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ABSTRACT 
US water utilities are faced with mounting operational and 
maintenance costs as a result of aging pipeline infrastructures. 
Leaks and ruptures in water supply pipelines and blockages and 
overflow events in sewer collectors cost millions of dollars a year, 
and monitoring and repairing this underground infrastructure 
presents a severe challenge. In this paper, we discuss how 
wireless sensor networks (WSNs) can increase the spatial and 
temporal resolution of operational data from pipeline 
infrastructures and thus address the challenge of near real-time 
monitoring and eventually control. We focus on the use of WSNs 
for monitoring large diameter bulk-water transmission pipelines. 
We outline a system, PipeNet, we have been developing for 
collecting hydraulic and acoustic/vibration data at high sampling 
rates as well as algorithms for analyzing this data to detect and 
locate leaks. Challenges include sampling at high data rates, 
maintaining aggressive duty cycles, and ensuring tightly time-
synchronized data collection, all under a strict power budget. We 
have carried out an extensive field trial with Boston Water and 
Sewer Commission in order to evaluate some of the critical 
components of PipeNet. Along with the results of this preliminary 
trial, we describe the results of extensive laboratory experiments 
which are used to evaluate our analysis and data processing 
solutions. Our prototype deployment has led to the development 
of a reusable, field-reprogrammable software infrastructure for 
distributed high-rate signal processing in wireless sensor 
networks, which we also describe.  

Categories and Subject Descriptors 
C.3 [Special-Purpose and Application-Based Systems]: real-
time and embedded systems, microprocessor/microcomputer 
applications, signal processing systems. 

General Terms 
Algorithms, Measurement, Performance, Design, Reliability. 

Keywords: Wireless Sensor Networks, Pipeline 
Monitoring, Water Supply Systems, Intel Mote Platforms. 

1. INTRODUCTION 
US water companies are under increasing pressure to improve the 
management of their ageing assets and optimize operational and 
capital expenditure. A recent study by the US Environmental 
Protection Agency (EPA) estimates that water utilities need $277 
billion over the next 20 years (2003-2023) to install, upgrade, and 
replace infrastructure [1]. Transmission and distribution projects 
represent the largest component ($184 billion) of this estimate. 
The threat of contaminant intrusion due to leaking pipes [2] or 
malicious human action will further increase the projected 
expenditure. Repairing and securing this infrastructure requires 
large investments of money and time, and therefore, it is essential 
to direct efforts to upgrading critical areas. Unfortunately, 
identifying the highest priority areas is a non-trivial task, because 
of the scale and age of the pipeline infrastructure and lack of 
operational data. Failures of large diameter (12” and greater) 
bulk-water transmission pipelines are of greatest concern as these 
are supply critical systems. While such failures are infrequent, 
when they do occur, they have dire consequences, including loss 
of life, severe interruptions in service, degraded fire fighting 
ability, damage to adjacent infrastructure and buildings, and 
multi-million dollar repair bills. 

In this paper, we describe PipeNet, a system based on wireless 
sensor networks which aims to detect, localize and quantify bursts 
and leaks and other anomalies in water transmission pipelines 
such as blockages or malfunctioning control valves. The system is 
also used for monitoring water quality in transmission and 
distribution water systems and monitoring the water level in 
sewer collectors. We are developing PipeNet in stages, as 
building such a monitoring system is a complex problem with 
many unknowns. In this paper we report results from the first two 
stages, during which we evaluated some of the critical 
components of PipeNet through a real deployment (Stage 1), and 
developed a series of algorithms for detecting and localizing the 
exact position of leaks which we tested under laboratory 
conditions (Stage 2).  

Operational pipelines are subject to complex, highly non-linear 
temporal and spatial processes that make it difficult to 
differentiate between faults and stochastic system behaviors. This 
makes detecting failures a challenging task, leading us towards a 
solution based on integrating remotely captured data from several 
sources, including: acoustic/vibration signals, velocity (flow) 
signals, and pressure transient signals. Acoustic/vibration signals 
are used for detecting small leaks that might be precursors for 
catastrophic bursts, while the analysis of pressure transients and 
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velocity (flow) enables prompt detection and localization of larger 
leaks and malfunctioning equipment such as air valves. 

In a previous study [3] monitoring operational transmission 
mains, we successfully demonstrated that continuously acquired 
high frequency time synchronized pressure and velocity (flow) 
data from multiple locations along a pipeline could be used to 
detect medium to large size leaks and malfunctioning equipment. 
This proof-of-concept was carried out by storing sensor readings 
on CompactFlash on a PC-104 embedded PC. Readings were 
collected manually and analyzed offline.  

Thus, PipeNet is the next generation system based on Intel Motes 
that addresses the limitations of this past work; it includes remote 
monitoring in near real-time, variable sampling rate and long 
battery lifetime. PipeNet also offers support for high data rate 
time synchronized data collection from multiple locations.  In 
contrast, current data acquisition practice within the water 
industry relies upon portable loggers and a limited number of 
remote monitoring stations which have low-duty cycle. These 
remote monitoring stations do not have the capabilities for high-
data rate acquisition, local processing or high-bandwidth 
transmission.  

In summary, the key features of PipeNet are: 

• A field deployable system of hardware and software that 
demonstrates the feasibility of measuring and collecting (in 
near-real time) hydraulic (e.g. pressure), water quality (e.g. 
pH) and acoustic/vibration data over long time periods.  We 
report on results of a 22 month trial in the city of Boston. 

