
BLE Can See: A Reinforcement Learning Approach
for RF-based Indoor Occupancy Detection

Md Fazlay Rabbi Masum Billah, Nurani Saoda, Jiechao Gao, Bradford Campbell
University of Virginia, VA, USA

{masum,saoda,jg5ycn,bradjc}@virginia.edu

Abstract
The emergence of radio frequency (RF) dependent device-

free indoor occupancy detection has seen slow acceptance
due to its high fragility. Experimentation shows that an RF-
dependent occupancy detector initially performs well in the
room to be sensed. However, once the physical arrangement
of objects changes in the room, the performance of the classi-
fier degrades significantly. To address this issue, we propose
BLECS, a Bluetooth-dependent indoor occupancy detection
system which can adapt itself in the dynamic environment.
BLECS uses a reinforcement learning approach to predict the
occupancy of an indoor environment and updates its decision
policy by interacting with existing IoT devices and sensors
in the room. We tested this system in five different rooms for
520 hours in total, involving four occupants. Results show
that, BLECS achieves 21.4% performance improvement in
a dynamic environment compared to the state-of-the-art
supervised learning algorithm with an average F1 score of
86.52%. This system can also predict occupancy with a maxi-
mum 89.23% F1 score in a completely unknown environment
with no initial trained model.

CCS Concepts
•Computer systems organization→Embedded systems,
Sensor networks.

Keywords
Reinforcement learning, BLE, DQN, Occupancy detection

ACM Reference Format:
MdFazlay RabbiMasumBillah, Nurani Saoda, JiechaoGao, Bradford
Campbell. 2021. BLE Can See: A Reinforcement Learning Approach

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
IPSN’ 21, May 18–21, 2021, Nashville, TN, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8098-0/21/05. . . $15.00
https://doi.org/10.1145/3412382.3458262

for RF-based Indoor Occupancy Detection. In Information Processing
in Sensor Networks (IPSN’ 21), May 18–21, 2021, Nashville, TN, USA.
ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3412382.
3458262

1 Introduction
Indoor occupancy detection is a difficult problem, yet a

reliable solution can yield a wide range of applications includ-
ing home automation, energy savings, optimized ventilation,
and pet monitoring. Until now, several approaches have been
proposed to solve the device-free indoor occupancy detec-
tion challenge. The most common and intuitive solution is
to use motion sensors. However, motion sensor-dependent
systems often exhibit poor performance as they provide false
predictions when the occupant is not moving. Another popu-
lar approach proposes installing radar at the zone transition
point (i.e. doors) where the system counts the number of
people entering or exiting the room [13, 14, 16–18, 22]. This
scheme often cannot differentiate between a near-door event
and a real crossing, also confuses the count when a group of
people walks through the door in conjunction. Other alter-
native solutions use environmental data of a room such as
𝐶𝑂2, humidity, or temperature to infer occupancy [2, 3, 34].
However, environmental data changes slowly with respect
to human presence and as such this system fails to make
correct prediction instantaneously.
Recent advances in wireless sensing techniques provide

a new solution to infer occupancy from the radio signal
distortion caused by human presence [5, 12, 23, 27, 29, 31, 32,
36–38]. The intuition behind this technique is that human
presence impacts the wireless signal through body reflection
which reduces the similarity of the signal pattern between
occupied room and unoccupied room. A signal processing
algorithm or a machine learning model trained to identify
the pattern of an empty room and the occupied room could
detect human presence instantaneously.
A common limitation of this approach is that, to iden-

tify human presence in all kinds of indoor environment it
requires a large database of every occupied scenario in differ-
ent indoor environments. In practice, this is not possible as
human behavior and movements are very random. As such,
existing RF-based schemes suffer from high false positive

132

https://doi.org/10.1145/3412382.3458262
https://doi.org/10.1145/3412382.3458262
https://doi.org/10.1145/3412382.3458262

Tx Rx

Direct signal

Wall

(a) Silent profile 1
Tx Rx

Direct signal

Wall

(b) Noise profile 1

Tx RxWall

X

X

(c) Noise profile 2
Tx RxWall

Direct signal

(d) Silent profile 2

Figure 1: An illustration of RF-based occupancy paradigm. (a) Signals propagating in an empty room follows a
certain multipath pattern. (b) The presence of a human can add additional multipath effect. (c) The presence of
human can also alter existing multipath effect. (d) Movement of objects can alter the pattern as well.

