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ABSTRACT
The emerging area of device-free occupancy detection (DfOD) has
seen slow adoption due to deployability, scalability, and energy
efficiency concerns resulting from the use of large, costly, and
power-hungry devices like laptops and Wi-Fi routers in the state-
of-the-art solutions. Moreover, these approaches often rely on cloud-
offloading for data processing which requires extra communication
latency and energy. To overcome these challenges, we develop an
RF-based DfOD system using easily-deployable Bluetooth Low En-
ergy (BLE) devices. Our system uses a kilobyte-sized machine learn-
ing algorithm running on the BLE device to predict the occupancy
of a room from a small number of wireless packets, thereby en-
abling energy-frugal real-time analytics. We validate our approach
with experiments in two indoor rooms using four nRF52840 BLE
radios. Initial results suggest our system can detect occupancy of
an indoor environment with 95% accuracy, 96% precision, and 92%
recall while drawing a meager amount of current.
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1 INTRODUCTION
Detecting occupancy in office spaces is a challenging problem, yet
a sustainable solution suitable for retrofits would enable a host of
applications, from optimized ventilation to more strategic physical
space allocation. A recent trend is device-free occupancy detection
(DfOD) using RF signals, where wireless devices in the space es-
timate occupancy and occupants do not need to carry devices or
actively participate in the sensing process [3, 10, 13].
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The core idea behind RF-based DfOD is that the presence of hu-
mans in an indoor environment affects the received signal strength
(RSS), angle of arrival (AoA), and time of flight (ToF) parameters
of transmitted RF signals. A typical RF-based DfOD system con-
sists of several radio transmitters and laptop-based receivers, plus
an application server which processes the data for human detec-
tion [2, 10, 14, 15]. However, the involvement of laptops or Wi-Fi
routers in the DfOD system increases the system cost and power
requirements as well as deployment complexity. In this work, we
focus on making the system scalable, energy-efficient, and prac-
tical by lowering the power requirements of the RF devices. This
will enable energy-constrained, deployable, and readily-available
Bluetooth Low Energy (BLE) devices to perform the sensing task
instead of laptops or Wi-Fi routers. However, this presents several
challenges as BLE devices often lack computation power, must be
frugal with their energy, and lack channel state information (CSI)
which state-of-the-art DfOD algorithms typically rely on [16, 19, 21].
Moreover, the majority of existing WiFi-based DfOD systems re-
quire multiple measurements and offloading data to the application
server, resulting in high energy consumption and communication
latency [18, 22, 24, 25].

We present a step towards detecting indoor occupancy using
resource-constrained BLE devices without expecting users to have
any BLE devices themselves. We deploy four devices in a room,
record RSS and a customized ToF measurement for signals between
the devices, and use a resource-friendly customized gated recurrent
neural network (FastGRNNN [12]) to predict the occupancy of the
room. From our initial empirical study, our system can detect the
occupancy of a room with 95% accuracy, 96% precision, and 92%
recall. In this context, our contribution in this paper is three-fold:

• We develop an occupancy sensing architecture that only
requires low-power wireless devices and performs on-board
occupancy estimation.

• Weestimate the energy required for this approach and demon-
strate the feasibility of deployment in indoor settings.

• We identify and discuss potential improvements to this ar-
chitecture to expand it to additional indoor environments.

2 RELATEDWORK
Various approaches for device-free occupancy detection in indoor
environments exist with different advantages and limitations. Some
systems use multi-sensor data such as CO2, temperature, and hu-
midity [6, 8] to assess indoor occupancy. However, these approaches
are not instantaneous given that the level of CO2 or temperature
alters slowly with respect to human presence. Moreover, these so-
lutions often use various complex machine learning models and
need a server to perform the computation [7, 11, 20]. Requiring a
server increases the deployment complexity, communication en-
ergy consumption, and communication latency.
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Figure 1: System overview.

Other solutions use non-environmental sensors, such as infrared [5],
RFID [23], ultrasonic sound [14], and radio frequency [4, 10, 17].
These solutions, however, can be difficult to deploy. For instance,
Karanam et al.’s approach requires three laptops [10], and LiFS
requires 11 laptops [17] to perform the human sensing task.

