cases,
it is the same application code using the same API that allows
for issuing BLE commands. User interfaces for fabryq appli-
cations such as data visualizations are authored using HTML
and JavaScript, and they can be viewed either on the web, or
inside the fabryq application on a mobile device. We define
two application types: sporadic interaction, where commu-
nication only occurs when a user views a Fabryq application
on their phone; and continuous monitoring, where data is col-
lected and stored even if a user is not interacting with a user
interface. For sporadic interactions, users execute fabryq web
applications directly on their phone. For continuous moni-
toring, fabryq supports the creation of continuously running,
remotely executed Web applications (“agents”). To enable
showing user interfaces on phones in this scenario, fabryq in-
cludes a UI pushdown utility command so that data updates
on the server can trigger the display of interfaces on the phone
that was responsible for collecting the data.

A key aspect our our approach is promoting the gateway from
a “dumb router” to a key point of user interaction. When
running on a user’s smartphone, the most revelvant devices,
those nearby the user are always made available to applica-
tions. The ability of the gateways to display rich user inter-
faces also allows for a flexible way of displaying information

or options to a user. Additionally, the gateway’s configuration
UI provides a concrete way of communicating system status
and managing connected devices.

Assessing the success of ubicomp prototypes often requires
leaving the lab and deploying devices with users “in the
wild” [5]. To facilitate expanding from a single prototype to a
multi-device deployment, fabryq keeps track of what kinds of
devices are necessary for running a given application. Based
on a set of hardware service requirements that are automat-
ically generated for each new application, developers can
create additional instances of an application. Each instance
can then be bound by users to different hardware devices that
offer the requisite functionality, as encoded in BLE services
and characteristics. This makes it possible, for example, to let
users use heart rate monitors from different manufacturers.

To demonstrate the utility of fabryq for developing applica-
tions with custom BLE devices, we also created µfabryq, a
custom BLE device paired with a JavaScript API that make
some of the most useful features of embedded processors
such as analog to digital converters (ADCs), interrupts, digi-
tal input/output pins (GPIO), pulse width modulation (PWM),
and a serial peripheral interface (SPI) available to web pro-
grammers via fabryq. This firmware mirrors the program-
ming model of popular “maker” platforms such as Arduino,
but offers the benefit that applications can be distributed
across many wearable devices in many locations. µfabryq
was entirely implemented on top of fabryq.

fabryq makes it easier for developers to work with both ex-
isting off the shelf BLE devices and custom devices of their
own design. In order to both validate fabryq and demonstrate
its utility, we describe applications created by students using
µfabryq during hackathons and in class, as well as applica-
tions created by the authors. These applications make use of
a combination of off-the-shelf and custom BLE devices.

RELATED WORK

Ubicomp Prototyping
HCI research has contributed systems for rapid prototyp-
ing of Ubicomp devices and systems, e.g., Phidgets [7],
d.tools [8], LilyPad Arduino [4], which focus exclusively on
simplifying the creation of individual, self-contained devices.
Other systems such as .NET Gadgeteer [25] and Shared
Phidgets [18] explicitly offer network connectivity to create
Internet-connected devices, but assume end-to-end IP con-
nectivity and tethered operation, and thus cannot easily “scale
down” to support low energy mobile devices; they gener-
ally also do not support distributing interactions over device,
smartphone, and servers. Recently, commerical platforms
such as the ElectricImp WiFi module [10], Spark Core [21],
Tessel [24], and Kinoma Create [15] aim to lower the thresh-
old for developing Internet-connected appliances. Like fab-
ryq, the Imp and Spark Core use a hosted server that han-
dles many lower-level networking tasks. However, both de-
vices require direct WiFi access—power requirements make
it infeasible to use them for mobile, wearable deployments.
For comparison, when active, the Spark Core has a minimum
power consumption of 30mA and a maximum of 300mA



[22]. Conversely, Texas Instruments’ CC2541 BLE-enabled
microcontroller, consumes 8.5mA [12] when active. Al-
though peak transmission power is only one variable that con-
tributes to total power consumption and power is not always
a primary concern while prototyping, BLE’s adjustable con-
nection parameters allow flexibility and further optimization
as a design is further developed.

Connecting Sensors to Mobile Phones
A number of projects aim to make it easier to connect external
devices and sensors to smart phones and use them in applica-
tions. iStuffMobile [2] augments existing phones with new
sensors – for development speed, sensor mapping logic runs
on a nearby desktop computer, limiting deployment options.
Amarino [13] allows designers to access events occurring on
a mobile phone from an embedded platform. HiJack [16]
can power and exchange messages with an embedded mi-
crocontroller through a phone’s audio jack. Open Data Kit
Sensors [6] is an application framework that introduces ab-
stractions to simplify the connection of multiple sensors with
different interfaces (e.g., wired and Bluetooth) to a single mo-
bile device. Dandelion [17] generates both smart phone and
sensor node binaries from a common source and then uses re-
mote method invocation to call sensor code from the phone.

In contrast to these projects, fabryq uses the phone as a smart
gateway to relay commands from a Web server to BLE de-
vices. This allows developers to change their sensor querying
code at any time without having physical access to the phone,
and applications can span multiple phones. fabryq is also ag-
nostic to which phone is connected to which sensor—only
communication between the server and sensors matters.

Cooltown [14] focused on bringing physical devices onto
the Web by embedding web servers into products and using
mechanisms such as IR for finding a physical objects URL. In
contrast, fabryq supports using hardware that cannot connect
to web services or speak TCP/IP directly because of memory,
compute, or battery limitations. This is an important category
comprising a quickly growing array of personal devices.