rates when tested in a new room. Moreover, over time, per-
formance of the system decreases in the room where it is ini-
tially calibrated due to the change of physical arrangements
of objects. The system fails to identify the new multipath
component caused by a shifted object (i.e. chair) and tends
to characterize the reflection from the object as a reflection
from a person (treating the empty room as occupied). This
limitation is problematic as it means RF-based approaches
can only work in a stationary environment (no alteration of
objects) where the model is initially trained and would fail
in a dynamic environment.
In recent years, there have been a proliferation of smart

devices in homes and offices. These smart devices interact
with humans frequently and as a result often correlate with
occupancy. In this paper, we propose taking advantage of
these devices for occupancy detection by blending themwith
a reinforcement learning agent. We introduce BLE Can See
(BLECS), an RF-based occupancy detection system that can
predict the occupancy of a dynamic environment using off-
the-shelf energy efficient Bluetooth devices. BLECS design
requires multiple BLE devices to communicate with each
other in a room to generate RF features. Receiving those
features in a wireless fashion, a reinforcement learning (RL)
agent predicts the occupancy of the room. To update the
decision policy and to adapt with the dynamic environment,
the RL agent can take certain actions (e.g. control a smart
appliance or turn off a light), depending on the application
it serves. If an occupant reacts to the action by interacting
with a smart appliance, the agent gets a feedback from that
appliance that the room is occupied and can update its policy
accordingly. However, it might degrade the user experience
if the agent keeps turning off a light to see reaction. As such,
in 𝐵𝐿𝐸𝐶𝑆 design, the RL agent also gets feedback from envi-
ronmental sensors to update the policy for the unoccupied
scenario where no user action is needed. Moreover, 𝐵𝐿𝐸𝐶𝑆
lets smart appliances to voluntarily send feedback to the RL
agent, which allows the agent to update its decision policy
in an online-learning fashion.

Realizing BLECS requires addressing two technical chal-
lenges:

(1) RF Feature extraction: To make the system energy
frugal, BLECS extracts RF features: time of flight (ToF), re-
ceived signal strength indicator (RSSI), and packet drop effect
(PDE) from a Bluetooth signal rather than the convention-
ally used WiFi signals. However, unlike commercial WiFi
chipsets, BLE devices lack channel state information (CSI)
which makes it difficult to extract some of the RF features.
Also, BLE devices do not have synchronized clocks and there
is no straightforward approach to measure the ToF. To solve
this issue, BLECS adopts a round-trip time (RTT) based ToF
measurement technique. To account for the packet drop
caused by human presence, BLECS introduces a delay-based
mechanism.

(2) Feedback generation: To maintain the reinforcement
learning scheme, the RL agent requires feedback from the
environment. This feedback mechanism allows the agent to
adapt its decision policy with the dynamic environment or
even learn a completely new policy for an unknown envi-
ronment. BLECS orchestrates this mechanism by receiving
feedback from smart devices whenever an occupant inter-
acts with a device. However, we observe that, if the agent
gets feedback from only smart devices it gets biased towards
predicting the room is occupied. To reduce this bias and to
accelerate the policy update frequency, BLECS takes feed-
back from environmental sensors (i.e. 𝐶𝑂2 sensor) as well.
Nevertheless, feedback from environmental sensors could
be erroneous since they cannot immediately identify hu-
man presence. To reduce the impact of erroneous feedback,
BLECS uses an exploration-exploitation strategy.
BLECS includes many desirable features for an indoor

occupancy sensing scheme. It is (1) dynamic: the system can
quickly adapt if the environment changes while remaining
accurate; (2) scalable: can obtain high performance in rooms
which it has never experienced; and (3) energy efficient:
the system is very energy-frugal. Specifically, we make the
following key contributions in this paper:

133

SVM DT LSTM RF KNN
Model Name

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

F1
 sc

or
e

Day 1
Day 7

Figure 2: Five classifiers were trained with RF features
to predict indoor occupancy. Over a seven-day period
their performance dropped significantly.

• We design an adaptive scheme that can retain high perfor-
mance in a dynamic environment. This scheme can also
predict the occupancy of a room which it has never ex-
perienced without any pretrained model. This in effect,
reduces the burden of labor-intensive offline training.
• We design BLECS with a working prototype involving
ubiquitous commodity IoT devices, environmental sensors,
and Bluetooth devices. We performed extensive evalua-
tion in typical bedrooms, living rooms, and office rooms
involving four occupants for up to 7 days in each room. Re-
sults indicate that, on average BLECS can achieve 75.54%–
86.52% F1 score in a dynamic environment and up to 89.23%
F1 score without a pretrained model in an unknown en-
vironment. Compared to the state-of-the-art ML-based
approach, BLECS gains 21.4% performance improvement
in dynamic environments.
• Unlike traditional RF-based occupancy detectors which
use Wi-Fi signals, BLECS extracts features from Bluetooth
signals. Our results estimate that on average 𝐵𝐿𝐸𝐶𝑆 re-
quires only 20.5 mJ power to perform a prediction.