Less sensor-heavy approaches use only commodity Wi-Fi access
points to predict the occupancy of a particular room [18, 24, 25].
These solutions may not scale well as deploying one or more access
points in every room is costly.

Our proposed approach overcomes the deployment and scala-
bility challenges by using miniature and inexpensive BLE devices.
Moreover, this system performs on-device computation and does
not require a remote server once deployed. Additionally, since our
model uses an RF-based approach it can sample the occupancy of a
room on-demand.

3 DESIGN
Our general approach is to deploy N BLE devices (known as periph-
eral nodes) in the room to be sensed. Each peripheral node interacts
with another BLE device, the central node, using standard BLE mes-
sages. The central node then uses a machine-learning based model
and certain RF properties of those messages to estimate if the room
is occupied or not. Our hypothesis is that the presence of occupants
will affect the RF signals, and that a data-driven, neural-network
based classifier with sufficient training data will effectively detect
occupancy even with the limited information provided by commod-
ity BLE devices. As such, our design includes a training phase and
a testing phase.

In the offline training phase, each peripheral node repeatedly
sends a one byte packet to the central node which measures the
corresponding RSS and ToF. Time of flight (ToF) corresponds to
the time elapsed between when a message is transmitted and when
it is received. While measuring signal strength is straightforward
on commodity embedded devices, ToF is more difficult. Our BLE
devices do not have synchronized clocks, and as such we adapt a
round trip time (RTT) based ToF measurement technique described
in [9]. To measure the ToF, the central node sends a message to
the peripheral while starting a timer. Upon receiving that signal,
the peripheral sends a reply message after a fixed delay. When the
central node receives the reply it samples its timer and calculates
the propagation time of the signal.

We collect two profiles of training data: a “silent-profile” when
the room is empty, and a “noise-profile” when there is at least one
person in the room. The central node forwards the raw data from
these profiles to a remote server to train a kilobyte-sized recurrent
neural network (RNN).

Figure 2: Learning process block diagram.

In the testing phase, we deploy and execute the trained model
on the central node. Peripheral nodes once again send packets to
the central node and the central node predicts the occupancy of the
room using the measured RSS and ToF. The overall system flow is
depicted in Figure 1.

3.1 Machine Learning Algorithm
Our architecture uses a fast and tiny gated recurrent neural net-
work (FastGRNN) [12]. While many machine learning techniques
(RNN, LSTM, GRU) exist that might be effective for our data, they
typically generate a large model which cannot fit into the memory-
constrained central node. Compared to a conventional RNN algo-
rithm, the FastGRNN model has lower prediction costs (18x faster)
and a much smaller memory footprint (35x smaller) [12].

3.1.1 Notation. Table 1 shows the notation used to describe the
training and prediction process. The input feature vector collected
at i-th time step is defined by xi ∈ Rd . Here, d is the dimension of
the feature vector, which in our case is six, as we use two features
(RSS and ToF) from each of the three peripherals. As such, for
peripherals A, B and C at i-th step we get xi = {RSSA, ToFA, RSSB ,
ToFB , RSSC , ToFc } as the input feature vector.

RNNs maintain a hidden state vector hi ∈ Rd̂ for each time-step
i to allow information to flow from the previous step to the next
step. In each iteration of the training algorithm, our objective is
to optimize matrices U, V andW; vector b; scalar values α and β .
Hyperparameters r1, r2 and r3 are used to control the size of the
model using low rank decomposition of matrices U and V and W.

