
SeamBlue: Seamless Bluetooth Low Energy Connection

Migration for Unmodified IoT Devices

Syed Rafiul Hussain1, Shagufta Mehnaz1, Shahriar Nirjon2, Elisa Bertino1
1Purdue University, 2 UNC Chapel Hill

hussain1@purdue.edu, smehnaz@purdue.edu, nirjon@cs.unc.edu, bertino@purdue.edu

Abstract
At present, Bluetooth Low Energy (BLE) is dominantly

used in commercially available Internet of Things (IoT) de-
vices – such as smart watches, fitness trackers, and smart
appliances. Compared to classic Bluetooth, BLE has been
simplified in many ways that include its connection estab-
lishment, data exchange, and encryption processes. Unfor-
tunately, this simplification comes at a cost. For example,
only a star topology is supported in BLE environments and
a peripheral (an IoT device) can communicate with only
one gateway (e.g. a smartphone, or a BLE hub) at a set
time. When a peripheral goes out of range, it loses con-
nectivity to a gateway, and cannot connect and seamlessly
communicate with another gateway without user interven-
tions. In other words, BLE connections are not automati-
cally migrated or handed-off to another gateway. In this pa-
per, we propose SeamBlue, which brings seamless connec-
tivity to BLE-capable mobile IoT devices in an environment
that consists of a network of gateways. Our framework en-
sures that unmodified, commercial off-the-shelf BLE devices
seamlessly and securely connect to a nearby gateway without
any user intervention.
1 Introduction

The Internet of Things (IoT) has entered the commercial
market much faster than expected. The IoT industries pre-
dict that the total number of ‘smart things’ will be more than
30 billion [9] by the year 2020 – which will outnumber the
total number of smartphones. IoT technology is already be-
ing adopted in many places such as factories, airports, of-
fices, homes, hospitals, and schools, and is being used in
applications such as asset tracking, health monitoring, pre-
dictive maintenance, environmental monitoring, energy me-
tering, and elder care. In a typical scenario, an IoT device
connects to a gateway (e.g., a smartphone or a smart hub)
over a low-power wireless network, and the gateway enables
its access to the Internet. Because the connection process
between an IoT device and a gateway requires the active en-
gagement of a user, seamless connectivity of mobile IoT de-
vices in a network of gateways is still not happening. Ide-
ally, an IoT device should be able to seamlessly communi-
cate with a nearby gateway, without requiring an end-user to

IoT Gateway BIoT Gateway A

(1) Paired and bonded

(2) User with IoT Device moves and
gets disconnected with the gateway A

(3) Automatically
paired-boned and connected

Figure 1: Seamless BLE connectivity architecture.

enter pins and passwords every time it moves near a different
gateway in the same trusted network environment.

There are a number of wireless protocols such as Blue-
tooth LE (BLE) [3], ZigBee [18], and NFC [12], that have
been used in different IoT communication scenarios. Among
these, BLE has become the most popular choice because of
its simplicity, openness, and a promised battery life of mul-
tiple years. The BLE protocol allows multiple devices (‘pe-
ripherals’) to attach themselves to a single gateway (the ‘cen-
tral’), but it restricts the mobility of the peripherals outside
and into the range of a gateway. Carrying the gateway along
with a mobile IoT device seems like an option, but it is not
always feasible as it causes disconnections of other IoT de-
vices that are either static or moving in a different direction
from the gateway. For instance, if a personal smartphone is
used as a gateway for the IoT devices deployed for a home
automation system, BLE-enabled IoT devices may get dis-
connected when the smartphone is taken outside of the home.
Also, patients wearing BLE enabled IoT devices may move
inside and outside of the hospitals for which simple smart-
phones may not be used as a BLE gateway. Furthermore,
IoT devices and gateways deployed in battlefields and agri-
cultural farms can be mobile for which continuous connec-
tivity through smartphones may not be a viable solution.

In order to ensure continuous BLE connectivity [3],
Zachariah et al. [38] proposed an architecture where an IoT
device may connect to multiple gateways located at different
places. However, establishing a distinct connection with ev-
ery gateway requires a peripheral to reset and broadcast ad-
vertising signals separately for all the gateways. This behav-
ior is observed in many BLE devices including Moto 360 and
Samsung Gear watches. Some of the Android Wear watches
are so aligned with their proprietary smartphone applications
that these devices do not even allow themselves to pair with

132

International Conference on Embedded Wireless
Systems and Networks (EWSN) 2017
20–22 February, Uppsala, Sweden
© 2017 Copyright is held by the authors.
Permission is granted for indexing in the ACM Digital Library
ISBN: 978-0-9949886-1-4

non-proprietary smartphones. In fact, the scenario is so re-
stricted in its functionality that even the model of a smart-
phone matters. For example, the latest Gear devices only
pair with a Samsung S4 and above. In such scenarios, the
possibility of a Utopian environment where smart devices
seamlessly communicate with each other seems a far reality.

Even if connections with multiple gateways are made pos-
sible by hacking [29], it comes at the cost of disconnecting
the device from its previous gateway and then connecting to
a new one. This incurs significant CPU, memory, energy,
and bandwidth overhead in resource constrained IoT devices
as even a single connection establishment requires advertise-
ments, discovery, pairing and bonding [37], and several mu-
tual agreements in different layers of BLE protocol stack.
Consequently, connection establishment with multiple de-
vices is neither a time efficient nor a cost effective process. In
addition, the process requires repeated manual interventions
that disrupt the ongoing communication between a device
and a remote service. Because of these practical issues, we
argue that an IoT device should be able to seamlessly com-
municate with different gateways [38] without requiring to
create a separate connection with each of them.

Our vision of a seamless BLE migration is illustrated in
Figure 1, where a user at first connects (pairs) his fitness
tracker to gateway A like he does for any BLE device. When
he moves to gateway B, connection states are automatically
migrated from gateway A to gateway B over a different com-
munication channel, without interrupting ongoing commu-
nications between the device and any remote service it is
talking to. Finally, when he enters into the range of B, the
fitness tracker is completely handed-off to gateway B, with-
out requiring the user to manually pairing with it. While
this seems similar to hand-offs [32, 30, 36] in cellular or
WiFi networks, a major distinction between BLE migration
and a cellular/WiFi connection migration is that in case of
BLE, we are constrained by the billions of already deployed
IoT devices and many other legacy devices that are running
Bluetooth 4.0, for which we cannot change their BLE imple-
mentation. This practical constraint makes it difficult even
to detect the presence of a device at the time it is in the con-
nected state with a central. In addition to this, migrating a
connection requires transferring a set of state variables be-
tween gateways that define the state of a BLE connection.
Finding the set of state variables by browsing a large code
base is itself a time-consuming and error-prone process. Fi-
nally, selecting the next gateway among the available ones
and then securely transferring the connection states poses
further challenges to seamless BLE migration.

In this paper, we propose SeamBlue, which addresses
these challenges and enables seamless BLE connection mi-
gration for mobile IoT devices in a network of static or mo-
bile BLE gateways. Several salient features combined to-
gether make SeamBlue unique. First, we develop a system-
atic approach based on static program analysis which au-
tomatically finds a set of variables and objects in the BLE
code base that define a connection state. Second, we pro-
pose two modes of connection state extraction: full stack
cloning and partial stack cloning in order to support con-
nection migration for a wide range of IoT devices. Third,

we leverage existing approaches to user movement predic-
tion [34], and propose a mechanism to select the best can-
didate gateway for a connection migration. Fourth, while
transferring connection from one gateway to another we con-
sider both trusted and untrusted gateways and ensure secure
connection migration. Fifth, we have developed a testbed
that consists of unmodified, BLE-capable IoT devices (e.g.,
Android smartphones, and tablets) and BLE gateways (e.g.,
customized smartphones acting as central). We perform an
in-depth evaluation of SeamBlue in this testbed to quantify
its effectiveness as well as its overhead. In summary, the
contributions of this paper are the following:
• We propose a framework that ensures seamless communi-

cation between an unmodified, BLE-enabled mobile IoT
device and a remote service in a network of static or mo-
bile BLE gateway environment, without requiring pairing-
bonding and connections to individual gateways.