2 Background and Motivation
Figure 1 illustrates the underlying mechanism of the RF-

based human sensing solution. To begin, in an empty room,
a transmitter device sends signals to a receiver device in a
continuous fashion and the receiver receives either the direct
signal or a reflected signal (Figure 1a). The hypothesis is that,
if everything in that room remains unchanged, over time,
these received signals would build a silent profile (i.e. similar
angle of arrival (AoA), ToF, RSSI, or PDE). When a person en-
ters the room, she could create a noise profile by adding new
multipath components (Figure 1b) or alter existing multipath
components (Figure 1c). With a sufficient silent profile and
noise profile, a supervised classification model could infer
the occupancy of that room instantaneously.
One particular problem associated with this approach is

that once the physical arrangement of objects changes in the

room, the initially learned silent profile no longer exists. A
new silent profile gets created due to shifted objects (Figure
1d) and the classifier needs to be re-trained with this new
silent profile. A similar problem occurs when the position
of the transmitter and the receiver changes. These devices
need to be in exact same position where data collection was
performed for model training, otherwise the silent profile
would not be the same as the learned one. Other RF based ap-
proaches which use signal processing approach or threshold
mechanism instead of classifiers can face a similar problem.
The signal processing scheme that would have been devel-
oped for one room would only work in that room due to
the variability in room shape, object orientation, and human
activity.
Figure 2 illustrates how much the performance of super-

vised machine learning models drops in a seven-day pe-
riod. We trained these supervised learning models using
RF-features obtained from communication between several
wireless BLE devices and deployed the trained model into a
bedroom. Initially, these models performed very well since
there was little change in the environment. As days passed,
performance degraded due to silent profile alteration caused
by object reorientation. For instance, at day 1, the best per-
formingmodel LSTMwas operating with an average F1 score
of 92.21%. This performance gradually decreased to 70.25%
at day 7. We observe similar performance degradation with
SVM, Decision Tree, Random Forest, and KNN classifiers.

This demands a scheme that can adapt itself not only in a
dynamic environment but also in an environment which it
has never experienced. Reinforcement learning is one of the
branches of machine learning where the learning model is
not required to have a labelled dataset and can learn through
experience. As such, in this paper we investigate the potential
of reinforcement learning to solve this key challenge of RF-
based occupancy detection.

3 Overview of BLECS

As shown in Figure 3, the BLECS design has five key com-
ponents: the environment, an RF feature extractor module,
a data preprocessor module, a reward generator, and an RL
agent. These components interact to ultimately predict if a
room is occupied or not. BLECS starts by receiving BLE radio
signals from BLE devices in the environment and computing
features based on those signals. The data preprocessor then
removes outliers and combines features to create a state for
the reinforcement learning (RL) agent. The RL agent uses this
state and some history to estimate if the room is occupied.
The RL agent can optionally actuate the environment (e.g. by
turning off the lights in an unoccupied room), and receives
feedback both from an occupant potentially overriding its ac-
tuation as well from other smart sensors that may exist in the

134

RF Feature
Extractor

Data
Preprocessor

Reward
Generator

RL AgentEnvironment

Observations

Feedback
Reward

State

Action

Decision

Figure 3: Workflow of BLECS

room. The reward generator uses this feedback to compute
a reward which the agent uses to update its learning policy.
Reinforcement learning allows an agent to observe an

environment, take an action in the environment, receive a
reward for the action taken, and improve the correctness of
its action to maximize its overall cumulative reward. This
ongoing process allows RL agent to improve over time, and
to adapt to changing conditions. BLECS leverages reinforce-
ment learning to adapt to both different deployment rooms,
as well as natural changes in those rooms over time.
Necessary for this process, however, is the ability to ob-

serve the environment and a mechanism for extracting feed-
back from the environment. We observe that as IoT devices
become more prolific, BLECS can use already deployed BLE
devices, environmental sensors, and smart devices to observe
the environment. BLE devices and their wireless signals en-
able the agent to sense the current state of the environment,
while smart IoT devices and environmental sensors provide
feedback to the agent. We define these devices as the envi-
ronment.
To interpret the wireless signals, 𝐵𝐿𝐸𝐶𝑆 computes RSSI,