Internet of Things Networking
Connecting resource-constrained embedded hardware to In-
ternet servers is also a concern of “Internet of Things” re-
searchers. One way to provide IP packet support to low-
energy embedded devices is through IEEE802.15.4 networks
using “6LoWPAN” (IPv6 over Low Power Wireless Personal
Area Networks [1]). Alternatively, devices such as the XBee
Internet Gateway marshall traffic between a local area net-
work and the Internet. The main difference to much of this
work is that it presupposes additional networking infrastruc-
ture which is not generally available yet. We instead target
ubiquitous smart phones and their data networks. Our focus
is on supporting mobile scenarios that can be deployed with
end users today; we therefore focus on BLE, which in itself
does not currently interoperate with IP networks.

MOTIVATING APPLICATIONS
To inform the design of fabryq, we surveyed the emerging
market of wireless smartphone acessories. Fitness trackers

CBA

Figure 3. Three motivating wireless medical devices: A) A retainer that
tracks wearer compliance using a built-in temperature sensor. B) A chest
compression brace that tracks applied pressure over time. C) A water
mug that tracks liquid consumption throughout the day.

CBA

Figure 4. Example devices from our class: A) A wireless barrel gauge
for distilleries and wineries; barrel readings are aggregated online. B)
A toy to support literacy education; play statistics are collected on the
phone and online. C) A car dongle that streams driving telemetry data
to the phone and compares driving behavior on a central server.

such as the FitBit or Misfit Shine as well as devices such as
the Automatic vehicle data link tend to follow a similar pat-
tern: they use MEMS sensors and minimal display on device
and a smart phone to display the main UI to the user. They
also use web backends to store, process, or share data.

Our work is also motivated by a collaboration with medi-
cal researchers at a local medical center and their needs for
wearable patient monitoring devices (see Figure 3). These
devices generally require small physical size and weight, but
battery life on the order of weeks or months so they can be
given to patients without requiring recharging. Researchers
want to send patients home with these devices and remotely
track gathered sensor data at their institution. Such deploy-
ments consist of a few dozen identical devices. Accordingly,
a framework should facilitate both continuous monitoring and
simple deployment of prototype code to multiple users.

Finally, we draw inspiration from experiences gathered teach-
ing the design of integrated interactive hardware/software de-
vices at our institution. While teams of motivated undergrad-
uate and graduate students can create working prototype de-
vices such as the ones shown in Figure 4, much of the im-
plementation difficulty lies in working with multiple differ-
ent networking technologies and protocols simultaneously;
managing intermittent wireless connections; and doing this in
multiple different programming languages on different plat-
forms (embedded, mobile, web) with different conventions,
data encoding schemes, etc.

Design Guidelines
Common patterns in our device survey (Figure 5) yielded the
following design guidelines:

Smartphone as gateway Leverage the smart phone as a
proxy from the local, body-area network to the Internet.

Multiple devices Simplify development and management of
multiple prototypes that can be distributed to users.

Display Enable developers to show collected data and other
user interfaces both on the web and on a phone.



Consumer Devices

Embedded
Sensing Display

Phone
UI

Relay
to cloud

Server
Aggregation/
Reporting

Web UI

Medical Devices

Student Projects
Barrel Gauge — — —

Driving Suggestions —

Retainer
Smart Water Bottle

—
—

— —

FitBit

Figure 5. Features of some motivating examples. fabryq focuses on sup-
porting embedded sensing, relaying data through a phone, and aggre-
gating and displaying info on the Web (green columns).

Run Application 
in web browser or 

on phone

Define application!
What kind of devices?

Developers
B D

Create More 
Instances

Register devices!
by demonstration

A

Write Fabryq.js 
Code 

C

E

Register devices  
by demonstration Select application Bind devices to 

application instance
Run Application  
in web browser or 

on phone

F G H I

one-time only
one-time only

Users

Figure 6. An overview of the process used to define and run a fabryq
application.

Abstract networking details Shield developer from net-
work connection management and data transfer details.

Lower threshold, high ceiling Enable users with limited
programming experience to write simple scripts in a single
language; enable experts to create new, complex devices.

Flexible software Enable developers to easily change appli-
cation code during deployment without having physical ac-
cess to phones or sensors.

Conversely we chose to avoid supporting the following cases:

No low-latency, high-throughput apps We focus on work-
ing with intermittently read sensor data where milliseconds
of latency are not important.

No offline operation without a cloud server We target pro-
totype deployment where the experimenters are in the loop;
we do not target the scenario of BLE devices talking to
phone applications without code running in the cloud.

CREATING AND DEPLOYING FABRYQ APPLICATIONS

BLE fundamentals
BLE is a wireless protocol for communication between a cen-
tral device (i.e., a mobile phone) and one or more peripheral
devices. Peripheral devices expose BLE characteristics —

short, named pieces of information (typically 1-20 bytes) sim-
ilar to variables, which are organized in a Generic ATTribute
profile (GATT) table and identified by unique hex UUIDs.
Central devices can perform three operations on characteris-
tics: GET, SET, and NOTIFY. A GET signifies that the BLE
central device would like to retrieve the contents of a charac-
teristic from the BLE peripheral. A SET means that the BLE
central would like to modify the contents of a characteristic.
A NOTIFY signifies that the central would like to be notified
if the value of a characteristic changes. Operations happen at
a set connection interval, a time window when the central and
peripheral have decided to communicate. By adjusting the in-
terval, battery life of more than one year can be achieved from
a coin cell battery: one of the hallmarks of BLE. A more de-
tailed description of BLE can be found in [9, 3].

