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Abstract. This paper introduces OpenMote, the latest generation of
Berkeley motes. OpenMote is a open-hardware prototyping ecosystem
designed to accelerate the development of the Industrial Internet of
Things (IIoT). It features the OpenMote-CC2538, a state-of-the-art com-
puting and communication device. This device interfaces with several
other accessories, or “skins”, through a standardized connector. The
skins developed to date include boards to provide power, boards which
enable a developer to easily debug the platform, and boards to allow
seamless integration of an OpenMote network into the Internet.
This hardware ecosystem is complemented by a suite of software tools
and ports to popular open-source IoT implementations. The OpenMote
platform is for example tailored to run the OpenWSN open-source im-
plementation of emerging IIoT standards. The combination of hardware
and software ecosystems gives an embedded programmer an intuitive
and complete development environment, and an end-user a fully work-
ing low-power wireless mesh networking solution running the latest IIoT
standards.

1 Introduction

Tomorrow’s Smart Factory will be wireless. Industrial process monitoring and
automation applications are both “going wireless” and “going IP” to reduce
installation cost and simplify Internet integration. Standardization is leading
this e↵ort, for example through the IETF 6TiSCH working group [1], which is
standardizing tomorrow’s “Industrial Internet of Things” (IIoT).

Early experimentation is needed for these standards to be widely adopted,
and for the Industrial IoT to take o↵. Key accelerators for this process are open-
source hardware and software projects which provide early access to implementa-
tions of those standards, and link pioneering ideas to industrial adoption. In the
early 2000’s, this happened through the IEEE802.15.4 [2] standard, the TelosB
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Fig. 1. An OpenMote-CC2538 and an OpenUSB.

hardware platforms and the TinyOS [3] implementation. This combination trig-
gered significant research on Wireless Sensor Networking, resulting in standards
such as 6LoWPAN.

This experience has thought us several lessons. First, tight coupling and par-
allel evolution between hardware platforms and open-source projects benefit the
adoption of the standards they implement. Second, a modular hardware design
improves the applicability of the hardware to di↵erent applications. Third, pro-
viding easy-to-use board support packages (BSP) and prototyping tools speeds
up time-to-deployment and eventually time-to-market. Fourth, open hardware
benefits knowledge transfer and industrial adoption, as companies can take ad-
vantage of already proven designs. Fifth, symbiotic alignment between standard-
ization groups and open-source hardware/software projects yields better stan-
dards and speeds up their adoption. These lessons learnt where the basis when
designing the OpenMote hardware ecosystem.

This paper introduces OpenMote1, a modular open-hardware ecosystem de-
signed for the Industrial IoT. The OpenMote platform is designed to e�ciently
implement IIoT standards such as IETF 6TiSCH. It was designed within Berke-
ley’s OpenWSN [4] open-source project, and is therefore perfectly suited for the
new wave of IIoT standards such as IEEE802.15.4e TSCH and IETF 6TiSCH. It
is an open platform, given users “bare metal” access to state-of-the-art hardware,
with current work being done to use it within several additional open-source IoT
communities such as Contiki [5], RIOT [6] and FreeRTOS2.

The remainder of this paper is organized as follows. Section 2 presents other
open-source experimentation platforms, and relates them to OpenMote. Sec-
tion 3 introduces the OpenMote hardware ecosystem and presents the OpenMote
platform and its interfaces. Section 4 introduces the tools and software developed
around OpenMote. Section 5 presents some results about the performance of the
OpenMote hardware. Section 6 reviews use cases and success stories developed
using the OpenMote. Finally, Section 7 concludes this paper.

1
http://www.openmote.com/

2
http://freertos.org/
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2 Other Open-Source Experimentation Platforms

The OpenMote is the latest in generation of low-power wireless platforms, and
adopts their most useful features and follows “lessons learnt”.

The “Berkeley motes” were born with the Smart Dust project in 1997. The
MICA family was the first one to establish the idea of a small low-power wireless
featuring communication, computation and energy. The widely popular TelosB
platform was a milestone “Berkeley mote”, which combined an open design,
state-of-the-art hardware (in 2004), ease-of-use and commercial availability. Af-
ter more than a decade of lifetime, the hardware it o↵ers is no longer state-of-the
art. Compared to today’s o↵-the-shelf solutions, the TelosB lacks memory space,
speed and hardware acceleration for security, while consuming more energy.