ToF, and PDE features from received BLE packets. ToF cor-
responds to the time taken for a signal to propagate from
the sender to the BLECS receiver, and we use a RTT-based
measurement technique to calculate ToF [11]. In this tech-
nique the BLE transmitter starts a timer and sends a message
to the receiver. Upon reception, the second device responds,
and when the original transmitter receives the reply it stops
its timer and calculates the ToF considering propagation de-
lay and hardware-specific delay. We also observe that when
a human is in the line-of-sight path of any of the BLE de-
vices this often leads to BLE message drop, suggesting that
packet-drop information has a correlation with human pres-
ence. The transceiver calculates the PDE metric by timing
the interval between BLE packet reception. It is essential to
mention that, although, ToF and PDE are both dependent
on time they are not related. The ToF value is very small
(nanoseconds) given that wireless signals propagate at the
speed of light. Whereas PDE can be quite large (few seconds)
if a person blocks any of the devices for a while.

The data preprocessor module performs outlier filtering,
feature augmentation and feedback sanitization on the com-
puted features. Raw ToF data occasionally contains outliers
and random noise which this module eliminates. To improve
the performance of BLECS, this module also performs feature
augmentation by concatenatingmultiple feature vectors com-
ing from the BLE transceiver before feeding the augmented
feature to the RL agent. Additionally, the preprocessor mod-
ule sanitizes the feedback coming from the smart devices
before sending the feedback to the RL agent.

Once the RL agent receives the RF features, it uses a deep
Q-network (DQN) algorithm to predict the occupancy of the
room. After the RL agent gets feedback from the feedback
generator module it updates its decision policy accordingly.
The working principle of the RL agent is discussed in detail
in Algorithm 1.
BLECS generates rewards using the feedback from the

building (e.g. a light switch), IoT devices (e.g. a power me-
ter), environmental sensors (e.g. carbon dioxide sensors), and
the most recent prediction of the RL agent. If the feedback
suggests that the agent has made a correct prediction it re-
ceives a positive reward. On the other hand, the agent gets a
negative reward for a wrong prediction.

3.1 BLECS Feedback Generation
Mechanism

Whenever a human-actuated device (e.g. voice assistant,
smart trash can, smart coffee machine, light switch, televi-
sion, or refrigerator) in the room being monitored reports
activity, BLECS is certain that the room is occupied. Certain
smart devices can directly report when they are used, and
BLECS can collect this signal as a sign of human presence.
Other devices are not capable of reporting, but instead do
change their power draw when actively used. To monitor
these, a smart-socket IoT device periodically reports power
draw information and the reward generator module analyzes
this information to identify human presence. If human pres-
ence is detected, the reward generator module calculates a
reward considering the prediction of the agent and forwards
the reward to the RL agent.
In addition to the devices humans interact with, BLECS

takes feedback from nearby environmental sensors (e.g.𝐶𝑂2,
humidity). The intuition is that if the level of 𝐶𝑂2 or humid-
ity of a room does not change for a while, there is no human
in that room. As such, if the level remains near-constant for
a certain duration, these sensors send feedback that there
is no one in the room. However, as mentioned earlier, these
environmental sensors can provide false prediction since the
level of 𝐶𝑂2 or humidity does not change instantaneously
with human presence. To reduce the effect of false prediction,
BLECS uses an exploration-exploitation strategy where 95%

135

of the time, the agent receives the actual feedback and 5% of
the time the feedback is reversed by the reward generator.
Combining feedback from both IoT devices and environ-

mental sensors is essential for successful reinforcement learn-
ing in BLECS. We empirically observed that using feedback
only from devices occupants interact with, causes BLECS to
achieve a high precision score but a very low recall score
over time. This occurs because these devices only provide
feedback when the room is occupied, and the RL agent gets
positive reward for correctly classifying the room as occu-
pied, but no negative reward for misclassifying the room as
occupied. Hence, with time the agent is inclined to predict
the room as occupied more frequently, rather than predicting
the room as unoccupied. Involving environmental sensors
solves this problem as they can provide feedback when the
room is unoccupied and the RL agent can get negative reward
for misclassification. Involving environmental sensors also
increases the feedback generation frequency since, unlike IoT
devices, environmental sensors do not depend on the human
interaction. However, using only environmental sensors for
feedback generation has its own problem. The feedback from
environmental sensors are often erroneous and we observe
that the agent fails to achieve a good performance with the
absence of user-focused devices.

4 Learning Algorithm
In this section, we describe the learning methodology of

BLECS. We start by explaining the underlying DQN algo-
rithm. We then describe the enhancement of the basic DQN
algorithmwhich enables BLECS to train an agent using radio-
frequency parameters. Table 1 represents the notation used
in our study.