• We develop a systematic approach based on static program
analysis to identify the state variables in the BLE code
base that are required for transferring pairing-bonding and
connection information from one gateway to another gate-
way.

• We propose two approaches – full stack cloning and par-
tial stack cloning for capturing a snapshot of connection
states at the current gateway and then updating them at the
next gateway during BLE connection migration.

• We propose a gateway selection mechanism for transfer-
ring the connection state to the most suitable gateway
when an IoT device requires to migrate its connection and
there are multiple gateways in its range.

2 Usage Scenarios
We briefly describe some of the use cases of seamless

BLE connection migration in this section.
• In Hospitals: Patients wearing BLE devices in hospitals

can be localized and tracked, and their heart rate and other
physiological signals can be monitored using a network
of gateways deployed at different locations in the hospi-
tal. Even if the patient moves, these devices will provide
continuous monitoring and uninterrupted services by con-
necting to nearby gateways.

• In Airports: Many airports [8] use BLE enabled tracking
devices to monitor the location and movement of passen-
gers and airport equipment. Upon arrival at the airport,
passengers (and baggage) which are equipped with BLE
beacons can voluntarily report their location and status to
the deployed gateways from anywhere within the airport,
and in return, they get personalized services and notifica-
tions.

• In Theme Parks: With the help of a BLE-enabled wrist-
band worn by children and static gateways deployed at dif-
ferent locations inside a theme park, parents can monitor
and locate their missing kids via their mobile phone. The
IoT wristband concept has already been implemented and
tested with much success at Disney World in Orlando [7],
Florida. Disneys MagicBand is a customizable wristband
that functions as a passport for just about everything in the

133

park. These bands can serve as a digital entrance ticket
for guests or even store credit card information to facili-
tate transactions.

3 BLE Background
3.1 Roles of BLE Device

A BLE device assumes either a peripheral or a central
role. A peripheral, typically an IoT device, such as a heart
rate monitor, a smart lock, or a smart watch, has limited ca-
pabilities and contains advertisement information. A central
device, such as an access point, a personal computer, or a
smartphone, scans for BLE advertisements, receives an ad-
vertisement, and initiates a connection.
3.2 BLE Protocol Stack

Similar to classic Bluetooth [2], the BLE protocol
stack [4] is composed of two main parts: a controller and
a host as shown in Figure 2.

Non-core profiles

GAP Generic Attribute Profile
(GATT)

SMP Attribute Protocol (ATT)

Logical Link Control and Application
Protocol (L2CAP)

Link Layer

Physical Layer

Host

Controller

Host Controller
Interface (HCI)

Figure 2: The Bluetooth LE Protocol Stack.
Physical Layer: BLE operates in the 2.4 GHz Industrial

Scientific Medical (ISM) band and defines 40 Radio Fre-
quency (RF) channels with 2 MHz channel spacing. There
are two types of BLE RF channels: (1) three advertising
channels used for device discovery, connection establish-
ment and broadcast transmission, and (2) thirty-seven data
channels used for bidirectional communication between con-
nected devices. In order to avoid interference, an adaptive
frequency hopping pattern consisting of 37 frequencies is
used for data channels.

Link Layer: BLE defines two device roles at the Link
Layer for a connection: the master and the slave. Once
a connection between a master and a slave is created, the
physical channel is divided into non-overlapping time units
called connection events. In order to allow bit error detec-
tion, all data units include a 24-bit Cyclic Redundancy Check
(CRCInit) code. For a new connection event, master and
slave use a new data channel frequency, which is computed
using the frequency hopping algorithm. Access Address
(AA), embedded in a Link Layer packet is used to identify
communications on a physical link, and to exclude or ignore
packets on different physical links that are using the same
physical channels in physical proximity.

L2CAP: It works as a logical link layer and multiplexes
the data of higher layers on top of a Link Layer connection.

ATT: The ATT defines the communication between two
devices playing the roles of server and client, respectively.
The server maintains a set of attributes. An attribute is a data
structure that stores the information managed by the GATT.

GATT: A framework defined by GATT uses the ATT for
the discovery of services that includes characteristics. A

characteristic is a set of data which includes a value and a
set of properties. The data related to services and character-
istics are stored in attributes. For example, a server that runs
a heart rate monitoring service may account with a heart rate
characteristic that uses an attribute for describing the sensor,
another attribute for storing heart rate measurement values
and a further attribute for specifying the measurement units.

GAP and Application Profiles: GAP specifies device
roles, modes, and procedures for the discovery of devices
and services, the management of connection establishment
and security. A device may support various roles, but only
one role can be adopted at a given time. Application profiles
specify general behaviors that Bluetooth-enabled devices use
to communicate with other Bluetooth devices. For exam-
ple, a heart-rate monitor is able to send its sensor values to
a gateway only if the corresponding gateway implements a
heart-rate profile.
3.3 Modes of Communication

Two modes of communication are available: broadcast
and connected modes. The broadcast mode enables a periph-
eral to send data to any other device listening for transmis-
sions. If two devices need to exchange data they can use the
connected mode. In this mode, a peripheral device broad-
casts its presence by sending advertisement packets. The
central can initiate a connection following a received broad-
cast. Once a connection is established the devices can ex-
change data.
3.4 BLE Security and Privacy

Pairing: In connected mode, if two devices want to ex-
change data securely, they perform a pairing process where
as a first step, the parties involved in the communication ex-
change their identity information to set up the trust and then
establish the encryption keys for future data exchange. The
Security Manager Protocol (SMP) used for the pairing pro-
cedure results in the following keys that are shared between
the peripheral and the central.
• Identity Resolving key (IRK): 128-bit key used to generate

and resolve a random address.
• Connection Signature Resolving Key (CSRK): 128-bit key

used to sign data and verify signatures.
• Long Term Key (LTK): 128-bit key used to generate the

session key for an encrypted connection.
• Encrypted Diversifier (EDIV): 16-bit stored value used to

identify the LTK. A new EDIV is generated each time a
new LTK is distributed.

• Random Number (RAND): 64-bit stored value used to
identify the LTK. A new RAND is generated each time
a new LTK is distributed.
Bonding: Bonding is the process of storing the keys cre-

ated during pairing for use in subsequent connections in or-
der to form a trusted device pair.

Privacy: BLE can use Random Device Addressing to
help increase the privacy [24, 22] of connections and pre-
vent ‘tracking’ based on the assumption that eavesdropping
did not occur during the pairing process. If the advertising
device is previously discovered and has returned to an adver-
tising state, the device must be identifiable by trusted devices

134

in future connections without going through discovery pro-
cedure again. The IRK stored in the trusted device is used to
identify the advertiser as a trusted device.
4 Challenges to BLE Connection Migration

Although BLE connection migration for IoT devices
seems similar to that of traditional networks, e.g., WiFi or
TCP connection migration, it poses some unique challenges
specific to IoT.

Unmodified IoT Devices: Since billions of IoT devices
are already in use, it is not a feasible proposal to demand
changes in their BLE implementation. Hence, we are con-
strained to only change the BLE implementation of the gate-
ways for a seamless connection migration.