• Algorithms, demonstrated in a pipe apparatus in our lab, that 
allow PipeNet to cross-correlate and analyze data at a 
gateway or server level to detect and locate leaks, perform 
online burst detection, and diagnose operational failures.  

• A laboratory tested reusable software infrastructure for 
deploying signal-processing based applications to facilitate 
quick prototyping and ultimately allow for in-the-field 
software upgrades of our pipe monitoring solution. 

In the remainder of this paper, we outline the design of PipeNet, 
the analysis algorithms we developed under laboratory conditions, 
and the results and evaluation of our initial field deployment. 

1. DEPLOYMENT OVERVIEW 
PipeNet requires high data rate sampling to accurately detect and 
localize leaks, aggressive duty cycling to ensure months of 
longevity, tight time synchronization for accurate data analyses, 
and long-range communication to get data from pipes in the 
ground to backend servers in our lab. These specifications 
required a solution with substantial processing power. 
We split the development process into three stages. During the 
first stage, we concentrated on the development and field 
validation of a small-scale prototype deployment. This consists of 
three clusters and each cluster had a single sensing node. The 
monitoring system was deployed in collaboration with Boston 
Water and Sewer Commission (BWSC) and it has been 
continuously operating since December 2004 through extreme 
environmental conditions. The purpose of the field trial was to 
evaluate our preliminary design in terms of durability of sensors, 
sensor nodes and gateways and reliability of communication 
under real operational conditions and within typical urban 

environment. We also obtained valuable information regarding 
the ease of installation, maintenance requirements and the total 
cost of ownership. The field deployment consisted of sensors to 
monitor pressure, pH and water level at three locations. During 
this initial field testing stage we did not attempt to demonstrate an 
end-to-end solution for detecting leaks and ruptures, which would 
require a much larger scale deployment. During the second stage, 
we concentrated on testing and validating some of the more 
advanced data acquisition and analysis techniques including time 
synchronized data collection and acoustic leak detection in a 
laboratory setting. The results from the field and laboratory tests 
are currently being integrated into the third stage, which will be a 
complete real-time monitoring solution. We describe the 
implementation and results from the first two stages here; we 
outline the design and requirements of the third stage in Section 5. 

1.1 Stage 1: Field Deployment and Validation 
The main components of the three tier PipeNet prototype 
deployed in collaboration with Boston Water and Sewer 
Commission (BWSC) are shown in Figure 1. The trial aims to 
evaluate a range of technical issues, including communication, 
reliability and long-term performance of sensors and packaging, 
ease of deployment, and cost of installation and maintenance. 

 
Figure 1: Overview of PipeNet Deployment 

The BWSC deployment focused on two major applications: (i) 
hydraulic and water quality monitoring of transmission and 
distribution systems including capturing pressure transient events; 
and pH; and, (ii) monitoring the water level in sewer collectors 
and combined sewer outflows. Combined sewer systems (CSSs) 
are designed to collect rainwater runoff, domestic sewage and 
industrial wastewater. During periods of heavy rainfall, the water 
volume in a CSS can exceed the capacity of the sewer system. For 
this reason, CSSs were designed to discharge excess wastewater 
to nearby streams and rivers. The combined sewer overflows 
(CSOs), are among the major sources of water quality impairment 
as the discharge contains human and industrial waste. Nearly 770 
large cities in the U.S. (mainly older communities) have CSSs 
[4].Three monitoring clusters were deployed, each with slightly 
different sensors and software configurations: 
Cluster 1 includes pressure and pH monitoring sensors in a 12” 
cast-iron pipe which supplies potable water. Pressure data is 
collected at 5 minute intervals for a period of 5 s with a sampling 



rate of 100 samples per second (S/s). The mote calculates the min, 
max, average and standard deviation values and sends it to the 
gateway. pH data is collected at 5 minute intervals for a period of 
10 seconds with a sampling rate of 100 S/s .  In this case, the mote 
transmits raw data to the gateway. The data is sent from sensors to 
a cluster-head via Bluetooth every 5 minutes. For measuring 
pressure, we modified an OEM piezoresistive silicon sensor that 
includes an ASIC compensation-based technology that achieves 
accuracy better than +/-0.2%, including the effects of non-
linearity and hysteresis. The sensor has a start-up time of less than 
20 ms, fast dynamic response and power consumption of less than 
10 mW. For monitoring pH, we use a glass electrode with an 
Ag/AgCl reference cell. We developed an immersion apparatus to 
immerse and position the probe into the centre of the pipe.  
Cluster 2 includes a pressure monitor in 8” cast iron pipe. 
Pressure data is collected at 5 minute intervals for a period of 5s 
with a sampling rate of 300 S/s. For this cluster, the mote 
transmits the raw data to the gateway. 
Cluster 3 is a water level monitor in a combined sewer outflow 
collector. As this is a particularly harsh environment, we decided 
to use hardware redundancy and implement a voting algorithm to 
identify sensor failures or drifts. For this purpose, we deployed 
three sensors: two pressure transducers at the bottom of the 
collector and an ultrasonic sensor on the top (Figure 2). 

 
Figure 2: Monitoring the water level in CSOs 

The pressure sensors are low-power devices consuming less than 
10 mW while the ultrasonic sensor is a high-power device 
consuming 550 mW. Therefore, we used the pressure sensors for 
periodic monitoring while the ultrasonic sensor was only used to 
verify the readings from the pressure sensors when their 
difference exceeded a threshold or when the water level exceeded 
the weir height. Data from the pressure sensors is collected in 5 
minute intervals for a period of 10 seconds with a sample rate of 
100 S/s. Average, minimum, maximum and standard deviation are 
transmitted to the gateway. We can stream data at a sample rate of 
up to 600 S/s by remotely reconfiguring sensors (see Section 2.1.) 