Defining the first prototype
A key design goal of fabryq is to make it fast to develop an
initial prototype, while making it possible to later scale to
multiple users and multiple devices. We introduce a running
example to illustrate how to write and deploy such applica-
tions. Refer to the video figure for a demonstration of the
creation of the example application. For example, a hypothet-
ical HydrateForHeartHealth (HFHH) application may track a
user’s liquid intake over the course of a day and correlate it
with heart rate variability. It could require information about
liquid level in a smart cup (a custom device also created by
the developer) and data from a heart rate monitor (an off-the-
shelf device). Developers then write application code (using
the fabryq JavaScript API) that references this hardware con-
figuration. To deploy or test an application, the configuration
must be linked to particular devices (a specific cup and a spe-
cific heartrate monitor).

Demonstration of devices: Our HFHH developer begins the
development process by registering her devices in the fab-
ryq mobile application. We have developed a demonstration-
based workflow that allows developers to efficiently define
abstract device requirements of their application through
physical demonstration, without restricting the application to
later rely on these particular physical devices. On her phone,
she intiates a scan of nearby BLE devices and selects the
discovered entries for her cup and heart rate monitor (Fig-
ure 6A). fabryq then traverses these devices’ GATT tables
and either creates new device type entries for them on the
server and phone, or recognizes them as instances of previ-
ously created devices types. The developer can then create
their application by selecting any number of their devices and
naming the new application (Figure 6B).

Abstraction: Fabryq separates device types, which are used
to set and check requirements for running applications and
concrete devices, which are entries corresponding to a sin-
gle physical peripherial (Figure 7). Registering the devices
with fabryq creates corresponding device types (shown in the
center of Figure 7). Similarly, defining a new application au-
tomatically creates a new application type (top right of Fig-
ure 7, Figure 6B) that can be reused by many instances. The
application defintion lists the numbers and kinds of devices
required by the application as well as the code used for that



is-a
HeartRate Monitor

Characteristics
HR Value

is-a
Smart Cup Type

Characteristics
Liquid consumed

HydrateForHeartHealth Type

has-a Required Devices
HeartRate Monitor 
Smart Cup

ha
s-

a

Device Types Application TypeBLE Devices

Wahoo Monitor ID:1 

Drinke Cup ID:2

HydrateForHeartHealth
Bound Devices

is-a

HR Monitor: ID:1 
Smart Cup: ID:2

Application Instance

Figure 7. Overview of fabryq application configuration. Device types
abstract specific BLE devices and their GATTs. Application types are
defined by a list of device types they require. Application instances link
specific real-world devices with their digital proxies.

application. In this case, the HFHH application definition
is linked to the “HR Monitor” and the “Smart Cup” device
types. The application instance represents a single installa-
tion of the application and links the application’s code with
the specific devices used by that application. Now that the
application is configured, the developer can open an auto-
generated boilerplate application up in the fabryq online code
editor and begin programming.

Writing code: In general, fabryq programming consists pri-
marily of issuing GET/SET/NOTIFY commands and writing
callbacks to handle the returned data. Applications all run in
a web browser — this means they can be opened either on a
remote server or PC, or on a mobile device acting as a gate-
way. In this case, our developer would like to access the heart
rate characteristic of her BLE heart rate monitor.In the code,
the developer does not need to reference particular, physical
device identities, but only their types (Figure 6C). When the
application is run, the application’s instance ID automatically
links the code to the concrete devices used by the instance.
This makes the code portable across many instances. In this
example, she obtains the current user’s heart rate using a GET
command. Using fabryq’s JavaScript API, this is one function
call with embedded callback lambdas:
$(function() {
app = new fabryqApp();
app.connect(connected, handler);

});

function connected(){
//get all types for this app
var dts = app.getDeviceTypes();
//get first Heart Rate monitor
var device = dts["HeartRateMon"][0];

device.GET("hr_service", "hr_characteristic",
function(action){
// action.result contains the heart rate value
});

}

The hr service, and the hr characteristic con-
stants are human-readable aliases for the hex BLE UUIDs.
fabryq automatically translates these for supported UUIDs
and accepts ordinary UUIDs as well. SET and NOTIFY com-
mands can be used in a similar fashion.

Installing and running the application
A user of a fabryq-enabled web application performs three
steps: first, they install the fabryq mobile application. Sec-
ond, they register their devices, as a developer would (Fig-
ure 6F). Next, they select the fabryq applications they plan to
use (Figure 6G) and choose which of their devices should be
used for it Figure 6H). Finally, they launch the application in
one of two ways:

Sporadic interaction is initiated by opening an application
URL on the phone. Communication with BLE devices and
the server only happens when a user is directly interacting
with an application’s user interface on their phone. In con-
tinuous monitoring, sensor data is collected even when the
user is not engaged with the application. For sporadic inter-
action, the user launches their desired application from inside
the fabryq mobile app on their phone (Figure 6G). For con-
tinuous monitoring, they open the equivalent URL on a PC or
server, where the client browser can stay open continuously.
By using fabryq’s UI pushdown technique (described below),
developers can still show user interfaces on a user’s phone,
even if the application itself is running in a different browser.

Supporting multiple devices and mobile gateways
To scale from a single prototype to a multi-user deployment,
developers now benefit from the abstraction that fabryq has
generated for them. They can define new application in-
stances using a web form (Figure 6E). Each instance can then
be run by a different user who can tie the instance to their own
hardware devices on the first launch.