During the “TelosB decade” (2004-2014), several companies adopted the open
hardware design of TelosB, and developed updated versions of it. This includes
the TMote Sky, IRIS and Zolertia Z1 motes. Other designs departed from the
TelosB constrained design and developed more powerful motes. This includes Sun
Microsystems’ SunSpot (which embeds a Java virtual machine), the Arduino, or
the COU motes [7]. These platforms are targeted mainly at educational use, and
lack the reliability and low-power operation required for industrial applications.

Most chip vendors have now switched to 32-bit microcontroller architectures
(e.g. ARM’s Cortex-M series), which o↵er more computational power for a lower-
power consumption. Systems-on-Chip (SoCs) are available which combine a mi-
crocontroller and a radio in a single chip. These SoCs reduce complexity and
costs of new designs, while o↵ering higher performance and lower power than
their equivalent 2-chip solutions.

The OpenMote is the latest generation “Berkeley mote”. It is designed to
capture this exciting state-of-the-art technology, while maintaining the simpli-
ficity and elegance of a platform such as the TelosB.

3 The OpenMote Hardware Ecosystem

A prototyping platform is not just a single communicating “mote”; it must also
encompass accessories it can plug into (including sensors), and tools to help
firmware development. This section presents this hardware ecosystem.

The driving idea of the OpenMote ecosystem is to separate the communica-
tion/computation module from interface boards, resulting in a simple, modular
and elegant solution. The OpenMote-CC2538 (Section 3.1) is the heart of this
ecosystem, and provides computation and communication capabilities. Its stan-
dardized pin-out enables it to interface to the other elements of the ecosystem
using digital and analog interfaces (GPIO, I2C, SPI, UART), through high-level
connectors such as Ethernet, USB, Phidgets and Grove sensor connectors. The
boards the OpenMote-CC2538 can interface to today include the OpenBattery
(Section 3.2), the OpenBase (Section 3.3) and the OpenUSB (Section 3.4).
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Fig. 2. The OpenMote hardware ecosystem: (from left to right) OpenMote-CC2538,
OpenBattery, OpenBase, OpenUSB.

3.1 OpenMote-CC2538

The OpenMote-CC2538 (Fig. 2) sits at the core of the OpenMote hardware
ecosystem. It is the brain of the platform, and the element a developer programs.
The first generation OpenMote, the OpenMote-CC2538, features a TI CC2538
SoC. The design of the “OpenMote” is, however, generic and future revisions can
integrate other SoCs, possibly featuring di↵erent communication technologies.

The CC2538, at the core of the OpenMote-CC2538, is a SoC from Texas
Instruments with a 32-bit Cortex-M3 microcontroller and an IEEE802.15.4-
compliant radio. The microcontroller has a clock speed up to 32 MHz, embeds
32 kB of RAM and 512 kB of flash memory, and features several peripherals
(including GPIOs, ADC, I2C, SPI, UART and timer modules). The radio op-
erates in the 2.4 GHz band and is fully compliant with the IEEE802.15.4-2006
standard.

The power subsystem is driven by a step-down DC/DC converter (TPS62730)
with two operational modes: bypass and regulated. In bypass mode, the DC/DC
converter directly connects the input voltage from the battery (typically 3 V) to
the system. In regulated mode, the DC/DC converter regulates the input voltage
down to 2.1 V. The benefit of such approach is that the e�ciency of the system
can be improved under both low and high load conditions (when the system is
sleeping or when the radio is transmitting/receiving).

A 32 MHz crystal clocks the radio, and has a drift of up to 30 ppm (parts
per million) from -20 C to +70 C. This crystal remains o↵ when the radio is
asleep. To achieve tight time synchronization – a fundamental requirement of
new industrial communication protocols – a second 32 kHz crystal clocks the
microcontroller’s RTC (Real Time Clock). This ultra low-power RTC allows the
OpenMote to keep track of time, even when in deep sleep. This second crytal is
rated at 10 ppm from -40 C to +85 C (the industrial temperature range).