Identifying State Variables: We need to identify the set
of variables that uniquely define a state of a BLE connection.
Manually browsing a large code base (up to 100K lines of
code) to find state variables is an impractical, error-prone,
and time-consuming process. Hence, automatically finding
state variables for connection is essential.

Gateway Selection for Connection Transfer: While
transferring the pairing-bonding information, not all the
gateways in a network should be a receiver of this informa-
tion. For example, if we require syncing all the gateways
for every pairing between a gateway and an IoT device, it
would require a substantial amount of time and bandwidth
and incur significant communication overhead. Hence, it is
necessary that a subset of gateways are selected for sharing
the pairing-bonding information.

Secure and Fast Connection Transfer: IoT gateways
need to distribute the pairing-bonding and connection state
information to the candidate gateways (or to a central author-
ity) in a secure manner so that an adversary cannot obtain this
information and impersonate a legitimate gateway. The con-
nection transfer should be fast enough so that the services
are not disrupted. In addition, if a gateway is not part of the
trusted cluster of IoT devices, the current gateway may need
to establish a trust relationship with that untrusted gateway1

before seamless connection migration begins.
5 SeamBlue Overview

SeamBlue addresses the challenges mentioned in the pre-
vious section and enables seamless BLE connection migra-
tion for mobile IoT devices in a network of BLE gateways.
This section provides an overview of SeamBlue by briefly
describing the sequence of steps for connection migration,
which comprises of identifying bonding/connection related
state variables, establishing a connection with a gateway,
transferring the bonding/connection information, and estab-
lishing a connection with a subsequent gateway.
5.1 Basic Workflow

SeamBlue ensures that an IoT device is always connected
to a gateway, as long as it is within the range of any gate-
way. Figure 3 depicts the basic workflow of the connection
migration process which we describe next.

1We use the terms ‘untrusted gateways’ and ‘the gateways that do not
belong to a group of already trusted gateways’ interchangeably. Trusted
gateways are of two types: (1) gateways sharing the same group key, (2)
previously untrusted gateways whose public key certificates have been vali-
dated

1. In an off-line, one-time step, we analyze the BLE source
code statically to identify the set of variables required for
both pairing-bonding and connection information trans-
fers. The BLE Static Analysis (BSA) module performs
this static analysis on BLE source code and the identified
set of variables (that are required for connection transfers)
are stored in each of the gateways. This step is described
in Section 6.1.

2. An IoT device advertises its information and a nearby
gateway establishes a connection by pairing-bonding. We
name the gateway to which the IoT device is currently
connected the current gateway. The current gateway ex-
tracts a set of pairing-bonding information from the con-
nection in order to share it with other nearby gateways.
Section 6.2 describes this information extraction step.

3. The current gateway disseminates the pairing-bonding in-
formation to a set of gateways that are candidates for the
subsequent gateway (the next gateway to which the IoT
device may connect). This pairing-bonding information
consists of both the bonded device’s information as well
as a subset of state variables. Section 6.3 describes this
step in details.

4. Upon reception of this information, a set of candidate
gateways add the IoT device as a bonded device, initial-
izes a subset of state variables for bonding, but do not
initiate a connection.

5. Perceiving the fact that the IoT device is moving out of its
range, the current gateway selects a set of candidate gate-
ways as the subsequent gateway (according to the move-
ment of the IoT device). This step is described in Sec-
tion 6.4.

6. The current gateway identifies the current state (or snap-
shot) of the connection and transfers the required state
variables to the subsequent gateway so that the subse-
quent gateway can reconstruct the connection state with
the same peripheral. Extraction of these variables is de-
scribed in Section 6.2, and Section 6.5 describes how
these transfers are done securely.

7. Upon reception of the connection state information, the
subsequent gateway creates required objects related to
connection, updates the connection state variables, and
stores the connection information into gateway’s non-
volatile memory (NVRAM). As a result, the peripheral
gets seamlessly connected to the subsequent gateway,
without interrupting ongoing services.

5.2 BLE Stack Cloning
SeamBlue provides two modes for connection state ex-

traction: full stack cloning, and partial stack cloning. Full
stack cloning refers to cloning states of all the layers of Blue-
tooth stack starting from the application layer down to the
link layer whereas partial stack cloning refers to the cloning
of Bluetooth stack starting from the application layer down
to the L2CAP layer. Details of these modes are presented in
Section 6.6.

135

2) Pairing-bonding
Information
Extraction

3) Pairing-bonding
Information

Transfer

4) Add the
device as

paired-bonded

Pairing & bonding,
connection establishment

Out of range

5) Subsequent
Gateway
Selection

6) Connection
State Extraction

and Transfer

Receive
pairing

& bonding
information

7) Establish
Connection with the

Device

Receive
connection

state
information

Subsequent Gateway B

1) BLE Static
Analysis Module

(BSA)

tBTE_APPL_
CFG ANGE
UINT8
ble_io_cap;
...
...

State
variables

Current Gateway A

tBTE_APPL_
CFG ANGE
UINT8
ble_io_cap;
...
...

State
variables

Figure 3: Basic Workflow of SeamBlue.
5.3 Information Dissemination

SeamBlue supports two different strategies for the dissem-
ination of both pairing-bonding and connection state infor-
mation. The the initial gateway either (1) pushes this infor-
mation to the cloud from where the candidate gateway(s) can
sync this information periodically, or - (2) transfers this in-
formation directly to the selected gateway(s). Independent
of the dissemination strategy, the current gateway transfers
pairing-bonding and connection state information in a secure
manner.
5.4 Threat model

We consider a strong threat model where only IoT gate-
ways and IoT devices are parts of a trusted computing base.
SeamBlue ensures confidentiality, integrity and authenticity
of the control plane and the data plane messages. We con-
sider both on-path and off-path attackers who have the capa-
bility of injecting unauthenticated packets, modifying legiti-
mate packets, or sniffing end-to-end messages.

6 SeamBlue Design Details
This section describes how SeamBlue addresses the chal-

lenges in BLE connection migration by adding new function-
ality into the BLE stack of only the IoT gateways.
6.1 Identifying Connection State Information

Through our manual analysis we found that the open
source BLE implementations [14, 1] are fairly complex. We
also observed that the internal states of the BLE protocol
consist of many different program variables and objects that
are spread over different layers of BLE stack. This manual
analysis costed more than 80 man-hours. However, the resul-
tant set of connection state variables obtained by the manual
analysis was not complete since a number of variables were
left unrecognized. As a result, connection migration was not
successful. Therefore, finding internal states (i.e., variables
and objects that define the connection state) through manual
analysis is not a viable solution. Furthermore, variants of a
BLE implementation adopted for different IoT devices may
have different sets of variables and objects for defining pro-
tocols’ internal states. In order to address these challenges,
we develop a systematic approach using static code analy-
sis to find the minimal state information for BLE connection
migration. Though static analysis [35, 21] have been used
to find states for virtual machine (VM) migration in network

function virtualization (NFV) [26], ours is different due to
the IoT context and results in a more precise set of state vari-
ables. We define the variables of a program as state variables
whose values are different in different connection states, get
updated as the state changes, and whose scope lasts through-
out the lifetime of a connection.

In order to identify the state variables, as a first step, we
execute the following steps on the BLE source code:

• The BLE source code is first converted to intermediate
representation (IR) using LLVM compiler [10].

• We build the control flow graph (CFG) [5] from the
IR [11].