Our example considered a situation in which an application
has one gateway and two BLE devices. However, in order to
expand the number of scenarios in which fabryq can be used,
we support the use of multiple gateways and shared gateways
as well. In the simplest case, one application requires one pe-
ripheral and the user has one mobile gateway device that al-
lows data to flow from application to peripheral (Figure 8A).
One application may also allow the user to “roam” with their
BLE peripheral, periodically coming into contact with one of
multiple gateways devices, as in Figure 8B. In order to work
around security restrictions (some OSes scramble the BLE
MAC addresses they show to applications), the devices must
each be registered once with each smart phone gateway the
user wants to use. Finally, users may opt to share their iOS
device’s BLE radio with other users. In this configuration,
users would be able to connect their peripherals to fabryq us-
ing other users’ iOS devices. As a simple example, a cyclist’s
heart rate monitor could connect to his heart rate application
while he cycles without an iOS device, provided he comes in
contact with other users’ devices. Depicted in Figure 8C, this
“crowd sourced BLE internet access” is inspired by emerging
applications such as Tile 1.

Sharing devices’ connections of course has privacy implica-
tions. Fabryq provides some control: both devices and gate-
ways default to not shared when they are first registered. Ad-
ditionally, a device can only connect through a shared gate-

1http://www.thetileapp.com



way when both the device and gateway have been designated
as shared by their respective owners.

FABRYQ IMPLEMENTATION
One main function of fabryq is analogous to a router: fabryq
commands (GET, SET, NOTIFY) can be sent to the server by
the JavaScript client API and routed to an appropriate BLE
peripheral via a mobile device running the fabryq gateway
app. fabryq can also show user interface on a mobile device
connected to a BLE peripheral. The mobile gateway also dis-
plays system status, and is used for registering new devices.

fabryq mobile
In order to include a useful and flexbile BLE router as a part of
the fabryq platform, we had to solve two technical challenges:
inconsistent identification of a user’s peripheral devices, and
poor correlation of command requests with responses.

Firstly, on iOS (our current target platform), a unique identi-
fier is generated for every bluetooth peripheral for every iOS
application, i.e., three applications connecting to the same pe-
ripheral (even on the same device) will be passed a different
unique identifier for that peripheral. This behavior provides
some degree of privacy and security but presents a challenge
in managing peripherals across applications and devices.

Secondly, in all current BLE central implementations, call-
backs from GET, SET, and NOTIFY commands are shared
and can return in a different order than their initiating calls.
While these callbacks do contain the characteristic UUID that
is being queried, if one is repeatedly calling GET, SET, and/or
NOTIFY on a single characteristic, maintenance of proper
callback order becomes a formidable task for the developer
that must be reimplemented for each application.

The fabryq mobile application and its JavaScript API have
been implemented to overcome these limitations. Specifi-
cially, we have devised the following control flow, shown
in Figure 9, resulting in minimal extra user interaction with
no additional developer code. Commands (i.e. GET, SET,
NOTIFY) to be performed on devices are queued on the
server by calls to the fabryq javascript API. If commands are
found for the user’s devices, the fabryq mobile application
first determines if it has an OS-specific BLE-identifier for that
device. If it does, the action is performed and the result re-
turned to the server. If not, all actions for that device are

Roaming Dynamic
“Data Mules”

Personal
Devices & Apps

User A User B User C

Fabryq 
Server

User’s
Phone

BLE
Device

Figure 8. Possible application configurations enabled by Fabryq: A)
single user, single device. B) A user’s peripheral accesses fabryq through
more than one mobile device in a “roaming” pattern C) Users who agree
to jointly run an application can also act as ”data mules” and pick up
data from environmental sensors whenever they walk by such a sensor.

Scan for and connected 
requested devices

Tasks 
on server?

Are the 
requested devices 

connected?

Perform commands

Yes

Yes

Yes

No

No

No

Tasks 
for registered 

devices? 

Figure 9. Control flow for fabryq mobile. If commands (i.e. GET, SET,
NOTIFY) are found for the logged-in user’s devices, fabryq mobile first
determines if it has an OS-specific BLE-identifier for that device. If such
a “link” between OS-specific identifier and device exists, the action is
performed and the result returned to the database. If not, it will not
perform that action until a link is established by the user with the fab-
ryq mobile app. Next, the gateway will search for any devices that are
requested and have been linked, but are not currently connected.

ignored and skipped. This allows certain devices to be paired
with some gateways and not others without causing issues.

By decoupling issuing GET, SET, and NOTIFY commands
from performing them, we also address BLE’s command or-
dering limitation. fabryq keeps track of the order in which
commands for a given device are issued and executes them in
the same order. The result of each command is then associ-
ated with the issuing action and passed to the client.

UI Pushdown with SHOWURL
In order to make it easier to show user interfaces on a phone
when the main fabryq application is executing in a browser
elsewhere, the API offers a SHOWURL command. Instead
of passing the command over BLE, it shows a URL on the
fabryq mobile application itself. In this way, a peripheral-
specific UI can appear on the mobile device connected to
it. Since SHOWURL is simply opening a web page,fabryq
JavaScript API calls are also available. This utility feature is
intended to be used with continuous monitoring applications
for alerting the user to events or requesting input.