Table 1: Notation

Symbol Description
xi Feature vector at i-th time-step. Contains RSS

and ToF of three peripherals
hi Hidden state vector at i-th step

U, V,W RNN learning matrices, tunes the model
b Bias vector
α , β Trainable scalar weights
n Number of time-steps. Consecutive signals fed

into the learning model at one iteration
d Dimension of the feature vector x
d̂ Dimension of the hidden state vector h

r1, r2, r3 Hyperparameters, together control the dimen-
sion of U, V and W

3.1.2 Learning Process. Figure 2 illustrates a block diagram of
our learning process. Let, X = {x1,x2, ...,xn } be the set of input
features that we are feeding to the FastGRNN model at once, where
xi feature vector is collected immediately before the xi−1 feature
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Figure 3: A sample testbed where we collect data using four
nRF52840 BLE devices

vector. n represents the number of time-steps i.e. number of times
information to be passed to the next step of the network. Increasing
n should improve accuracy, but at the expense of needing to capture
and process more RF signals, which increases energy consumption
and measurement latency. From our empirical study, taking n =
3 provides us satisfactory result (i.e. 94% accuracy), but we also
explore tuning this parameter.

The state update block of Figure 2 provides us the updated state
vector h for the next phase. Inside of this block following operation
is being performed to compute the next hidden state.

gi = tanh(Wxi + Uhi−1 + b) (1)

hi = (α(1 − gi + β) ⊙ gi + gi ⊙ hi−1 (2)
where, 0 ≤ α , β ≤ 1 are trainable parameters and ⊙ stands the

Hadamard product.
Once we have the final hidden state vector hn , we can predict

the output value using following equation-

ŷ = so f tmax(Vhn ) (3)

In regular RNN model, parameter matricesU ∈ Rd̂×d̂ , V ∈ Rd̂×d̂

andW ∈ Rd̂×d are quite large, which makes it difficult to fit into
BLE devices. However, in FastGRNN, U, V andW are compressed
using low-rank matrix decomposition as follows-

U = U1(U2)
T ;V = V1(V2)

T ;W =W1(W2)
T ; (4)

where, U1,U2 ∈ Rd̂×r2 ; V1,V2 ∈ Rd̂×r3 ;W1 ∈ Rd̂×r1 andW2 ∈

Rd×r1 . Controlling the ranks r1, r2 and r3 we trade-off between the
model size and model performance.

Once we determine the output using equation 3, we calculate
the loss L on this prediction (logistic loss), and using the mini-
batch stochastic gradient descent we jointly update our learning
parameters θ = {U1,U2,V1,V2,W1,W2, b, α , β }.

The result of feeding the entire training dataset into the model
in an iterative fashion is an optimized trained parameter set θ . We
then test this with our offline testing dataset and verify that the
model performs well. Finally, we deploy these optimized parameters
into the central node for the online testing phase. We take three
consecutive signals from each of the peripheral nodes and feed them
into the model as feature vectors x1, x2 and x3. Using equations
(1), (2), and (3) the central node predicts the occupancy.

3.2 Testbed
Our system uses four BLE nodes, three as peripheral nodes and
one as the central node. Figure 3 shows our testbed setup. Once
deployed, the peripheral nodes start advertising and the central

Figure 4: Performance-memory trade-off. Increasing the
model size improves performance, but a model larger than
few kilobytes will not fit on the nRF52840.

node scans and establishes connections with each peripheral node.
After collecting enough measurements, the central node runs the
model and estimates occupancy. For our experiments, the prediction
is sent over a serial connection to a laptop for analysis.

4 EXPERIMENTAL EVALUATION
Our experiments evaluate the system sensitivity to different param-
eter settings, trade-off between performance and device memory,
and the estimated lifetime of the system in practical deployment.
Our experiments answer the following queries:

• How accurate is our system in a practical deployment? Re-
sults suggest that using this model we can detect occupancy
with up-to 95% accuracy.

• How sensitive is our model with different parameter settings,
such as the number of peripherals, number of messages, size
of the trained model?

• How long will the system run once deployed? We show that,
using a 235 mAh, 3V lithium battery this system can perform
up-to 6 years.

4.1 Experimental Setup
We evaluate the system using four Nordic nRF52840 BLE develop-
ment kits which is built around a 32-bit, 64MHz Arm Cortex-M4F
CPU with 1MB flash memory and 256 kB RAM. Our program is
tested using Nordic’s Softdevice 140 v5.0.0-2alpha BLE software
core.