1.2 Stage 2: Laboratory Validation 
A laboratory pipe rig (Figure 3) was constructed to evaluate and 
illustrate our monitoring solution for detecting and pinpointing 
leaks using acoustic/vibration data.  Though the short length of 
the pipe does not accurately represent the wave propagation and 
dissipation mechanisms which occur in large diameter pipelines, 
it was a convenient way to implement and evaluate our software 
for pipeline signal processing and time synchronization. The 

straight section of the pipeline had a total length of 652cm and 
diameter of 1¼”. The pipe was made of Polyvinyl Chloride 
(PVC) which has much lower speed of propagation velocity than 
metal pipes. Leaks were generated under controlled conditions at 
two locations by installing valves (orifice leaks) along the pipe. 
Two dual-axis accelerometers (Analog devices ADXL203EB) 
were attached to collect vibration data generated by the simulated 
leaks. We experimented with simultaneously connecting these 
accelerometers to a data acquisition system (HBM Spider8), as 
well as with connecting each sensor to a Stargate gateway and 
time synchronizing the gateways through a GPS PPS (Figure 3) 

 
Figure 3: Laboratory pipe rig 

2. SYSTEM ARCHITECTURE 
In this section, we provide a detailed description of the hardware 
and software used in the tiered PipeNet system shown in Figure 1. 
The first tier consists of Intel Motes, equipped with a data 
acquisition board and a set of sensors. Motes are responsible for 
the data collection, local signal processing and relaying of data to 
the second tier via Bluetooth. They are battery operated, so 
optimal power management and energy conservation are major 
challenges. The second tier consists of a single board computer 
(Intel Stargate), which stores and relays data to the backend server 
(third tier) via a GPRS modem. 

2.1 Intel Mote Sensor Node 
The Intel Mote platform [5] is an advanced sensor node platform 
consisting of an ARM7 core, 64kB RAM, 512kB Flash and a 
Bluetooth radio. We designed a sensor board to interface the Intel 
Mote to various analog sensors used in PipeNet. The sensor board 
supports up to 8 analog channels. The analog-to-digital converter 
(ADC) is connected to a complex programmable logic device 
(CPLD) which is responsible for driving the ADC clock to 
achieve the desired sampling rate, and bridging the SPI interface 
of the ADC to the UART interface supported by the mote. 
We implemented Bluetooth scatternet formation and a tree routing 
algorithms to enable self configuring, self healing networks. In 
addition, we implemented a lightweight reliable transport protocol 
to support fragmentation and assembly of large data packets, as 
PipeNet motes frequently need to transfer messages of up to 100 
kB. A detailed description of these algorithms is presented in [5]. 
The 1st tier is similar in software and hardware architecture to the 
condition based maintenance deployment mentioned in [25]. We 
describe the principal differences from this deployment in the rest 
of this section. These differences fall into two broad classes; First, 
since we needed to support continuous capture of more data than 
what would fit in RAM, we were unable to use the store and 



forward networking option described in [25]. Instead, we 
implemented a reliable over the air streaming mechanism.   
Second, we needed more flexible configuration options from the 
backend server, storage of configuration parameters in flash, data 
summarization and local voting features. 
Programmable data acquisition configuration: Each mote 
stores a sampling configuration in non-volatile storage. The 
backend can relay a new configuration to motes through the 
Stargate. Configurable parameters include: sampling rate (limited 
to a max of 600 S/s), sampling duration, sampling channel, and 
sensor warm-up time. In addition, it is possible to instruct the 
mote to run the sampling regime with an adjustable period 
(periodic mode), or to run it only once (burst mode). 
Programmable sleep time: The mote periodically turns on, 
discovers the gateway, collects the required samples, transmits the 
data and goes back to sleep for a configurable time period. 
Reliable data streaming: Since the available RAM was limited 
(about 10K left), there was insufficient data storage to 
continuously buffer samples when using high sampling rates and 
durations. To support continuous sampling, we implemented a 
reliable streaming protocol based on the reliable transport 
protocol mentioned in [5], but with multiple buffers to 
compensate for possible throughput and latency variations. This 
enabled us to continuously stream data at rates of up to 600 S/s.  
Data processing: For our field deployment, we added the ability 
to calculate and transmit a summary of a large sample that 
consists of the min/max/average values for pressure and PH data.  
Triggers: The mote can be configured to trigger data acquisition 
on a channel when a monitored channel exceeds some threshold. 
This feature is needed so that lower energy sensors activate higher 
energy sensors when needed. This feature is used to trigger the 
ultrasonic sensor, providing sensor redundancy when the two 
pressure sensors disagree or their values exceed a threshold. The 
triggers and threshold values are remotely programmable. 

2.2 Stargate Platform 
The motes communicate from the manhole to a Stargate [6] based 
gateway deployed on a nearby lamppost (Figure 1). The Stargate, 
the GPRS modem and 802.11 radio are powered from the power 
lines at the lamp post. An Intel mote is connected to the Stargate 
through a UART interface; it acts as a bridge between the Stargate 
and the motes on the pipes. This cluster head is responsible for 
forming the sensor network, converting the configuration data 
coming from the Stargate and passing it to the correct sensor 
node, and for delivering data collected via the reliable transport 
protocol to the Stargate where it can be converted back into data 
files. These files are periodically sent to the backend via the 
GPRS link.  The Stargate is equipped with an 802.11 link to 
facilitate drive-by access for on-site configuration and debugging. 