Fabryq Server and Javscript API
We have implemented a JavaScript API to enqueue and de-
queue commands and poll their results. These commands are
intended for BLE peripherals but originate on the cloud: our
peripheral proxy model. Each GET, SET, or NOTIFY has
an explicitly defined callback that is passed to the originating
JavaScript function call (and per common JavaScript coding
practice can be defined in-line).

fabryq contains several features to simplify issuing com-
mands and using their results. Behind the scences, fabryq
automatically queues actions to ensure that lists of actions are
submitted, and therefore executed in the issued order. fabryq
also supports both the lambda-function handler model as well
as a tree-structured event handler model inspired by existing
GUI systems such as Swing [11]. In the tree model, new data
and error events start at their corresponding device object and
“bubble up” the hierarchy until they are handled, next to their



Magnetic Door Sensor

Page Served !
Indicator

Bi-Pedal Text Entry Wearable Sensory Ataxia Feedback Web Page Load Indicator

μFabryq Security AlarmHome Temperature and Door MonitorHeart Rate Visualization

A B C

D E F

Figure 10. Fabryq applications created by the authors and users lever-
age both off-the shelf BLE devices (A,B) as well as custom hardware
(C-F), including the µfabryq platform (C).

device type, then to the app itself. Handlers can be attached
at any point in the tree for maximum programming flexibility.
For instance, a given developer might decide that a device dis-
connection event should be caught by a device-specific han-
der, new data events should be processed by a handler for
all devices of a given type, and an application-level handler
could process unexpected or uncommon events.

One limitation of the JavaScript API is the requirement to poll
the server to discover the status of an action. Trading off sim-
plicity and portability for latency, future implementations of
the interface could utilize WebSockets or other push notifi-
cation schemes to allow for instant callbacks to JavaScript as
soon as fabryq mobile has interacted with the BLE peripheral
and updated the log. However, in cases where both the client
program and the gateway device have a robust internet con-
nection, the latency from a BLE event’s trigger to the update
on the client is generally under one second.

The core fabryq implementation was written in about 10,000
lines of code split across iOS (fabryq mobile); PHP and SQL
(fabryq server) and Javascript (fabryq API).The heterogeneity
of the codebase exemplifies the complexity of development
that fabryq seeks to overcome.

Support for long-running applications
While fabryq’s base functionality is useful for communicat-
ing with BLE devices while a browser window is open, a fab-
ryq application cannot respond to events such as a device dis-
connection or new data once the browser is closed. To address
this issue, a startAgent() fabryq command can open a
URL on a remote server and keep the page alive. This facility
provides a simple route to turn an existing fabryq application
into a long-running application by copying the program logic
into the “agent” web app and instantiating that agent in the
“client” version of the app. The UI of the client can then be
updated based on messages passed by the agent.

EXAMPLE APPLICATIONS
The authors and several users have created example applica-
tions to demonstrate working with both off-the-shelf and cus-
tom peripherals. When creating demonstrative examples, we
sought to investigate fabryq’s ability to work with an arrary

of different devices and services, at different levels of com-
plexity and development time. Images of several example
applications can be found in Figure 10.

We examined people’s ability to use fabryq on three different
timescales: one hour “lightning hack sessions”, a half-day
hackathon, and longer-term projects, where users wrote code
over the course of several days. In order to aid users’ pro-
totyping and development process, we provided several BLE
devices:

Texas Instruments SensorTag A small commercial BLE
device that contains buttons, as well as inertial, magnetic,
and climate sensors.

LightBlue Bean A BLE device with a built-in RGB LED
and accelerometer, pre-configured to expose LED control
over BLE characteristics.

µfabryq A custom prototyping device flashed with a
firmware we created that exposes I/O and an SPI periph-
eral over BLE to enable connection of other sensors and
actuators.

mBed nRF51822 ARM Cortex microcontroller with on-
board BLE radio; programmed in C++; for experienced
embedded developers.

Author examples
As a test of the complexity ceiling of fabryq and to inves-
tigate how fabryq can support the design of custom BLE
peripherals, we created a device with functionality resem-
bling Arduino [19], a popular microcontroller, while offer-
ing wireless communication and Javascript programmability.
µfabryq, shown in Figure 10C, is a Bluetooth system-on-chip
based on the BlueGiga BLE113 module. We developed cus-
tom firmware that allows Arduino-like commands to be used
over BLE. For example, there is a custom BLE characteristic
that controls the output of all GPIO pins (high or low) and an-
other that controls the pin direction (input or output). Using
only the fabryq JavaScript API and jQuery, we then created
the µfabryq JavaScript API, an extension of the main fab-
ryq API, which maps Arduino commands to JavaScript func-
tions, executing them over fabryq and returning their result
to the browser. A list of these µfabryq API functions, along
with the fabryq JavaScript API functions, is in Table 1. The
µfabryq code base is about 1000 lines and demonstrates how
other tools can be constructed on top of the fabryq substrate.

We also evaluated how fabryq can be used with multiple pe-
ripherals. Our home monitoring system consists of several
TI SensorTags and µfabryq boards. The devices are placed
around the house and can detect whether doors are open or
closed, the temperature and humidity in the house, as well as
room occupancy using PIR sensors. Data from the devices
is collected by a single fabryq Gateway in the house and is
monitored by a fabryq agent. Current data is displayed on a
fabryq web app shown in Figure 10B that communicates with
the agent via fabryq’s message passing interface.