The OpenMote-CC2538 board features 4 LEDS, 2 programmable buttons, a
chip antenna and an SMA connector for an external antenna. The form factor
and pin-out is the same as other popular low-power wireless board, such as the
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XBee and WaspMote. This means that an OpenMote can interface with any
accessory built for those boards, and can be a swap-in replacement.

The OpenMote-CC2538 is the core of the OpenMote hardware ecosystem.
The modular design separates it from di↵erent development interfaces – “skins”
– to provide a versatile set of tools to the developer. This design also enables a
user to replace today’s OpenMote-CC2538 with future versions of the board.

3.2 OpenBattery

The OpenBattery (Fig. 2) is a skin for the OpenMote-CC2538 which provides
power and basic sensing capabilities. It is composed of a battery holder for
2 AAA batteries, a socket for the OpenMote-CC2538, an on/o↵ switch, and
three sensors: a temperature/humidity sensor (SHT21), a 3-axis accelerometer
(ADXL346) and a light sensor (MAX44009). All sensors are interfaced with the
OpenMote-CC2538 using an I2C bus. The temperature sensor (and updated
version of the one on the TelosB) can be used in a wide set of applications,
including network synchronization [8]. The 3-axis accelerometer can be used for
dynamic or static motion detection. The light sensor can be used for a wide
range of applications, from presence detection to touch-less switching.

3.3 OpenBase

The OpenBase (Fig. 2) is a skin for the OpenMote-CC2538 which o↵ers all the
interfaces needed for e�cient firmware development. It features a socket for the
OpenMote-CC2538, a 10-pin JTAG connector for in-circuit debugging of the
OpenMote-CC2538, a circuit to monitor the current draw of the OpenMote-
CC2538, pins to interface the OpenMote-CC2538 to external devices, a USB
connector to re-program and debug the OpenMote-CC2538, and a 10/100 Mbps
Ethernet connector3 to connect the OpenMote-CC2538 directly to a LAN.

This wealth of interfaces means that the OpenBase can serve several pur-
poses. Through the JTAG interface, it can be used during code development to
place breakpoints and inspect variables. Through the USB interface, it can be
used to reprogram the OpenMote-CC2538 with pre-compiled binary images, and
receive status information from that firmware over a serial interface. Through
the 10/100 Mbps Ethernet interface, the OpenMote-CC2538 can be connected
to the Internet without requiring a computer.

3.4 OpenUSB

The OpenUSB (Fig. 2) is designed for ease-of-use by ends users, and for using
OpenMote-CC2538 boards in a testbed. It features a USB “male” connector, a

3 The Ethernet connector is based on a Microchip ENC28J60 chip and a standard
RJ-45 connector that includes both the magnetics and the circuit protection.
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10-pin JTAG connector, a battery holder for 2 AA batteries, the same 3 sensors
as the OpenBattery, and a Grove connector4 to connect to dozens of sensors.

An end-user uses the OpenUSB much like he/she uses a TelosB today: re-
program the board with precompiled firmware, debug either through printf

statement or through the JTAG interface, and deploy battery-powered nodes.
In the contex of a testbed, the OpenMote-CC2538 connected to an OpenUSB
(see Fig. 1) is a drop-in replacement of a TelosB. Similar to a TelosB, it can be
connected to a small single-board computer (such as the Raspberry Pi) which
can reprogram it. This makes it an ideal solution for a testbed.

3.5 Interfaces and Accessories

One of the main requirements for an OpenMote is to be able to interface to other
devices and boards. Thanks to its form-factor, numerous “shields” already exist,
for example to the Arduino.

Fig. 3. The Raspberry Pi adapter for the OpenMote.

As part of its continuous push to expand the OpenMote ecosystem, the Open-
Mote team has developed an adapter board for the Raspberry Pi version 1 and
version 2 (see Fig. 3). With this setup, the Raspberry Pi can be programmed
with the OpenPi image5, an OpenWSN-ready distribution for the Raspberry Pi,
turning the Raspberry Pi+OpenMote into the gateway of an OpenWSN network.