2.3 Backend Server 
Data is relayed via the GPRS modem on the Stargates to a 
backend server running in our lab. Data transfer is handled via 
standard Linux tools: a cron script periodically initiates a 
connection from each Stargate to the server, and the secure copy 
tool (scp) is used to transfer data files containing sensor readings. 
After an scp transfer has completed successfully, the files are 
deleted from the Stargate. This ensures reliable delivery, as scp 
computes an end-to-end checksum over the file on the sender and 
receiver and ensures that they match before signaling that a file 

was successfully transferred. The data files are then loaded in a 
Postgres database that stores the individual sensor readings. Users 
can browse these sensor readings by connecting to an Apache 
Web server running on the server. The web site uses Google 
Maps/Google Earth to allow users to select and browse the sensor 
locations of interest. Once users have selected a sensor location, 
they can retrieve data corresponding to a user-specified date / 
time range and sensor type and can visualize the data [7]. 

2.4 Reusable Dataflow Processor 
PipeNet required constructing several high data rate, signal 
processing-based applications. To facilitate this construction, we 
developed a software toolkit, the PipeNet Analysis Engine, that 
makes it possible to rapidly build applications as data flow graphs 
of signal processing operations [8]. These data flow graphs 
consist of a collection of “boxes” or “operators”, each of which 
represents a data acquisition, analysis, or transformation step in 
the processing of PipeNet data. Data samples are passed between 
operators as n-ary tuples, where each field of a tuple is a primitive 
data type such as an integer, float, string, or array. Operators may 
add additional fields to tuples, filter out tuples, create new tuples, 
or modify fields of tuples.  Figure 4 shows an example of a data 
flow graph that uses a power-spectrum decomposition (PSD) to 
detect the presence of a leak from an accelerometer. Boxes 
represent operators, and arcs the flow of data between operators;  
arcs are labeled with the types of the tuples that flow along them..  

 
Figure 4: Dataflow representing local leak detection algorithm 
Application developers can then build data flow graphs using 
XML and pass them to the PipeNet Analysis Engine for 
execution. The Analysis Engine runs in Linux, and hence can be 
placed either on the backend server or on the Stargates.  It 
includes a wide range of operators, including FFT, Wavelet, and 
power-spectrum decompositions, relational join and select, a 
number of signal processing filters, and a range of arithmetic 
operators. Due to space constraints, we omit the data flow graphs 
for all of the analyses described below; see [8] for details. We are 
extending this data flow system into a fully featured stream data 
processor with a novel query interface called WaveScope [9]. 

3. DATA ANALYSIS OVERVIEW 
This section describes the analytical steps we have developed for 
processing the data.  These analyses ran in our lab deployment but 
were not deployed in the field. Figure 5 presents a high level 
description of the different analysis paths. The first path is for 
detecting large bursts and leaks via pressure and velocity (flow) 
sensors. The second path is for detecting smaller leaks via 
acoustic/vibration data. The third path concentrates on a different 
set of applications such as monitoring water quality in 
transmission and distribution water systems, and monitoring the 
water level in sewer collectors. 



The first analysis path transmits readings at high rate to gateways 
for processing and near-real time detection of bursts. Because of 
the power consumption demands of the continuous sampling and 
frequent transmission, these nodes need to be powered and hence 
installed at locations such as pumping stations or reservoirs where 
power is available or at locations where solar charging systems 
can be used. A relatively small number of such sensors are needed 
as large ruptures generate pressure pulses that can be detected 
over a distance of several kilometers. 

 
Figure 5: Monitoring system for water transmission pipelines 

The second analytical scenario includes the periodic burst 
acquisition of pressure transients generated by operational 
variations such as changing the pumping regime which frequently 
occur (e.g. several times a day). These events are generally 
scheduled and this allows sufficient time for remotely defining the 
sampling regime for the battery operated sensors. The acquired 
data (600 S/s over a period of 5 minutes depending on the length 
of the pipeline) are compressed locally and sent to the server for 
centralized data analysis using a transient state estimator [10]. 

In the second analysis path (Figure 5), smaller leaks are detected 
by analyzing acoustic/vibration data acquired from densely 
spaced hydrophones (separated by about 600 m, SR 5KHz). As 
the analysis for small leaks is not time critical, it is carried out 
during hours of low background noise (e.g. 2-4 am) for short 
periods of time (3-5 minutes). 
A third type of analysis is used to detect blockages and overflow 
events in combined sewer collectors.  We describe these first two 
analysis paths in the following subsections.  We summarize the 
results from all three types of analyses in Section 4 below. 

3.1 Pressure Data Analysis 
A detailed description of the first analysis path is outlined in 
Figure 5. Pressure signals are continuously acquired at a sampling 
rate of up to 600 S/s depending on the required accuracy. In our 
current implementation, the mote continuously streams data to the 
gateway. Figure 6a shows a controlled burst event that was 
captured during a preliminary trial on a 36” cast iron pipe. Such 
bursts (large leaks) generate a low pressure pulse which 
propagates along the pipeline, as shown by the substantial 
pressure drop around t=320 in signal 1 in Figure 6b. On the 
gateway, the acquired data is processed using a simple integer 
Haar wavelet transform to detect pressure pulses (Figure 6c). The 
integer Haar wavelet transform uses low and high frequency 

decomposition filters and does not require floating-point 
operations. In future implementations, data will be processed on 
the powered motes without being stored. When the wavelet 
coefficients exceed a threshold, the most recent data samples will 
be written to flash and sent directly to the server. On the central 
server, further analysis can be done to model pressure wave 
propagation using data from multiple sensors.  This makes it 
possible to confirm the occurrence of a burst and approximately 
detect its location [10][11][12]. The analysis can also be used to 
detect malfunctioning air and control valves which can cause 
deterioration in the pipeline infrastructure. 