As an example of fabryq’s utility for more real-time appli-
cations, we also created a class polling application using TI
SensorTags. Several tags can be distributed to a group of peo-
ple and each can vote for one of three options using the Tag’s



Phone’s
BLE Stack

Phone’s
Inet Stack

Embedded
BLE Stack

µFabryq
Firmware

Fabryq 
Client Lib

Fabryq Phone
Fabryq 
Server

Fabryq 
JS API

Server’s
Inet Stack

Bluetooth 
Low 
Energy

HTTP over
WiFi / 3G

Embedded 
Device

Smart Phone Web Server Web Client

µFabryq 
framework

Application
dev’s code

Fabryq 
framework

Existing network 
stacks/devices

µFabryq 
Library

Developer’s 
Application

Figure 11. µfabryq offers direct access to embedded peripheral pins in
a manner similar to the popular Arduino platform. It was implemented
using Fabryq and shows the expressivity of the framework. It comprises
a BLE firmware and a JavaScript library written using the Fabryq JS
API.

built-in buttons. A fabryq web application displays the results
of the vote in real time. The webpage can display which tag
voted for which option, if necessary.

We also created a simple fabryq application that can plot the
heart rate of a user using any heart rate monitor that exposes
the standard BLE heart rate service. In addition to showing
the heart rate on the user’s web browser, the application uses
the SHOWURL fabryq command to also display the plot on the
fabryq mobile application currently communicating with the
heart rate monitor (Figure 10A ).

In all of these applications, fabryq simplifies configuring the
devices and getting their data. In general, writing the code to
get the data from the relevant devices took only a few min-
utes, while creating, testing, and tweaking the user interfaces
(which is beyond the scope of fabryq) took hours.

User examples
In order to evaluate how effective fabryq was for enabing
developers to more easily create networked devices, we had
users create applications in multiple scenarios.

One Hour: The one hour session participants were all com-
puter science graduate students who were familiar with web
programming, but not embedded programming. The sessions
produced three example applications with pre-configured de-
vices, each completed in an hour that included setup time, un-
derstanding fabryq and development. The most compelling
of these, “Website Popularity,” (Figure 10F) was built by a
user who owned a website with bursty traffic patterns and
she wanted a simple indicator of when a burst of activity
was occurring. Her app would check a REST endpoint on
her server (created during the development time) that would
report whether a page had been served since the last check.
When the call indicated a page had been loaded, the app
would instruct the Bean to blink its LED once. Other users
employed the SensorTag as a button to control sound effects;
and a Bean LED as a secondary output for a simple game.

Half Day: To evaluate the utility of µfabryq, which encour-
ages the use of custom electronics that take longer to con-
struct, we planned a half-day session to allow for ideation,
circuit construction and coding. The participants were all un-
dergraduate or master’s students primarily from a Biomedi-

fabryq JavaScript API
Function Description

GET Request a BLE characteristic
SET Set the value of a BLE characteristic

NOTIFY Receive notification of a changed BLE char.
SHOWURL Show a URL on the connected fabryq mobile app.
startAgent Open a fabryq application on a remote server.

µfabryq JavaScript API
Function Description

DigitalRead Read a pin’s binary value
DigitalWrite Set a pin’s output voltage to low or high

PinMode Set a pin to input (w/ pullup) or output
AnalogRead Read a pin’s input voltage using an ADC
AnalogWrite Set a pin’s output voltage using PWM
AttachServo Enable servomotor control on a pin
ServoWrite Set a pin’s servo to a particular location

AttachInterrupt Attach a JS function to a pin interrupt
SPIbegin Enable/configure the SPI on µfabryq

SPItransfer Perform full-duplex SPI communication
Table 1. Function list for the microfabryq JavaScript API (top) and the
µfabryq JavaScript API (bottom).

cal Engineering background most of whom had limited ex-
perience with either web or embedded programming. In our
hackathon, two groups produced a networked heart-rate mon-
itor and tic tac toe board. The heart rate monitor cleverly
connected an existing 5V light-based heart rate monitor to
the 3.3V µfabryq board using PWM, an RC circuit, and the
µfabryq board’s A/D converter. The tic tac toe board used
GPIO pins to digitize the state of the board and displayed it
on a web page.

Class projects: Fabryq was also available to students in a
course on interactive device design at our institution (its use
was not required for the class). One student incorporated a
SensorTag into a hands-free text entry device (Figure 10C)
during a one-week assignment. A second group of students
incorporated fabryq into a wearable medical device for pa-
tients with sensory ataxia (loss of feeling in their feet – Figure
10E). The StepSense device takes pressure readings from cus-
tom shoe insoles and transforms them into vibration feedback
delivered to a patient’s back. Fabryq was used to transmit
step pressure information to a web browser, where a physi-
cian could monitor the operation of the device. The class
projects were both created by undergraduate EECS students.

Lessons learned
Successes
Many of the participants appreciated fabryq’s ability to sim-
plify what would otherwise be a complex networking task.
Instead of writing code for an embedded device, a mobile
app, and a server, participants were able to get started quickly
and write functioning applications using only JavaScript in
the browser. One participant remarked, “It’s really, really
easy to use, especially compared to the complexity of what it
accomplishes. I think the current API and the general spirit of
the language’s structure makes it really intuitive to use.” fab-
ryq made it easy for people with little hardware experience to
prototype using embedded devices. Reflecting on a one hour
session, another user said, “The API was very simple to use!
I can’t believe you can just tell an LED light to flash and it
will do so. Hardware has always seemed very scary to me.”



fabryq also shows potential for simplifying the construction
of multi-device applications. When designing a native iOS or
Android application, the complexity of BLE communication
balloons as more devices are added. Thanks to the abstract
nature of specifying fabryq applications, adding compatibility
for a new device to a multi-device application like the home
monitor is as simple as scanning any new devices with the
fabryq app and adding them to the application’s requirements.

fabryq’s structure also gives it a power and flexibility advan-
tage over WiFi-based systems. In terms of power, commu-
nicating frequently with the Internet and BLE does consume
extra power on the gateway device, however the use of BLE
over WiFi helps save power for wearable or embedded de-
vices. In a way, this approach shifts the burden from embed-
ded devices whose batteries should last as long as possible
(weeks or months) to the gateway’s battery that many users
recharge daily. In terms of flexibility, fabryq-connected BLE
devices do not have to manage authentication to local WiFi
networks or the burden of maintaining an IP stack.