4 The OpenMote Software Ecosystem

The OpenMote hardware ecosystem is empowered by the OpenMote software
ecosystem, a collection of tools to simplify development (Section 4.1) and ports

4
http://www.seeedstudio.com/

5
https://github.com/openwsn-berkeley/openpi
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to popular operating system (Section 4.2). Section 4.3 further details the end-
user experience of using OpenWSN on the OpenMote ecosystem.

4.1 Tools

The OpenWSN project contains an Eclipse-based development environment for
the OpenMote-CC2538, including JTAG debugging. The OpenWSN build sys-
tem contains the necessary scripts to upload pre-compiled binaries onto the
board, when in-circuit debugging is not needed.

The OpenMote community has developed firmware to turn an OpenMote-
CC2538 into a IEEE802.15.4 packet sni↵er6. When connected to an OpenBase
(resp. OpenUSB), the OpenMote-CC2538 publishes captured packets onto the
Ethernet (resp. serial) interface. In both cases, packets can be analyzed using
Wireshark, a popular packet analysis software.

4.2 Operating Systems

The OpenMote team believes in community-driven open-source hardware and
software.

OpenMote can be seen as the hardware spin-o↵ of Berkeley’s OpenWSN
project [4]. A number of OpenMote prototypes were developed in that project
to identify the components which are most suitable for implementing IIoT stan-
dards such as IEEE802.15.4e TSCH. OpenWSN promotes the Industrial Internet
of Things by providing an open implementation of standards such IEEE802.15.4e
TSCH [9], IETF RPL [10], IETF CoAP [11] and the standards promoted and
developed by the IETF 6TiSCH working group [12].

It is also possible to use the OpenMote with other open-source projects such
as FreeRTOS, RIOT and Contiki. The latter has adopted the OpenMote as its
prototyping platform through Thingsquare, Contiki’s commercial o↵ering.

The OpenMote community has also developed the first low power implemen-
tation of the Distributed Queuing (DQ) protocol [13], demonstrating that the
concept of DQ can be implemented on o↵-the-shelves hardware.

4.3 End-User Experience

The OpenMote team aims at providing an integrated hardware/software plat-
form for end-users to use cutting IIoT standards.

For a developer, it enhances user experience by facilitating tasks such as
debugging, having access to GPIOs and hardware interfaces leveraging the bur-
den of bare metal programming. When developing on OpenWSN, OpenMote
provides all the necessary tools to develop an application or contribute to a pro-
tocol implementation. The OpenBase and the OpenUSB provide external pins
to debug peripheral buses such as SPI, UART and I2C, using a logic analyzer.

6
https://github.com/OpenMote/firmware/tree/master

/projects/ieee802154-sniffer
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For an end-user, reprogramming an OpenMote-CC2538 with the latest re-
lease of the OpenWSN stack is as simple as running a single command line:

scons board=OpenMote-CC2538 bootload=/dev/ttyUSB0 oos openwsn

One OpenMote-CC2538 can be connected to a Raspbarry Pi running the OpenPi
distribution (Fig. 3) to turn it into the gateway. The other motes can be con-
nected to OpenUSB boards (Fig. 1) and deployed in the field. The out-of-the-box
experience is that the Raspberry Pi becomes the 6LoWPAN “Low-power Bor-
der Router” (LBR), connecting the OpenWSN network of OpenMotes to the
Internet.

5 Performance

This section presents performance results measured on the OpenMote-CC2538.

Fig. 4. Current draw of the OpenMote-CC2538 running the OpenWSN protocol stack.
(left) The 10ms active slot; the mote transmits and receives an acknowledgment. (cen-
ter) The active slot followed by 9 inactive slots; the mote wakes up at each slot, the
default OpenWSN behavior. (right) Same result, but the node stays asleep during
inactive slots (optimization).

Current Draw. To measure the current draw of the OpenMote-CC2538, we
program two boards with the latest OpenWSN firmware, and connect both to a
computer using OpenBase boards. We configure one node to be DAGroot, the
other a regular node.