 
Figure 6: Haar wavelet coefficients (signal 1) used to detect 
and trigger acquisition and communication of a pressure 
pulse 

3.2 Acoustic/Vibration Data Analysis 
The second analysis path is based on analyzing acoustic/vibration 
data to detect and locate small leaks which are difficult to identify 
using hydraulic data. We adapted existing algorithms for 
performing leak detection and localization via cross correlation of 
acoustic/vibration signals [13][14] to be energy efficient by not 
requiring continuous transmission of the sensor signals from all 
nodes to a centralized location and implemented remote time 
synchronization. For our lab-based experimental setup we 
acquired vibration signals from accelerometers installed along the 
pipeline. The same type of analysis with appropriate analytical 
modifications to reflect differences in the mode of wave 
propagation and velocity will be used in future real-world 
deployments.. The main advantage of our approach compared to 
current practice is that the system could be deployed as a 
permanent monitoring solution which can carry out remote 
analysis and cross-correlation.  
Leaks typically manifest themselves in the acoustic signal as 
relatively high-magnitude noise in frequency bands that are 
characteristic of the type and placement of the pipe [15]. These 
characteristic noises, which propagate uniformly in both 



directions away from the leak, are generated by escaping water 
flowing through the rupture in the pipeline. Generally speaking, if 
there is no leak or other source of audio signal in the pipe, the 
signal at different sensors will be uncorrelated. However, if there 
is a leak, the sensors should all “hear” it, although the signal 
received by the different sensors will be slightly offset in time 
depending on their locations relative to the leak. Many of the 
methods proposed for time delay estimation tdelay, between noisy 
signals which are received at two or more spatially separated 
sensors are related through a generalized cross correlation 
approach [14][15][16]. We used a modified technique which has 
been proposed for time delay estimation when both the source and 
noise spectra are uncertain [17][18]. The time delay between the 
two signals, the distance between the sensors and the speed of 
propagation of sound in the pipe will allow us to compute the 
location of the leak relative to the sensors. 
Unfortunately, to continuously apply cross correlation in a 
wireless sensor network, we would need to stream data from all 
sensors to a common node/back-end server where the correlation 
is applied. Since this would consume large amounts of energy, we 
would rather exchange signals between nodes only where there is 
a strong indication that a leak may be occurring. Hence, we desire 
a technique whereby a sensor can locally determine that a leak is 
likely occurring with minimum additional communication. To 
perform this local analysis, the sensor nodes look for increased 
energy in the frequency bands that are characteristic of leaks. 
When such energy is detected on a single sensor node, that sensor 
can compress and send a short duration signal to a central server 
or a near-by sensor, which can perform the cross correlation 
operations described above. More precisely, the combined 
algorithm for leak detection and localization works as follows: 
• Nodes monitor their local leak status signal at pre-defined 

sampling intervals during hours of low background noise 
(e.g. 2,3,4 am), using an FFT to measure the energy (power 
spectrum) in the frequency bands that are known to be 
characteristic of a leak. In our lab deployment, we 
experimentally determined that these are the 70-140 and 
200-250 Hz bands, as shown in Figure 7.  This local analysis 
is shown in more detail in Figure 4. 

• If the difference between the energy in these bands in the 
current signal and the energy in a previously recorded leak-
free signal exceeds a preset threshold T, the node sends an 
alarm to the gateway, which is forwarded to the backend. 

• When the backend receives the alarm, it sends a request to 
the gateway controlling the mote that generated the alarm 
and its neighbors to collect 60 seconds of data collection.  
The collection is requested to start at a specific time to 
ensure that the samples from each of the motes are 
synchronized. A high accuracy time synchronization 
algorithm is run in the SN to ensure sub-millisecond 
synchronization, before the sampling is started.   

• When the sensor is done collecting the data, it compresses 
the data and sends to the backend for cross correlation with 
adjacent sensors. 

• Whenever the backend receives the data from all the 
addressed nodes, it applies cross correlation on the readings 
generated by the motes.  

• The backend determines the location of the maximum peak 
in the cross correlation signal.  If this peak exceeds a 

prescribed threshold P, it uses the time-lag of the peak to 
compute the location of the leak, as follows: 

locleak =  (locn + (locneigh - locn)/2) • tlag • vsoundPipe 

Where locn is the position of sensor n, in meters, along the 
axis of the pipe, locneigh is the position of the neighbor node 
with which cross correlation was performed, tlag is the time 
lag of the peak in the cross correlation signal, and vsoundPipe 
is the velocity of the speed of sound in the pipe material. 
This equation assumes that node n is closer to the “zero” 
location on the pipe, and that the time lag in the cross 
correlation is smaller as the signal gets closer to node n. 

 
Figure 7: A leak manifests itself as additional energy in 

certain frequency band 
We determined the values of the thresholds T and P 
experimentally, by analyzing a number of known-leak signals and 
choosing the peak height such that about 95% of the leaks would 
be detected according to both thresholds. In practice, the data 
acquired over a period of time will be used to automatically 
derive threshold levels based on the noise characteristics of the 
specific location and signatures from detected leaks. 