Challenges
The largest challenges that the participants faced involved
understanding the somewhat abstract nature of fabryq appli-
cations and managing application failure modes. Although
specifying applications in a abstract fashion allows fabryq
apps to flexibly work with different compatible devices, com-
prehending the initial concept delayed the progress of some
participants. In response, we added the ability to create a
single concrete prototype first, and later abstract its hardware
requirements to launch multiple instances.

The second main challenge relates to recognizing and deal-
ing with errors for both developers and users. When possible,
fabryq tries to shield the developer from the complexity and
uncertainty of networking. However, there are times when
the system needs to recognize failure states and inform the
user in a sensible way. Early versions of fabryq were not
explicit enough in informing the developer about error condi-
tions. This prompted us to design our event handling-based
method of reporting errors for the present version of fabryq,
where errors are handled flexibly by a developer’s program
and unhandled errors are printed to the JavaScript console.

LIMITATIONS

Design Limitations
Fabryq makes a fundamental tradeoff between performance
and ease-of-authoring: all commands require complete
round-trips from app to cloud to phone to device and back.
We chose this architecture to facilitate prototyping and pri-
oritized simplicity of development. Offloading computation
to the phone or caching data there are interesting avenues for
future work, but will necessarily impact ease of development.

Fabryq-enabled applications require a priori knowledge of all
peripheral types prior to writing and running an application.
This allows robust connectivity across multiple mobile de-
vices and scalability of applications to many users and many

peripherals. There exist a subset of applications where the pe-
ripherals are not known, for example, an application specifi-
cally designed to discover any nearby peripheral, or applica-
tions that interact with beacons that change their identifiers
for security reasons. Such applciations are not supported.

Implementation Limitations
The current fabryq mobile application runs only on iOS, be-
cause BLE support on Android was not yet stable when we
began work. On iOS, there are stringent requirements placed
on background applications, such as timing limitations. Fab-
ryq thus works best when run in the foreground. However, we
successfully push these limitations in some circumstances.
Specifically, whenever the fabryq app receives new data from
an established BLE NOTIFY while in the background, iOS
briefly wakes the app up to handle the event. During that
time, we can post the result of the command and check for
and execute new commands, before resigning control. This
strategy works best when a constant stream of notifications is
arriving, as in the case of a heart rate monitor. However, when
no new data is arriving, the only way to ensure proper back-
ground behavior on iOS would be to use a jailbroken device.
This also led us to implement an OSX gateway application for
situations where extended monitoring is valued over mobility.

An additional limitation is poorly–defined command latency.
This is not a fundamental limitation; if the application con-
figuration and command log were located on the mobile de-
vice, the command latency could be readily defined. Instead,
our current implementation relies on polling to A) retrieve
command logs for fabryq mobile and B) retrieve results of
these commands by the JavaScript API. In future implemen-
tations, both of these polling mechanisms, which take place
over REST-ful interfaces, could be replaced by TCP/IP socket
schemes such as WebSockets. However, making the server
the central point for all interactions does allow for apps that
operate in geographically distant locations.

Finally, when programming fabryq apps, a developer can ei-
ther write code in a local text editor or using fabryq’s web
editor. Testing this code generally involves opening the ap-
plication in another browser window and having an iOS de-
vice running fabryq mobile physically near the peripheral and
presumably the developer. This yields five potential points
of interaction (two browser windows, an editor window, fab-
ryq mobile, and the peripheral) for the developer which can
become a challenge that could slow down the development
cycle. In future versions of fabryq, some of these points of
interaction can be eliminated, e.g., by providing an integrated
workbench that unifies writing, configuring and running ap-
plications, and by adding device simulation capabilities (e.g.,
through trace playback [20]). However, in practice, the appli-
cation configuration is finalized early in the development cy-
cle and the mobile app can run undisturbed, so the developer
primarily focuses on the browser running the application, the
editor, and the device(s).

CONCLUSION AND FUTURE WORK
This paper presented fabryq, a platform for rapidly writing
and deploying MGC applications that use smart phones as



proxies to control BLE devices from the Web. The develop-
ment of fabryq was guided by a survey of commercial de-
vices, medical wearable devices, and student projects. fab-
ryq’s main contribution is its protocol proxy model of exe-
cuting BLE protocol calls from the Web in order to simplify
the creation of applications of smart devices Future work on
fabryq will focus on also making the firmware layer updat-
able from the Web. Just as devices’ GATT tables have been
abstracted, future versions of fabryq may similarly absorb
device firmware as part of a single application that runs on
phone, cloud, and peripheral. Future fabryq applications will
have a “complete picture” of tasks to be executed on the pe-
ripheral, phone, and cloud. With this picture, individual tasks
can be parceled out to the appropriate layers, depending on
available network infrastructure, available hardware infras-
tructure, and the nature of the tasks requested.

ACKNOWLEDGMENTS
This work was supported in part by TerraSwarm, one of
six centers of STARnet, a Semiconductor Research Corpo-
ration program sponsored by MARCO and DARPA. Ad-
ditional support was provided by a Sloan Foundation Fel-
lowship, a Google Research Award, and the CITRIS Con-
nected Communities Initiative. This publication was also
supported by the National Center for Advancing Translational
Sciences, National Institutes of Health, through UCSF-CTSI
Grant Number UL1 TR000004. Its contents are solely the
responsibility of the authors and do not necessarily represent
the official views of the NIH.