• We build a complete call graph consisting of both direct
function calls and indirect function calls. Though it is
possible to identify the direct function calls from CFG,
identifying indirect function calls requires further analy-
sis. Therefore, we use points-to analysis [28] to find the
all possible targets of any indirect call in the program.
We partition the further analysis for extracting the state

variables into two parts: accept path analysis, and process
path analysis. The first part of the analysis considers the BLE
source code portion from receiving a packet to accepting it.
The second part of the analysis considers the BLE source
code portion from accepting a packet to the end of processing
the packet.

Accept Path Analysis: For a packet reception, the packet
has to pass a set of checks (in other words, path condi-
tions or constraints) and reach the program point where the
packet is accepted using the accept payload() call in-
struction. In this paper, we refer to these paths as accept
paths. From our analysis of BLE source code, we have found
that the variables and objects associated with the path con-
straints that are spread from the reception point of a packet to
accept payload() belong to the set of variables that define
the connection state. The following are the steps of accept
path analysis.

• We first identify the functions containing
accept payload() call instruction.

• We use context and field sensitive inter-procedural points-
to analysis [28] to build a bottom-up call graph to identify
the functions and the corresponding callsites that are in

136

BLE Source
Code

tBTE_APPL_CFG
bte_appl_cfg
tBTA_BLE_INT_RANGE
UINT8 ble_auth_req;
UINT8 ble_io_cap;
UINT8 ble_init_key;
UINT8 ble_resp_key;
UINT8
ble_max_key_size;
...
...

Non-core profiles

GAP GATT
SMP ATT

L2CAP
Link Layer

Physical Layer

Partial Stack
Cloning

Full Stack
Cloning

Process Path Analysis
• Find assignment instructions

in each function
• Alias Analysis

Accept Path Analysis
• Find path constraints
• Find associated variables
• Slice the source code to

partition the connected state

1. Conversion to
Intermediate
Representation (IR)

2. CFG construction
3. Points to Analysis

Figure 4: Static analysis of BLE source code for state variable identification.
call chain from recv packet() to accept payload().

• We perform intra-procedural post-dominance frontier
(PDF) [20] analysis to find the set of basic blocks on
which the basic blocks containing accept payload() in-
struction are control dependent. We also do the same
intra-procedural PDF analysis for each callsite in the
call chain computed from bottom-up call graph analy-
sis. Thus we compute the inter-procedural path constraints
that lead the program execution from recv packet() to
accept payload().

• We extract the path constraints by analyzing branch in-
structions located at the end of each control dependent ba-
sic block. The variables associated with those path con-
straints are considered as part of the connection state vari-
ables.
Process Path Analysis: After a packet gets accepted,

the gateway starts processing the packet and takes actions
(i.e., generates events) depending on the type and content
of the packet. The gateway initializes and updates the pro-
gram variables and objects specific to that connection. We
need to identify those program variables whose liveness lasts
throughout a BLE connection. We execute the following
analysis to find those program variables:

• We use inter-procedural forward static program slicing
technique to slice the code base into specific portions
which process the packet. In order to do that, we first
use the same context and field sensitive points-to analy-
sis [28, 33] technique as used in the accept path analysis.
Points-to analysis also helps in resolving the alias prob-
lems. From the results of the points-to analysis we create
a call graph which includes all direct and indirect func-
tion calls starting from accept payload() to the end of
packet processing functions.

• We traverse each statement of the functions found in the
call graph and identify the variables that are defined (i.e.,
assigned to some values) within that functions. This in-
cludes both local and global variables which are consid-
ered as possible connection state variables. Generally the
scope of a local variable is only within the function unless
it is an alias of a global variable and, therefore, it should
not be considered as a connection state variable. However,
if a local variable is an alias of a global variable, we con-
sider that local variable as one of the state variables. We
compare the points-to set of the local variables defined in
a function with the points-to set of the global variables.
If the points-to sets are identical, we infer that the local
variable is an alias of the corresponding global variable.
Identifying the connection state variables is done offline

and it is a one-time cost operation. SeamBlue does not need

to compute the state variables every time it needs to migrate
the connection. We present an excerpt of the resultant set
of connection state variables for the BLE implementation in
Table 1.

Items Layers where used
Device Type All layers
Device Address Type All layers
Bluetooth device pseudo address All layers
Long-Term Key (LTK) SMP
Identity resolving key (IRK) SMP
Connection Signature Resolving Key (CSRK) SMP
EDiv SMP
RAND SMP
Access Address Link Layer
Hop Interval L2CAP, Link Layer
Hop Increment L2CAP, Link Layer
CRCInit Link Layer
Slave Latency L2CAP, Link Layer
WinOffset Link Layer
Channel Map Link Layer
UUID GAP, GATT
Characteristics Info GAP, GATT

Table 1: An excerpt of the set of connection state vari-
ables of the BLE stack.
6.2 Extracting Pairing-Bonding/Connection

State Variables
We instrument the BLE implementation so that we obtain

the runtime values of the pairing-bonding/connection state
variables for a connected IoT device (as shown in steps (2)
and (6) in Figure 3). The current gateway stores the extracted
information into memory and sends them to subsequent gate-
ways. The runtime for this extraction module is distributed
across different layers of BLE protocol stack. For runtime
implementation, we add SeamBlue APIs so that the different
layers can interact among themselves. Note that this instru-
mentation is performed only at the BLE gateways. Thus our
proposed system does not modify the BLE implementation
of IoT devices which allows the already deployed billions
of IoT devices to integrate to the SeamBlue system without
further modification.
6.3 Sharing Pairing-Bonding Information

with Candidate Gateways
BLE central serves as a gateway and scans for peripheral

devices so that it can connect with them and receive the de-
sired GATT services. In order to ensure secure data transfer
to the server through gateways, the current gateway initiates
pairing and bonding procedures as shown with (1) in Fig-
ure 5. After creating connection through pairing and bond-
ing, the current gateway extracts the pairing-bonding related
information for transfer to the possible subsequent gateways.

The current gateway then transfers the pairing-bonding
related information to the gateways that are candidates for

137

the subsequent gateway that the IoT device may connect
next. In Figure 5, the gateways that are in the vicinity of
gateway A are the gateways B, C, D, and E. Therefore, the
candidate gateways are B, C, D, and E but not the gateways F,
G, or H. As shown with (2) in Figure 5, gateway A sends the
pairing-bonding information to the gateways B, C, D, and E.

A

C

D

G

H

F

E

B

(2)

(2)

(2)

(2)

(1)

Figure 5: (1) Pairing and bonding with gateway A, (2)
gateway A shares pairing-bonding information with the
gateways B, C, D, and E.

Upon receiving the pairing-bonding information, the can-
didate gateways B, C, D, and E store this information mapped
with the Bluetooth device address of that IoT device so that
whenever that device needs service from these gateways,
they do not have to execute the pairing-bonding procedures.
Note that the candidate gateways do not initiate connection
at this stage since they do not have connection state informa-
tion.
6.4 Select Gateways for Connection Transfer

If an IoT device moves during or after connection estab-
lishment, the current gateway or the IoT service providing
cloud system is able to estimate the device’s moving direc-
tion [34]. SeamBlue uses this mechanism and examines a
device’s locations at recent timestamps to infer the mov-
ing direction. Location information of IoT devices can also
be obtained using existing indoor and outdoor localization
techniques [23]. By analyzing the movement direction and
speed of the IoT devices, the current gateway or the service
provider selects the subsequent gateway among the candi-
date gateways to whom the connection information will be
transferred. As shown in Figure 6 (a), the current gateway A
transfers connection information to the subsequent gateway
D.