Determining vsoundPipe is non-trivial as waves propagate through 
pipes in a variety of different modes [20][23] and it also depends 
on the air content and temperature. We currently derive vsoundPipe 
from the velocity of propagation of the pressure transients. We 
anticipate that monitoring specific pipelines over a period of time 
will allow us to build numerical models which accurately predict 
vsoundPipe and the mode of propagation. For our preliminary work, 
we assume, as has been done in previous work [13][14][20], that 
the primary mode of propagation is the fundamental mode, where 
the leak noise is transmitted as a longitudinal traveling wave 
along the central axis of the pipe. In this case, the speed of 
propagation depends on the amount and type of fluid in the pipe, 
the bulk modulus of the pipe material, and the pipe diameter. We 
have experimentally measured this to be about 1400 m/sec in our 
pipe.  This number is substantially higher than the propagation 
speed in similar pipe materials reported by Hunaidi et al.[13] and 
Gao et al.[20] who determined the propagation speed to be about 
480 m/sec in their 200m plastic pipe. Although our pipe is also 
plastic, it is more rigid pipe because of the shorter length (6.5 m) 
smaller diameter and thick wall. All of these factors are expected 
to substantially increase the wave propagation speed. We have 
also observed substantial variations in wave speed in our pipeline; 
we hypothesize that this is due to the support configuration, as 
Hunaidi et al. [14] report more uniform propagation speeds over 
much longer lengths of pipe embedded in the ground.  



4. RESULTS 
In this section, we discuss the lab and field deployment results. 

4.1 Lab Results 
To measure the performance of our leak detection and localization 
algorithms, we simulated leaks at two locations along the 
pipeline, as shown in Figure 3. In this deployment, the leak 
locations were fixed, but we could vary the locations of the 
sensors to measure the effectiveness of our algorithms with 
different sensor positions. For these experiments, we took traces 
of data collected from the two sensors, and measured the 
effectiveness of our local leak detection and leak localization 
algorithms. For our preliminary assessment of the algorithms, we 
setup two monitoring clusters and streamed raw data (600 S/s) 
from the Intel Motes to the Stargates and then transferred the data 
to a PC where we carried out the analysis. We also used the 
Spider8 DAQ as a benchmark for the same tests as we acquired 
data with a sampling rate of 4.8 kHz. For each of 3 leak settings 
(no leak, leak valve one open, and leak valve two open), we 
varied the distance between the sensors in six increments between 
1.25 meters and 3.4 meters.  We ran ten trials with each sensor 
placement and each leak setting. Each trial consisted of a 
recording of 30 seconds. 

4.1.1 Leak Detection 
To measure the effectiveness of our leak detection algorithm, we 
took all of our data traces and divided them into non-overlapping 
segments. We then labeled each segment as “leak” or “no-leak”.  
We selected one of the no-leak segments as a base segment that 
other segments would be compared against, and took the 
difference between the power spectra in the 70-140 and 170-240 
Hz bands of all the remaining segments and this base segment. To 
compute the difference threshold in these frequency bands that 
would best separate the leak and no-leak cases, we separated the 
segments into equal sized test and training sets. We then used a 
decision tree classifier to find the best linear separators between 
the leak and no-leak training data, and used this classifier to 
predict the leak and no-leak values of the test data. 
Figure 8 shows the training data plotted according to the sum of 
squares differences between the energy in each segment and the 
base segment in the frequency bands that we identified as being 
relevant to leaks. Here, the no-leak and leak points are indicated 
as zeros and plusses, respectively. Notice that leak points have 
substantially more energy in these two bands. 
We learned a decision tree classifier with linear separators that 
attempts to maximize the number of correctly classified points in 
the training data set. We then applied this classifier to the test 
data. We repeated this process of separating test and training data 
randomly, learning a classifier on the training data, and testing 
100 times, and found that the classifier was able to correctly 
classify 87% of the points across all test data sets (σ =1.74%).   
As Figure 8 illustrates, the misclassifications tend to occur when 
detecting small magnitude leaks with small peaks.  Such  leaks 
are less important to detect and repair immediately.  Furthermore, 
by setting the classifier thresholds appropriately (e.g., in the 
region where the x1 sum-squared differences are > 2500 and x2 
sum squared differences are > 4000), it is possible to create a 
classifier that has more false negatives but has no false positive 
detections. 

 
Figure 8: Differentiating Leaks based on differences in 

frequency band content  (sensor 2) 

4.1.2 Leak Localization 
To measure the effectives of our algorithms, we measured the 
ability of our cross correlation algorithm to successfully localize 
the leak in a pipeline when two sensors detect a leak. We use the 
same data as in the leak detection experiments, except that we 
only cross correlate leak segments. In all cases, these segments 
were collected at the same time from the two sensors. Because the 
speed of propagation in our pipes is around 1400 m/sec, and we 
are sampling at 600 S/s using the Intel Mote, the best accuracy we 
expect to get is the distance traveled in one sample period, or 
about 2.3 m. This theoretical accuracy is reduced to 0.3m when 
using the data from Spider8 DAQ acquired at 4.8 kHz. Figure 9 
shows the mean and standard deviation of the error at different 
sensor positions across all leaky segments when localizing leak 2. 
Note that the error is about .2 m on average, with the standard 
deviation ranging .1 and .8 m when using Spider8. The standard 
deviation is particularly high where the sensors are spaced far 
apart as the speed of propagation at this separation appears to vary 
depending on the trial. This could be due to the proximity of the 
sensors to the pipe ends and the effect of standing waves and their 
reflections.   Results for leak 1 are similar. 