The data is acquired using a Rigol DS1000E digital oscilloscope and a uCur-
rent Gold current probe. The current probe is connected in series to the Open-
Base current sense pins, and transforms the current flowing into the OpenMote-
CC2538 board into a voltage through a low-noise operational amplifier circuit.
The current probe is connected to the digital oscilloscope, which acquires and
digitizes the analog voltage. The oscilloscope has a vertical resolution of 8 bits
and the vertical range is set to 10 mV/div, which yields 195 uA/LSB. The sam-
pling frequency is set to 1 MHz, the acquisition time to 10 ms. Results are show
in Fig. 4.
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In an active slot, the node transmits a data packet to the DAG root and waits
for the acknowledgment (ACK) packet from the DAG root. The data packet is
127 bytes long (⇡4 ms duration); the ACK is 32 bytes long (⇡1 ms). In an active
slot, the transmitting mote waits 1.5 ms, then turns on its radio to transmit the
data packet. 200 µs after the data packet is fully transmitted, the mote start
listening for the ACK.

The OpenMote’s CPU is clocked by a 32 MHz external crystal, rather than
the 16 MHz internal crystal. When the CPU is on, the OpenMote-CC2538 con-
sumes 13 mA.

During packet transmission and reception, the CPU consumes around 1.5 mA.
This consumption adds up to the radio transceiver current consumption. When
transmitting at +7 dBm, the OpenMote-CC2538 consumes 34 mA. When receiv-
ing a signal at -50 dBm, it consumes 20 mA. These values match the datasheet.

RF Signal. We capture the transmission of a packet on a spectrum analyzer
to measure the power radiated by the radio front-end. Results are shown in
Fig. 5. The signal is well centered, demonstrating the good performance of the
radio front-end.

Fig. 5. Power spectral density of OpenMote-CC2538 transmitting at 2.44 GHz.
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6 Example Use Cases

This section contains examples of projects in the industrial, standardization,
robotics, medical and mobile network fields where the OpenMote is used today.

Industrial. In [?], the authors build a energy consumption model of the
OpenMote-CC2538 running the OpenWSN protocol stack to predict the net-
works battery lifetime in critical industrial environments. In [15], the authors
study the dependability of low-power wireless networks, and use the OpenMote-
CC2538 as the state-of-the-art hardware for industrial applications. In [16], the
authors study the applicability of the OpenWSN implementation running on the
OpenMote-CC2358 to run wireless control loops in industrial applications

Standardization Support. Standardization of communications protocols
is a fundamental step to enable massive adoption of technologies. The initially
fragmented IoT communication ecosystem is converging towards several IoT
standards, most of them with a common network layer. The IETF is leading this
e↵ort by bringing IP to di↵erent link-layer technologies, including IEEE802.15.4
and Bluetooth. The IETF 6TiSCH working group is standardizing a protocol
stack which combines the industrial performance of IEEE802.15.4e with the ease
of use of IP.

In this complex process, the OpenMote helps accelerating the adoption of
these emerging standards. Most open-source operating systems, including Open-
WSN but also Contiki and TinyOS are adopting 6TiSCH technology and taking
advantage of the tools provided by the OpenMote platform. Recently, ETSI or-
ganized an interoperability event around 6TiSCH technology [17] in which the
OpenMote-CC2538 running OpenWSN was selected are the reference device to
test interoperability against.

Robotics. Grieco et al. [18] survey the interaction between the fields of
robotics and IoT, and identify the OpenMote-CC2538 as the state-of-the-art
platform for this type of applications.

Medical. In [19], the authors implement a system capable of real-time on-
demand monitoring of patient in hospitals using the OpenMote-CC2538.

Mobile Networks. Weekly et al. [20] uses the OpenMote-CC2538 in indoor
environmental sensing applications using networks of mobile sensors.

7 Conclusion

This paper introduces the OpenMote prototyping environment. The goal of this
modular, versatile, open-hardware platform is to support development and pro-
totyping of tomorrow’s Industrial IoT communication technologies. OpenMote
has been designed to address the lessons learnt in the past decade of IoT re-
search and early development. OpenMote is supporting and collaborating with
most open-source initiatives and standardization e↵orts around the IoT, includ-
ing Berkeley’s OpenWSN project – the birthplace of the OpenMote – , but also
Contiki, RIOT and FreeRTOS.
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The hugely popular OpenMote has become the de-facto low-power wireless
experimentation platform. Its very active community is constantly supporting
new technologies and building a wider hardware ecosystem for the IIoT.
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