Ping-Pong Effect: An IoT device may move back and
forth in a region shared by multiple gateways. As shown in
Figure 6 (b), the gateways A and D share a common region
which is partitioned using a line. The bronze markers de-
note the area where the signal strength (RSSI) of gateway A
is greater than that of gateway D. Conversely, the blue mark-
ers denote the opposite case. According to SeamBlue, the
current gateway A initiates a connection transfer as soon as
the IoT device moves out of the A dominant area. However,
if an IoT device moves back and forth in a shared region, the
BLE connection might also switch between the correspond-
ing gateways. To reduce this effect, SeamBlue uses a mo-
tion prediction mechanism [34] that leverages statistical data

A

C

D

(3)

(a)

A

D

(b)

Figure 6: (a) Subsequent gateway selection and connec-
tion transfer as the user with IoT device moves from gate-
way A to gateway D. (b) Gateways selection and ping-
pong effect.
of the IoT device’s movements. If the device predominantly
moves back and forth, SeamBlue gateways do not transfer the
connection as soon as it goes beyond the half of the shared
region. SeamBlue uses a delay tolerant approach to see if the
device moves in the direction of the current gateway. If not,
the current gateway transfers connection to the subsequent
gateway.
6.5 Secure Connection Information Sharing

The gateway with which the peripheral is currently con-
nected needs to distribute the bonding and connection infor-
mation to candidate gateways and the subsequent gateway,
respectively. Such sharing can be obtained either by pushing
the bonding and connection information to the cloud from
where all other gateways can fetch this information or by di-
rectly disseminating the bonding and connection information
to the appropriate set of gateways. With respect to sharing of
this information, the receiver gateways can be categorized
into two groups: trusted and untrusted gateways.

Trusted Gateway: If the receiver gateways belong to
the same cluster of gateways as the current gateway, the re-
ceiver gateways do not need to further authenticate them-
selves. They already share a secret group key with which
they encrypt the data and then distribute the data in encrypted
form securely. This secret group key can be shared between
gateways through WiFi or 4G/LTE communication network
and thus do not require any change in the existing bluetooth
protocol. An example of such data transfer is following:

Enc D EKgrp(D||nonce) (1)
D||nonce DKgrp(Enc D) (2)

where D is the data to transfer, and Kgrp is the symmetric
group key. In Eqn. 1, the current gateway encrypts the data
using Kgrp and transfers Enc D to the receiver gateway(s).
A trusted receiver gateway has knowledge of Kgrp, and thus
decrypts Enc D to D as shown in Eqn. 2.

Untrusted Gateway: If the subsequent gateway to which
the BLE connection is going to be migrated is not already
trusted, e.g., in the case of wide area networks (WANs), the
current gateway needs to verify the public key certificate [16]
of the subsequent gateway. Upon certificate validation, the
current gateway may establish a shared secret key with the
receiver gateway using Diffie Hellman key exchange proto-
col [6] or just use the public key cryptography protocol [17]
to share the bonding and connection information securely.

138

Thus SeamBlue allows the BLE connection to migrate to a
gateway that may be in a different LAN or WAN where the
gateways are initially untrusted. However, Diffie-Hellman
protocol might be time and energy inefficient for such sce-
narios as it requires multiple message communications to
establish a secret key and to verify the certificates. In com-
parison with Diffie-Hellman, public key cryptography would
result in less latency if the gateways know the public keys
of their surrounding gateways. An example of data transfer
with public key cryptography is following:

Enc D EPKrcv(D||nonce) (3)

D||nonce DSKrcv(Enc D) (4)

where D is the data to transfer, and PKrcv is the public key of
the receiver gateway. In Eqn. 3, the current gateway encrypts
the data using PKrcv and transfers Enc D to the receiver gate-
way. The receiver gateway has knowledge of the correspond-
ing secret key, SKrcv, and thus decrypts Enc D to D as shown
in Eqn. 4. More efficient approaches, e.g., the pairing-free
certificateless hybrid signcryption (pCL-HSC) [31] scheme,
can also be used in the case of untrusted gateways which
combines pCLSC-TKEM with a data encryption mechanism
(DEM).
6.6 Cloning Connection Information to Sub-

sequent Gateways
Upon reception of the connection information, the sub-

sequent gateway does not initiate the pairing-bonding pro-
cedure, since the IoT device is already added as a bonded
device into the subsequent gateway’s NVRAM. The Seam-
Blue module running on the gateway updates the connection
related parameters for communicating with the IoT device.

Since the subsequent gateway does not scan, discover, or
create a new pairing and bonding with the IoT device, the
BLE peripheral does not add the subsequent gateway as a
bonded central device. Therefore, the IoT device does not
replace the current gateway’s device address with that of the
next gateway in its memory. As a result, to send/receive
packets to/from the peripheral, the subsequent gateway im-
personates current gateway’s device address. We instrument
the BLE implementation on the gateway only so that the
communication between the subsequent gateway and the IoT
device is done with the current gateway’s device address.
Along with the device address, the subsequent gateway im-
personates connection related information which are already
shared with the IoT device. The connection related infor-
mation is spread across both host and controller parts of the
BLE stack (shown in Figure 2). Since some gateway de-
vices, e.g., Android smartphones use proprietary Bluetooth
device drivers, they do not allow one to change any variables
located at the Link Layer in the controller part. Due to this
limitation, we propose two approaches for cloning connec-
tion information to the subsequent gateway: full and partial
stack cloning.

Full Stack Cloning: The full stack cloning approach al-
lows the subsequent gateway to impersonate connection re-
lated information from the application layer to the link layer
of the BLE stack. Therefore, the current gateway’s Access
Address (AA), connection interval, slave latency,

channel map, CRCInit values used in the link layer are im-
personated by the next gateway. Note that channel maps
can be updated to handle collisions. Since the current and
the next gateways use the same AA for sending and receiv-
ing packets, the full stack cloning does not require any new
connection request message from the next gateway to the pe-
ripheral device.

Partial Stack Cloning: In partial stack cloning, the sub-
sequent gateway impersonates the connection related vari-
ables that are spread across the application layer to L2CAP
layer of the BLE stack. The subsequent gateway adds the
peripheral as a bonded device and impersonates the cur-
rent gateway’s device address. However, due to the pro-
prietary nature of some Bluetooth device drivers, the subse-
quent gateway cannot change the values of Access Address
(AA), connection interval, slave latency, channel
map, and CRCInit in the link layer of the BLE stack for com-
pletely impersonating the current gateway. We address this
challenge by using an additional connection request from the
subsequent gateway to the IoT device. In this procedure,
the current gateway disconnects the connection with the IoT
device and provides a control signal to the next gateway
for sending connection request(s) to the peripheral. Since
the subsequent gateway is already stored as the bonded de-
vice in IoT device’s NVRAM, according to the BLE proto-
col, upon reception of the connection request the IoT device
just updates the connection related parameters (i.e., Access
Address (AA), connection interval, slave latency,
channel map, and CRCInit) for that bonded device. Hence,
partial stack cloning requires an extra connection request for
connection migration to the next gateway without modifying
the IoT devices.