4.1.3 Discussion 
The above results show that both our local leak detection 
algorithms and our leak localization algorithms are fairly 
effective. Though local leak detection is not perfect, it detects a 
large fraction of the simulated leaks in our experimental pipeline. 
Our leak localization algorithm, though not error-free, localized 
leaks to within 30 cm when sensors were separated by 3m or less. 
Unfortunately, it is likely that the short length of our experimental 
pipe causes the traveling waves to superpose and form standing 
waves which can cause the observed variations in the wave speed. 
However, we are optimistic that the software and hardware we 
have developed will eventually provide a novel, low-cost solution 
for acquiring long-term data from field sites which will help to 
understand the physics of wave propagation and lead to the 
development of more efficient signal processing techniques.  
Long-term monitoring of pressure and acoustic signals from a 
particular pipe will also facilitate the development of more 
accurate pattern recognition and classification models. 



 
Figure 9: Localization error versus sensor separation 

4.2 Field Results 
The field deployment of our PipeNet prototype in collaboration 
with BWSC provided invaluable insight into a range of issues 
such as communication (Bluetooth & GPRS), ability to capture 
transient pressure waves, long-term system and sensor 
performance, and power management and reliability. During the 
initial stage (December, 2004 – July, 2005) we observed a series 
of problems with the gateways ranging from unexpected GPRS 
modem power modes to corruption of the Linux kernel. Detailed 
analysis of these problems identified design faults with voltage 
regulators and the watchdog timer on the Stargate platform. An 
external watchdog and automated reset feature were added to the 
gateway nodes to monitor gateway performance. The external 
watchdog timer reboots the gateway once every 24 hours or when 
the application software halts. Adding these features eliminated 
the observed problems and reduced the risk of unforeseen 
problems in the gateway software that required manual 
intervention by an operator. The gateways were replaced in July 
2005 and have been operating since (nearly fifteen months of 
continuous, trouble-free operation.) The Intel motes have been 
operating successfully without hardware failures for nearly two 
years. As mentioned earlier, a reliable transport protocol is used 
to transfer the samples from the motes to the gateway to ensure 
the receipt of all the samples from a collection cycle.  However, 
since the motes couple data acquisition with communication, if 
the mote is unable to connect to the gateway, it skips the 
collection cycle, goes back to sleep for the configured interval 
and tries again upon wakeup. However, all stored data on the 
gateway is eventually transmitted over GPRS to the backend 
server, as the gateway archives the data if a connection to the 
server cannot be established.  
Data transfer reliability was one of the main parameters that we 
wanted to investigate in the field deployment.  Figure 10 shows 
the packets received over the time span of the deployment (about 
500 days).  There are clearly long time periods where we had no 
data received. This was mainly due to the fact that we were not 
able to change the batteries for long periods of time (e.g. 5/14/06 
– 8/30/06).  A vertical line of missing data can be seen right after 
midnight.  This is due to rebooting the gateway at mid-night every 
day using the watchdog timer to ensure that we recover on daily 
basis from any potential lockups.  However, during the reboot 
cycle, the motes couldn’t communicate with the gateway and the 
data got dropped in the first collection cycle after the reboot. 
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Figure 10: Data transfer reliability in cluster 1 

We were concerned with the effect of weather on data 
communication, so we used data from the National Weather 
Service to identify weather events and compared it with packet 
loss data from the operational periods (days with some data 
transmission, i.e. batteries were not dead).  Figure 11 shows the 
CDF of loss rate per day from cluster 1.  The bottom curve shows 
the packet loss during snow days (>1 inch of snow), which clearly 
demonstrates that snow has an effect on packet loss (since there 
were only eight such snowy days during our trial, we view this 
effect as preliminary.) This increased loss is most likely due to the 
road-mounted antennas being buried under snow. The second line 
from the bottom shows the packet loss rate during rainy days (> .3 
inches of rain).  This effect is less severe than in the case of snow. 

 
Figure 11: CDF of loss rate for cluster 1 

We also calculated overall statistics for the three clusters which 
we present in Table 1. Since we configured the sleep time to be 5 
minutes, the inter-arrival time between collections is about 6 
minutes due to network formation (BT inquiry), data transfer and 
reboot delays.  This results in a maximum of 240 collections per 
day.  87% of the samples in cluster 1 were successfully received 
if we consider the operational days (days with functional 
batteries).  This is much higher than the 62% observed in cluster 
2. We believe this is mainly due to antenna problems.  After 
installing cluster 2, the road was resurfaced which destroyed the 
embedded antenna resulting in a larger number of non-operational 
days.  After this incident, we installed an antenna under the cast-
iron manhole cover which has a thickness of 4.5cm. This change 
had a poor effect on the communication reliability as the overall 
percentage of received connections dropped down to 42%. The 
performance significantly improved after we re-installed the 
antenna in the road surface. The performance of cluster 3 (CSO) 
was similar to the performance of cluster 1 despite the particularly 
harsh environment of operation including occasional chamber 
floods. The performance of cluster 3 drastically deteriorated after 
a period of 6 months. The reason for this sudden change was 
traced to a failure in the antenna connector following an 

batteries
not 
replaced



inspection visit by field maintenance staff. We attempted to repair 
the antenna connector in field but the repair could not secure the 
water tightness of the initial installation. This is the reason behind 
the smaller number of operational days compared to cluster 1. 