REFERENCES
1. 6LoWPAN. http://en.wikipedia.org/wiki/6LoWPAN.

2. Ballagas, R., Memon, F., Reiners, R., and Borchers, J.
iStuff mobile: Rapidly prototyping new mobile phone
interfaces for ubiquitous computing. In Proceedings of
CHI, ACM (2007), 1107–1116.

3. Bluetooth Low Energy Specification Adopted
Documents. https://www.bluetooth.org/en-us/
specification/adopted-specifications/.

4. Buechley, L., Eisenberg, M., Catchen, J., and Crockett,
A. The lilypad arduino: using computational textiles to
investigate engagement, aesthetics, and diversity in
computer science education. In Proceedings of CHI,
ACM (2008), 423–432.

5. Carter, S., Mankoff, J., Klemmer, S. R., and Matthews,
T. Exiting the cleanroom: On ecological validity and
ubiquitous computing. Human–Computer Interaction
23, 1 (2008), 47–99.

6. Chaudhri, R., Brunette, W., Goel, M., Sodt, R.,
VanOrden, J., Falcone, M., and Borriello, G. Open data
kit sensors: Mobile data collection with wired and
wireless sensors. In Proceedings of the ACM DEV, ACM
(2012), 9:19:10.

7. Greenberg, S., and Fitchett, C. Phidgets: easy
development of physical interfaces through physical
widgets. In Proceedings of UIST, ACM (2001),
209–218.

8. Hartmann, B., Klemmer, S. R., Bernstein, M., Abdulla,
L., Burr, B., Robinson-Mosher, A., and Gee, J.
Reflective physical prototyping through integrated
design, test, and analysis. In Proceedings of UIST, ACM
(2006), 299–308.

9. Heydon, R. Bluetooth low energy: the developer’s
handbook. Prentice Hall, 2013.

10. Electric imp. http://electricimp.com/.

11. Java swing. http://docs.oracle.com/javase/7/docs/.

12. Kamath, S., and Lindh, J. Measuring bluetooth low
energy power consumption. Texas instruments
application note AN092, Dallas (2010).

13. Kaufmann, B., and Buechley, L. Amarino: A toolkit for
the rapid prototyping of mobile ubiquitous computing.
In Proceedings of MobileHCI, ACM (2010), 291–298.

14. Kindberg, T., Barton, J., Morgan, J., Becker, G.,
Caswell, D., Debaty, P., Gopal, G., Frid, M., Krishnan,
V., Morris, H., Schettino, J., Serra, B., and Spasojevic,
M. People, places, things: Web presence for the real
world. Mob. Netw. Appl. 7, 5 (Oct. 2002), 365–376.

15. Kinoma create. http://kinoma.com/create/.

16. Kuo, Y.-S., Verma, S., Schmid, T., and Dutta, P.
Hijacking power and bandwidth from the mobile
phone’s audio interface. In Proceedings of ACM DEV,
ACM (2010), 24:124:10.

17. Lin, F. X., Rahmati, A., and Zhong, L. Dandelion: A
framework for transparently programming
phone-centered wireless body sensor applications for
health. In Wireless Health 2010, ACM (2010), 74–83.

18. Marquardt, N., and Greenberg, S. Distributed physical
interfaces with shared phidgets. In Proceedings of TEI,
ACM (2007), 13–20.

19. Mellis, D., Banzi, M., Cuartielles, D., and Igoe, T.
Arduino: An open electronic prototyping platform. In
Proceedings of CHI, vol. 2007 (2007).

20. Newman, M. W., Ackerman, M. S., Kim, J., Prakash, A.,
Hong, Z., Mandel, J., and Dong, T. Bringing the field
into the lab: Supporting capture and replay of contextual
data for the design of context-aware applications. In
Proceedings of UIST, ACM (2010), 105–108.

21. Spark core. https://www.spark.io.

22. Spark core hardware characteristics.
http://docs.spark.io/hardware/.

23. Sterling, B., Wild, L., and Lunenfeld, P. Shaping things.
MIT press Cambridge, MA, 2005.

24. Tessel. https://tessel.io.

25. Villar, N., Scott, J., Hodges, S., Hammil, K., and Miller,
C. .NET gadgeteer: A platform for custom devices. In
Proceedings of Pervasive, Springer-Verlag (Berlin,
Heidelberg, 2012), 216–233.

26. Weiser, M. The computer for the 21st century. Scientific
american 265, 3 (1991), 94–104.

https://www.bluetooth.org/en-us/specification/adopted-specifications/
https://www.bluetooth.org/en-us/specification/adopted-specifications/

	Introduction
	Related Work
	Ubicomp Prototyping
	Connecting Sensors to Mobile Phones
	Internet of Things Networking

	Motivating Applications
	Design Guidelines

	Creating and Deploying Fabryq Applications
	BLE fundamentals
	Defining the first prototype
	Installing and running the application
	Supporting multiple devices and mobile gateways

	fabryq Implementation
	fabryq mobile
	UI Pushdown with SHOWURL

	Fabryq Server and Javscript API
	Support for long-running applications


	Example Applications
	Author examples
	User examples
	Lessons learned
	Successes
	Challenges


	Limitations
	Design Limitations
	Implementation Limitations

	Conclusion and Future Work
	Acknowledgments
	REFERENCES 