We perform our experiments in two different rooms with di-
mensions 4.5 m × 7.5 m and 4 m × 6 m, respectively. These rooms
include their usual furniture. We attach four BLE devices three feet
above the ground as illustrated in Figure 3. In the training phase,
our system collects data for approximately 35 minutes when the
room is empty. After that, a person walks in the room, pauses in
different positions and the central node repeats the data collection
process for about 30 minutes. Finally, two people walk in the room
and the process continues for another 30 minutes. In this way, we
collect approximately 20,000 data points. We subdivide 80% data
for training the machine learning model and 20% data for offline
verification of the model.

Once the model has been trained, in online testing phase we
deploy the model on the central node. The central node collect
data for one hour, with the room being 40 minutes occupied and 20
minutes unoccupied. The occupants perform usual activities such
as sitting, eating, or walking around. Using the model the central
node predicts whether the room is empty or not for each captured
data point.
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(a) Accuracy (b) Precision (c) Recall

Figure 5: System performance.

4.2 System performance
We use three metrics to evaluate the performance of occupancy
detection.

• Accuracy: Overall, how often does the systemmake correct
prediction?

• Precision: When the system predicts occupied, how often
it is correct?

• Recall: When the room is actually occupied, how often
does the system correctly identify that?

Figure 5 shows our accuracy, precision, and recall results. From
our observation, we can improve performance by increasing the
number of peripherals and the number of time-steps of the model.
We reach maximum performance with 95% accuracy, 96% precision,
and 92% recall using three peripherals and four consecutive time-
steps.

4.3 Accuracy-Memory Trade-Off
Figure 4 illustrates the performance of the system as we vary the
size of the deployed model. Referring to Equation 4, we can change
the size of the model controlling ranks r1, r2 and r3. Increasing
the size of the model makes the learning matrices less sparse and
less quantized, which results in improved accuracy. Notice that the
system achieves 95% accuracy using only a 1.6 kB model when we
take hyperparameters r1 = 6, r2 = 4 and r3 = 4.

4.4 System Lifetime
One of the main challenges of using WiFi-based DfOD approaches
is their high energy requirements. To make RF-based occupancy
detection sensors deployable they must last multiple years with
reasonably sized batteries.

Figure 6 illustrates the estimated current draw of the central node
during one cycle of the testing mode. We use the "Nordic power
profile" simulation tool [1] to collect this data for our application.
The “Data collection” portion of the figure shows the average cur-
rent required for one TX byte, radio switch, and one RX byte cycle
repeated nine times (three packets × three peripherals). The “Post
processing” segment indicates the average current for measuring
RSS and ToF, and predicting the room occupancy. The “Keep alive”
segment results from the nRF52840 requiring the central node to
communicate with each peripheral at least every 4,000 ms to keep
the connection alive. Our approach can perform a measurement as
needed. To estimate average current, we assume a measurement
is taken every 30 seconds and the node is in sleep mode (at 2 µA)

otherwise. From our analysis, the central node will draw 4.42 µA
on average in one cycle (30010 ms) of occupancy detection. As such,
if we are using a 235 mAh, 3V Lithium battery in the BLE board
our system will have:

battery life =
235 mAh × 3 V
4.42µA × 3 V

≈ 159, 864 hrs ≈ 6 years

The estimated average current of the simulation tool for nRF52840
board is typically within 5% of the actual value. As such, we can
infer that the system will sustain from 5.7 years to 6.3 years.

Figure 6: Current profile over one cycle. On average 4.42 µA
current is required to complete a cycle.

5 DISCUSSION AND CONCLUSION
Our implementation and experiments show that it is feasible to
predict the occupancy in an indoor environment using miniature,
easily deployable and energy-frugal BLE devices. However, we have
trained and tested our system using limited number of rooms. We
intend to expand this system in several directions including training
and testing the system in more diverse environment, involving
more subjects, capturing real-world power traces, and eventually
predicting the number of people.

Traditional fingerprinting based approaches in DfOD have a
drawback that they are environment-specific and do not perform
well in environments where they have not been trained. We in-
tend to explore resolving this by leveraging reinforcement learning
(RL) and feedback from other IoT devices commonly used in smart
buildings that accelerate with human activity. This should further
improve the deployability of DfOD to make it truly viable in real
buildings.
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