Table 1: Cumulative Data Loss Rates 
Cluster 1 2 3 
Number of days 553 524 553 
Number of operational days 399 267 269 
Total collections received 83238 39548 46708 
Total data received (kB) 166476 118644 93416 
Percentage of received collections 
during operational days 

87% 62% 72.3% 

Percentage of received collections 63% 31% 35.2% 

The battery life (6V 12Ah battery) has been consistent with 
duration of around 50-62 days. The Intel mote consumes 2 mA in 
sleep mode; 16 mA when sampling from the pressure sensor and 
A/D board; and about 30 mA when sampling and transmitting. 
The relatively short battery life is due to the aggressive data 
acquisition and communication cycles we have chosen (note that 
the Golden Gate Bridge deployment, which was a high rate 
sensing deployment based on the Crossbow Mote hardware, 
lasted only 23 days on an 18Ah battery [21]) We expect that 
separating the acquisition from communication and using 
communication intervals of 15 mins with adaptive data 
acquisition and storage will increase the battery life to beyond one 
year. The performance of the pressure sensors exceeded our 
expectations. The sensors have been operating since December 
2004 under extreme environmental conditions. The pH sensor, 
however, has required maintenance or replacement, with a 
periodicity of two weeks to six months.  

Data from the pH sensor over a period of one week is presented in 
Figure 12. BWSC raises the pH and alkalinity of the water to 
reduce its corrosiveness. This is deliberately done in order to 
minimize the leaching of lead and copper from service lines and 
home plumbing systems into the water. BWSC maintains the pH 
within 8.6-9.4. The data from our in-line sensor demonstrates the 
daily cycle of the variations in the pH. The pH is high during 
hours of high consumption (high flow velocity and low residence 
time of the treated water in the pipeline system) and low during 
hours of low consumption and longer residence time. BWSC 
collects and analyzes pH samples from 26 community locations 
on a biweekly schedule to measure pH levels. The system we 
demonstrated could successfully provide near-real time periodic 
data which is invaluable for the optimal control of the level of the 
pH and the dosing of the sodium carbonate (Na2Co3). 
The monitoring system was also successful in accurately 
capturing several critical operational events such as the 
emergency failure of the power supply for the Deer Island 
Sewage Treatment Plant in Boston on the 15th of October (Figure 
13) when approximately 25 million gallons of untreated sewage 
were released into Quincy Bay [22]. In this particular case, the 
availability of a larger number of deployed sensor nodes would 
have provided near real time information that would have allowed 
water utilities to utilize spare capacity of under-full collectors to 
significantly reduce the discharge volume during this event. 

 
Figure 12: pH Data 

 
Figure 13: Rupture event detected in Boston 

4.2.1 Summary of Lessons Learned  
The field deployment helped us to identify a number of important 
lessons that are of critical importance as we move towards a large 
scale deployment, including: Resilience to harsh environmental 
conditions: The sensor nodes operated well under extreme 
weather and installation conditions in Boston. Separating data 
collection from communication: Due to the large data samples 
and the lack of sufficient memory to store the data and forward it 
later, we coupled data collection with communication. This 
created a problem in cases where the sensor node could not 
connect to the cluster head.  In the future, we plan to completely 
decouple sensing from communication to ensure that we get 
samples periodically even if we do not send it to the Stargate until 
the communication can be re-established. Time synchronization: 
In the field deployment, we implemented crude time 
synchronization by having the Stargate periodically transmit a 
time beacon through the cluster head. We only needed accuracy 
in the order of seconds since leak localization was not a goal of 
the field deployment.  In future deployments, we will use a more 
accurate time sync mechanism that works within a cluster and 
across clusters; We currently use GPS PPS signals as in our lab 
setup on the gateway node, and are working on the 
implementation of an improved version of Vanderbilt’s FTSP [26] 
protocol for the Intel Mote2 sensor node platform. This will 
enable time stamping of samples across clusters to sub-
millisecond accuracy for time delay estimation (Section 3.2). 

5. CONCLUSIONS AND FUTURE WORK 
We described the PipeNet system that we developed for detecting 
and localizing leaks and failures in water transmission pipelines. 



PipeNet provides a number of noteworthy properties, including: 
automated detection of leaks and bursts in water transmission 
pipelines; near-real time operation with few false alarms; 
applicability to a range of pipe materials; inexpensive to produce, 
install, and maintain; high-frequency data collection; the ability to 
differentiate between sensor and system faults and a flexible, 
reusable data-flow based programming environment. We are 
optimistic that PipeNet will provide a much needed increase in 
spatial and temporal resolution of hydraulic, acoustic and water 
quality data that will improve the ability to understand and 
monitor large scale water supply and sewer systems.  
To fully realize this vision, we are currently developing the 
second revision of PipeNet based on our experiences from the 
field and lab deployments.  We are using the Intel Mote2 platform 
[24] which integrates many essential components to enable high 
performance, energy efficient data processing.  Its XScale 
processor has dynamic voltage and frequency scaling capability to 
allow applications to balance performance and energy needs by 
selecting speeds between 13 and 624 MHz. In addition, the 
processor includes a DSP co-processor to accelerate common data 
analysis primitives (e.g FFT, compression) thereby greatly 
improving performance and energy efficiency. This performance 
advantage will allow us to carry out the analysis and data 
reduction in real-time, thus reducing storage and power. Finally 
the Intel Mote 2 includes 32 MB of SDRAM and Flash enabling 
the decoupling of data collection and communication and a richer 
peripheral support which will provide higher data acquisition 
rates and improve sensor integration. We believe this new 
hardware platform, combined with our next generation in-network 
processing system (WaveScope [9]) will substantially alter the 
way water utilities monitor and maintain their pipeline 
infrastructure. 
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