6.7 Implementation Notes
We briefly discuss some of the key implementation issues.

6.7.1 Static Analysis
We implemented the static analysis for finding state

variables using LLVM 3.8 compiler infrastructure [10]
by directly following the design from Section 6. The
LLVM passes operate on the LLVM intermediate represen-
tation (IR), which is a low level strongly typed language-
independent program representation tailored for static anal-
yses and optimization purposes. The LLVM IR is generated
from the C source code by clang. We used Bluedroid [1] for
Android smartphones and BlueZ [14], an open source imple-
mentation, for many other BLE devices as the BLE protocol
implementation.
6.7.2 Runtime Value Extraction

We instrument the Bluedroid (Android 4.2 and later) and
BlueZ (Android 4.1 and before) for extracting the runtime
values of the bonding and connection related state variables.
6.7.3 SeamBlue App

Our custom written SeamBlue application with Java
(J2SE) implements the gateway selection algorithm and uses
OpenSSL libraries [15] for performing the cryptographic op-
erations. The SeamBlue application running on the gateways
use TCP connection to transfer bonding and connection re-
lated information and to exchange the control signals.

139

7 Evaluation
This section starts with the experimental setup followed

by two sets of evaluations. First, the success rate of BLE
connection migration is measured and the ping-pong effect
is evaluated. Second, the overhead of SeamBlue is measured
with the test bed we build.
7.1 Experimental Setup
7.1.1 Devices

We use five Nexus 5 phones as gateways (i.e., BLE cen-
trals), one Nexus 6 phone and one Alcatel Onetouch tablet as
IoT devices. The Nexus 5 phones have only the BLE central
feature whereas the Nexus 6 and the Alcatel Onetouch tablet
have both the BLE central and the BLE peripheral capabil-
ities. The configuration of Nexus 5, Nexus 6, and Alcatel
Onetouch Pixi tablet is summarized in Table 2.

Nexus 5 Nexus 6 Alcatel Onetouch
Qaud-core Krait CPU Quad-core Krait 450 CPU Quad-Core CPU
2.3 GHz 2.7 GHz 1.2 GHz
2 GB RAM 3 GB RAM 1 GB RAM
WiFi WiFi WiFi
4G LTE 4G LTE 4G LTE
BLE Central BLE Central BLE Central

BLE Peripheral BLE Peripheral
Android Lollipop OS Android Marshmallow OS Android Lollipop OS

Table 2: Configurations of Nexus 5 and Nexus 6 smart-
phones and Alcatel Onetouch Pixi tablet.
7.1.2 Testbed

We have built a testbed (as shown in Figure 7) by hang-
ing the Nexus 5 smartphones as IoT gateways on the walls
along the hallways in our department. In this testbed, any
physical space is shared by at most two gateways. To eval-
uate the ping-pong effect, we make changes to the topology
to arrange the gateways in a manner so that some areas fall
within the ranges of more than two gateways.
7.1.3 Datasets and Applications

We use the nRF Connect application [13] downloaded
from the Google Play store for BLE peripherals. For the
gateways, we have developed a custom application. We
use the heart rate monitoring service that periodically sends
heart rate measurement in a single BLE packet of size 20-
bytes every second. The heart rate monitoring service is
one of the representative applications of SeamBlue where
patients wearing BLE-enabled heart rate monitoring devices
may move indoor or outdoor and may require to migrate the
BLE connection from one gateway to another for continuous
connectivity. Each data point reported in the experiment is
obtained by taking the average of at least five runs.
7.2 BLE Connection Migration Success Rate

A connection gets migrated from the current gateway to
subsequent gateways based on the location and movement
direction of the user carrying the BLE peripheral enabled
IoT devices/smartphones. We found every connection mi-
gration request successful when IoT devices are both static
and moving at different speeds. Hence, the success rate we
observe for SeamBlue in our testbed is 100%.
7.2.1 Ping-Pong Effect

To evaluate the ping-pong effect we arrange the gateways
in a formation so that the ranges of more than two gateways
overlap. Users equipped with IoT devices pass through those
shared regions while moving from one gateway to another.

Figure 7: A part of the testbed showing smartphones
(hanging near the fire alarms) that served as gateways.

0

2

4

6

8

10

12

14

2 3 4

N
um

be
r o

f c
on

ne
ct

io
n

m
ig

ra
tio

n

Number of gateways sharing a region where
connection is migrated

Without motion predition

With motion prediction

Figure 8: SeamBlue handles ping-pong effect by per-
forming motion prediction during connection migration.

Figure 8 shows that if users move randomly every af-
ter two seconds, the number of times connection has been
switched among gateways increases almost at 2X rate with
the number of gateways sharing common regions. With the
SeamBlue’s motion prediction mechanism, the number of
connection switches among gateways reduces almost half
times than the number without using motion prediction. In
the case of four overlapping gateways, the users random
movement direction causes a higher number of connection
migration using our simple motion prediction mechanism.
This can be improved by using sophisticated motion predic-
tion techniques that leverage more information about users
previous movements, geographical map, and applications.
7.3 BLE Connection Migration Cost
7.3.1 Extra bytes required for connection migration

In both partial stack cloning and full stack cloning, the
current gateway sends a 512-bytes blob containing the bond-
ing related information to each of its neighbors. However, for
full stack cloning, the current gateways sends a 2048-bytes
blob containing values of all the connection related variables
to the next gateway where the connection is going to be mi-
grated.
7.3.2 Time required for adding a peripheral as a

bonded device
As part of the connection migration procedure, the cur-

rent gateway sends bonding related information to its neigh-
boring gateways. Upon reception of these information they
add the BLE peripheral as a bonded device into its NVRAM
when they receive the bonding related information from the
current gateway. To add the peripheral as a bonded device re-
quires the IoT gateway to load the device information, e.g.,

140

device address, device type, address type, and keys from the
main memory, and then store this information into the gate-
way’s NVRAM for use in future communications. Table 3
shows the mean time required by IoT gateways of different
device types to load a peripheral.

Gateway Loading Time Storing Time Total Time
(ms) (ms) (ms)

Nexus 5 40.5 19.1 60.4
Nexus 6 36.7 17.4 54.1
Alcatel OneTouch 43.2 20.3 63.5

Table 3: Time required for adding a peripheral as a
bonded device.

Table 3 shows that the Nexus 6 smartphone requires the
least amount of time to add a peripheral as a bonded device
due to its higher CPU speed and memory capacity compared
to other devices as shown in Table2.
7.3.3 Time required for transferring state variables

Figure 9 shows that the time required to transfer the state
variables to a trusted and an untrusted gateway over WiFi for
both full stack cloning and partial stack cloning approaches.
We assume that the symmetric group key of trusted gateways
and public keys of untrusted gateways are already known
by the respective gateways beforehand. Figure 9 shows that
the time required for transferring the state variables for un-
trusted gateways is almost 2X of trusted gateways for differ-
ent speeds of the user with IoT device.

0

200

400

600

800

1000

1200

1400

0 3 6 9 12 15

St
at

e
va

ria
bl

e
 tr

an
sf

er

tim
e

(m
s)

Walking speed (miles/hour)

Full Stack Cloning (untrusted) Full Stack Cloning (trusted)
Partial Stack Cloning (untrusted) Partial Stack Cloning (trusted)

Figure 9: Time required for transferring the state vari-
ables.

Note that the partial stack cloning sends only the bond-
ing related information and requires the next gateway to send
connection request to the IoT devices for connection migra-
tion. Therefore, the partial stack cloning always requires less
time for transferring state variables than full stack cloning.
Also, since the control plane packet losses increases with
users mobility, the time required for all the scenarios (shown
in Figure 9) increases slightly with the increase of the users
moving speed.
7.3.4 Time required for connection migration

The time required for connection migration in full stack
cloning is computed by considering the time required to (1)
extract the values of connection related variables, (2) send
this information to the next gateways securely, (3) decrypt
the received information, and (4) update the connection re-
lated state variables. On the contrary, the time required for
connection migration in partial stack cloning is only the time
to establish a new connection without further creating any
pairing and bonding between the subsequent gateways and
the IoT devices.Figure 10 shows that the connection migration time in-
creases with the increase of users speed as there are more

0

500

1000

1500

2000

0 3 6 9 12 15C
on

n.
 m

ig
ra

tio
n

tim
e

(m
s)

Walking speed (miles/hour)

Partial Stack Cloning Full Stack Cloning (untrusted)
Full Stack Cloning (trusted)

Figure 10: Time required for connection migration.

packet losses associated with increased mobility of users.
Also, the connection migration time for the partial stack
cloning is smaller than that of the full stack cloning because
creating a new connection between the subsequent gateway
and the IoT device does not require any cryptographic op-
eration in case of the partial stack cloning. However, we
observed that the BLE connection between a peripheral de-
vice and a gateway is sometimes unstable. As a result, a few
times the partial stack cloning required multiple connection
requests for a single connection migration.

There is a trade-off between the full stack cloning and
the partial stack cloning. The SeamBlue’s connection mi-
gration mechanism with full stack cloning does not require
a new connection request from the target/next BLE gate-
way as opposed to the partial stack cloning. Thus full stack
cloning requires a smaller number of message transmissions
than the partial stack cloning. As a result, seamless migra-
tion with full stack cloning has lower power consumption
compared to the partial stack cloning. However, since the
full stack cloning requires a higher number of instrumented
instructions as it needs to extract a higher number of con-
nection state variables, it results in higher delays than the
partial stack cloning for transferring connection. Since the
partial stack cloning requires further connection request(s)
from the subsequent gateway to an IoT device for connec-
tion migration, it incurs higher power consumption for send-
ing/receiving more number of messages than the full stack
cloning.
7.3.5 Packet loss

0

0.5

1

1.5

2

0 3 6 9 12 15

N
um

be
r o

f p
ac

ke
t l

os
se

s

Walking speed (miles/hour)

Full Stack Cloning (untrusted) Full Stack Cloning (trusted)
Partial Stack Cloning

Figure 11: Number of packets lost when data packets are
sent with 1 second time interval.

Figure 11 shows the number of packets lost as an impact
of BLE connection migration when the heart rate monitoring
application running on an IoT device sends data to the gate-
way after every 1 second. Full stack cloning with untrusted
gateway causes loss of at most 2 packets which are about 2X
of the other scenarios. Since the number of packet losses has

141

a direct relationship with the connection migration time, the
trend is similar to the trend shown in Figure 10.

0

50

100

150

200

0 3 6 9 12 15N
um

be
r o

f p
ac

ke
t l

os
se

s

Walking speed (miles/hour)

Full Stack Cloning (untrusted) Full Stack Cloning (trusted)
Partial Stack Cloning

Figure 12: Number of packets lost when data packets are
sent with 20 ms time interval (minimum connection in-
terval for BLE connection).

Figure 12 shows a stress testing of packet losses when the
heart rate data is sent every after 20 ms intervals which is the
minimum connection interval for BLE devices. For full stack
cloning, around 160 data packets were lost during connection
migration which span the user’s heart rate information for
only about 1.5 minutes.
8 Security Analysis

In this section, we analyze the security features of our
SeamBlue system.
• Adversaries cannot inject or modify packets. SeamBlue

ensures that the gateways always perform secure commu-
nication with BLE devices through the long term keys es-
tablished through pairing-bonding procedure and later on
shared with the subsequent gateways during connection
migration. SeamBlue uses AES-128 encryption mecha-
nism for cryptographic operation which is already proven
to be secure. Therefore, SeamBlue ensures that every
packet sent or received by client and server is encrypted,
authenticated, and integrity-protected. Thus maliciously
injected or modified packets by adversaries are always
identified.

• Adversaries cannot derive paring-bonding and connection
information. SeamBlue gateways uses non-deterministic
encryption to securely transfer the pairing-bonding infor-
mation. Therefore, adversaries cannot derive the long term
keys and the connection related values through which they
can impersonate a legitimate gateway.

• Adversaries cannot impersonate legitimate gateways.
During connection migration an adversary may try to im-
personate a trusted subsequent gateway by mimicking the
subsequent gateway’s Bluetooth device address. However,
if the legitimate subsequent gateway is one of the gate-
ways which share the secret group key, the adversary can-
not decrypt the pairing-bonding or connection related in-
formation since it does not have the secret group key. In
the case of impersonating a legitimate subsequent gate-
way for which the public key certificate is already vali-
dated, the adversary cannot decrypt the pairing-bonding
or connection related information since it does not know
the private key of the legitimate gateway.

• Adversaries cannot identify the gateways to which an IoT
device is connected. For an IoT device, each gateway in

the SeamBlue system impersonates the initial gateway to
which that device connects first. As a result, every packet
destined to that BLE device includes the same sender ad-
dress which baffles the adversaries to detect the gateway
to which a benign BLE device is currently connected.

9 Related Work
Despite the heavy use of BLE for numerous smart appli-

cations, few research efforts [25, 19, 22] have been devoted
to enable seamless connectivity for IoT devices. Zachariah
et al. [38] addresses the problems of running different ap-
plications on a single gateway for different IoT services
(e.g., heart rate monitoring, activity monitoring, smart home
appliance monitoring, etc) and envision an application-
agnostic connectivity for worldwide deployment of IoT gate-
ways. In contrast, SeamBlue addresses the existing lim-
itation of seamless connectivity and propose a framework
for seamless connection migration for unmodified IoT de-
vices. Kodeswaran et al. [27] identify timely maintenance
of failed sensors as a critical task to ensure minimal dis-
ruption to monitoring services, and propose an approach to
optimize maintenance scheduling. However, their approach
does not consider the case when sensor devices moves out of
the communication range of gateways or when the gateways
suddenly fail.

Levy et al. [29] present a new hardware interface, Bee-
tle that virtualizes peripherals at the application layer, allow-
ing safe access by multiple programs without requiring the
operating system to understand hardware functionality, fine-
grained access control to peripheral device resources, and
transparent access to peripherals connected over the network.
Fawaz et al. [24] propose BLE-Guardian, a device-agnostic
system that protects the privacy of the users/environments
equipped with BLE devices/IoTs. However, neither of these
approaches address the problem of seamless connectivity of
IoT devices.

Mashable [37] proposes a mobile application that enables
members of a secret community to discover other affiliates
that are in proximity to their mobile devices. Das et al. [22]
present a measurement-driven study of privacy leakage from
communication between wearable fitness trackers and smart
phones. These fitness trackers mostly use BLE for commu-
nicating and syncing the data with the user’s smart phone.
Albazrqaoe et al. [19] propose a bluetooth traffic sniffer,
BlueEar where two Bluetooth-compliant radios can coordi-
nate to learn the hopping sequence of indiscoverable Blue-
tooth network, to predict adaptive hopping behavior, and mit-
igate the impacts of RF interference.

As opposed to the cellular-handovers [30, 32, 36], the
SeamBlue does not require modifications to the IoT devices
for BLE connection migration. Like cellular-handovers,
the SeamBlue reallocates BLE channels in the partial stack
cloning through new connection establishment. However, in
the full stack cloning, the SeamBlue transfers the BLE chan-
nels without creating a new connection.
10 Conclusion

In this paper, we focus on the problem of IoT devices be-
ing unable to connect to multiple gateways seamlessly and
thus propose a framework that ensures seamless communi-

142

cation between a mobile IoT device and a remote service
in a network of BLE gateway environment. Our framework
consists of a static analysis module for the automatic extrac-
tion of the state variables required during a connection trans-
fer. Moreover, we design a gateway selection mechanism
that transfers connection related information to an optimal
set of gateways and thus reduces both communication over-
head and latency.
Acknowledgments

We would like to thank our Shepherd, Wen Hu, and the
anonymous reviewers for their valuable comments and sug-
gestions to improve the paper. For the work reported in this
paper, the second author is supported by the Schlumberger
Foundation under the Faculty for the Future Fellowship.
11 References

[1] Bluetooth - Android Open Source Project. http://llvm.org/.
[2] Bluetooth 4.2 Core Specification. https://www.bluetooth.

com/specifications/bluetooth-core-specification/
technical-considerations.

[3] Bluetooth Low Energy. https://www.
bluetooth.com/what-is-bluetooth-technology/
bluetooth-technology-basics/low-energy.

[4] Bluetooth Low Energy. http://groups.inf.ed.ac.uk/teaching/
slipb13-14/Ewan/.

[5] Control Flow Graph. https://en.wikipedia.org/wiki/
Control_flow_graph.

[6] DiffieHellman key exchange. https://en.wikipedia.org/wiki/
Diffie-Hellman_key_exchange.

[7] Disneys $1 Billion Bet on a Magical Wristband. https://www.
wired.com/2015/03/disney-magicband/.

[8] The future of IoT in airports Lessons from London City
Airport. http://www.totalbluesky.com/2015/03/10/
future-iot-airports-lessons-london-city-airport/.

[9] How far is the hype surrounding claims of up to 50B IoT
and machine-to-machine devices by 2020 away from reality?
http://www.rcrwireless.com/20160628/opinion/reality-check-50b-iot-
devices-connected- 2020-beyond-hype-reality-tag10.

[10] LLVM. http://llvm.org/.
[11] LLVM Language Reference Manual. http://llvm.org/docs/

MIRLangRef.html.
[12] Near Field Communication. http://nearfieldcommunication.

org/.
[13] nRF Connect for Mobile. https://play.google.com/store/

apps/details?id=no.nordicsemi.android.mcp&hl=en.
[14] Official Linux Bluetooth Protocol Stack. http://www.bluez.org/.
[15] Openssl. Technical report. https://www.openssl.org/.
[16] Public Key Certificate. https://en.wikipedia.org/wiki/

Public_key_certificate.
[17] Public Key Cryptography. https://en.wikipedia.org/wiki/

Diffie-Hellman_key_exchange.
[18] Zigbee. http://www.zigbee.org/what-is-zigbee/.
[19] W. Albazrqaoe, J. Huang, and G. Xing. Practical bluetooth traffic

sniffing: Systems and privacy implications. In Proceedings of the
14th Annual International Conference on Mobile Systems, Applica-
tions, and Services, MobiSys ’16, pages 333–345, New York, NY,
USA, 2016. ACM.

[20] A. W. Appel. Ssa is functional programming. volume 33, pages 17–
20, 1998.

[21] Q. A. Chen, Z. Qian, Y. J. Jia, Y. Shao, and Z. M. Mao. Static detec-
tion of packet injection vulnerabilities: A case for identifying attacker-
controlled implicit information leaks. In Proceedings of the 22Nd
ACM SIGSAC Conference on Computer and Communications Secu-
rity, CCS ’15, pages 388–400, New York, NY, USA, 2015. ACM.

[22] A. K. Das, P. H. Pathak, C.-N. Chuah, and P. Mohapatra. Uncovering
privacy leakage in ble network traffic of wearable fitness trackers. In
Proceedings of the 17th International Workshop on Mobile Computing
Systems and Applications, HotMobile ’16, pages 99–104, New York,
NY, USA, 2016. ACM.

[23] R. Faragher and R. Harle. An analysis of the accuracy of bluetooth
low energy for indoor positioning applications. In Proceedings of the
27th International Technical Meeting of The Satellite Division of the
Institute of Navigation (ION GNSS+ 2014), pages 201–210, 2014.

[24] K. Fawaz, K.-H. Kim, and K. G. Shin. Protecting privacy of ble device
users. In 25th USENIX Security Symposium (USENIX Security 16),
pages 1205–1221, Austin, TX, Aug. 2016. USENIX Association.

[25] C. Gomez, J. Oller, and J. Paradells. Overview and evaluation of blue-
tooth low energy: An emerging low-power wireless technology. Sen-
sors, 12(9):11734, 2012.

[26] J. Khalid, A. Gember-Jacobson, R. Michael, A. Abhashkumar, and
A. Akella. Paving the way for nfv: Simplifying middlebox modifi-
cations using statealyzr. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pages 239–253, Santa
Clara, CA, Mar. 2016. USENIX Association.

[27] P. A. Kodeswaran, R. Kokku, S. Sen, and M. Srivatsa. Idea: A sys-
tem for efficient failure management in smart iot environments. In
Proceedings of the 14th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys ’16, pages 43–56, New
York, NY, USA, 2016. ACM.

[28] C. Lattner, A. Lenharth, and V. Adve. Making context-sensitive
points-to analysis with heap cloning practical for the real world. In
Proceedings of the 28th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’07, pages 278–289,
New York, NY, USA, 2007. ACM.

[29] A. A. Levy, J. Hong, L. Riliskis, P. Levis, and K. Winstein. Beetle:
Flexible communication for bluetooth low energy. In Proceedings of
the 14th Annual International Conference on Mobile Systems, Appli-
cations, and Services, MobiSys ’16, pages 111–122, New York, NY,
USA, 2016. ACM.

[30] A. Rath and S. Panwar. Fast handover in cellular networks with fem-
tocells. In 2012 IEEE International Conference on Communications
(ICC), pages 2752–2757, June 2012.

[31] S.-H. Seo, M. Nabeel, X. Ding, and E. Bertino. An efficient certifi-
cateless cryptography scheme without pairing. In Proceedings of the
Third ACM Conference on Data and Application Security and Pri-
vacy, CODASPY ’13, pages 181–184, New York, NY, USA, 2013.
ACM.

[32] A. Sgora and D. D. Vergados. Handoff prioritization and decision
schemes in wireless cellular networks: a survey. IEEE Communica-
tions Surveys Tutorials, 11(4):57–77, Fourth 2009.

[33] B. Steensgaard. Points-to analysis in almost linear time. In Proceed-
ings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’96, pages 32–41, New York, NY,
USA, 1996. ACM.

[34] Y. Tao, C. Faloutsos, D. Papadias, and B. Liu. Prediction and indexing
of moving objects with unknown motion patterns. In Proceedings of
the 2004 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’04, pages 611–622, New York, NY, USA, 2004.
ACM.

[35] F. A. Teixeira, G. V. Machado, F. M. Q. Pereira, H. C. Wong, J. M. S.
Nogueira, and L. B. Oliveira. Siot: Securing the internet of things
through distributed system analysis. In Proceedings of the 14th Inter-
national Conference on Information Processing in Sensor Networks,
IPSN ’15, pages 310–321, New York, NY, USA, 2015. ACM.

[36] D. Wong and T. J. Lim. Soft handoffs in cdma mobile systems. vol-
ume 4, pages 6–17. IEEE, 1997.

[37] J. L. Yan Michalevsky, Suman Nath. Mashable: Mobile applications
of secret handshakes over bluetooth le. ACM, July 2016.

[38] T. Zachariah, N. Klugman, B. Campbell, J. Adkins, N. Jackson, and
P. Dutta. The internet of things has a gateway problem. In Proceed-
ings of the 16th International Workshop on Mobile Computing Sys-
tems and Applications, HotMobile ’15, pages 27–32, New York, NY,
USA, 2015. ACM.

143