4.1 The DQN Algorithm
Reinforcement learning is a framework where at each time

step 𝑡 an agent observes a state 𝑠𝑡 in an environment, takes
an action 𝑎𝑡 based on the observation, and receives positive
or negative reward 𝑟𝑡 for the action taken. The objective of
the RL agent is to find an action policy 𝜋 that would maxi-
mize the expected cumulative reward [∑∞𝑡=0 𝛾𝑡𝑟𝑡], where 𝛾
is the discounted rate. 𝛾 −→ 0 means immediate reward maxi-
mization is preferred, and 𝛾 −→ 1 means far-sighted reward
maximization is preferred.
Deep Q-network (DQN) is one of the approaches to find

the optimal action policy. In this approach, a deep neural
network (policy network) is used, which for a given envi-
ronment, accepts a state 𝑠𝑡 as input and gives 𝑄 (𝑠𝑡 , 𝑎𝑡) as
output (Figure 4). The agent takes the action 𝑎𝑡 that satisfies
max
𝑎𝑡

𝑄 (𝑠𝑡 , 𝑎𝑡) and receives a reward 𝑟 (𝑠𝑡 , 𝑎𝑡). The objective of
the policy network is to find a policy 𝜋 that will approximate
the optimal Q-function 𝑄∗ (𝑠𝑡 , 𝑎𝑡). This optimal Q-function

Table 1: Notation

Symbol Description
𝜋 Policy
S, 𝑠 State space and state
A, 𝑎 Action space and action
F, 𝑓 Feedback space, feedback
𝛾 Discounted rate
𝑟 Reward
𝑡 Time
𝑄 Q-function; output of the network
𝜏 Temporal difference error
𝐷 Replay memory
𝑀 Replay memory size
𝑒 Replay memory tuple
𝑛 Number of states concatenated

−→
𝑡 𝑓𝑡 ,
−→𝑟𝑠𝑡 ,
−−→
𝑝𝑑𝑡 State parameters ToF, RSSI, PDE

𝜖 Exploration probability
L Loss function

𝜃𝑝 , 𝜃𝑡 Network parameters
𝑁 Total steps required to sync. 𝜃𝑝 and 𝜃𝑡
𝐵 Batch size
𝛼 Learning rate
𝐸 Total epochs
𝑘 Number of transmitters
𝑇 Model update interval
𝑈 Samples collected during 𝑇

maximizes the expected cumulative reward for each possible
(𝑠, 𝑎) tuple. In other words,
𝑄∗ (𝑠𝑡 , 𝑎𝑡) = max

𝜋
𝑄𝜋 (𝑠, 𝑎); for all 𝑠 ∈ S and 𝑎 ∈ A(𝑠) (1)

where, S represents set of all states and A(𝑠) represents
set of all possible actions for state 𝑠 .

A key property of 𝑄∗ (𝑠𝑡 , 𝑎𝑡) is that it always satisfies Bell-
man’s optimality equation. That is,

𝑄∗ (𝑠𝑡 , 𝑎𝑡) = 𝑟 (𝑠𝑡 , 𝑎𝑡) + 𝛾 ·max
𝑎𝑡+1

𝑄∗ (𝑠𝑡+1, 𝑎𝑡+1) (2)

where,𝑄∗ (𝑠𝑡+1, 𝑎𝑡+1) is the next-step’s optimal Q value. In
order to calculate 𝑄∗ (𝑠𝑡+1, 𝑎𝑡+1) we do a second pass to the
policy network using the next state 𝑠𝑡+1 as input. From the
output of the second pass max

𝑎𝑡+1
𝑄 (𝑠𝑡+1, 𝑎𝑡+1) is calculated.

Once we know the optimal Q-value,𝑄∗, we subtract the in-
ferred Q value from𝑄∗ and calculate the temporal difference
error (𝜏) incurred for the state-action pair (𝑠𝑡 , 𝑎𝑡).

𝜏 = 𝑟 (𝑠𝑡 , 𝑎𝑡) + 𝛾 ·max
𝑎𝑡+1

𝑄∗ (𝑠𝑡+1, 𝑎𝑡+1) −𝑄 (𝑠𝑡 , 𝑎𝑡) (3)

After the error is calculated, the weights within the pol-
icy network are optimized using gradient descent and back-
propagation.

Target network: At each iteration over the dataset we
first pass state 𝑠𝑡 to the policy network in order to retrieve
𝑄 (𝑠𝑡 , 𝑎𝑡). Then we do a second pass to the network using 𝑠𝑡+1

136

Policy
Network

Target
Network

Optimizer Replay Memory

Feedback

rt

Q(st, at)

Q*(st+1,at) st+1

st

En
viro

n
m

e
n

t

Experience

et

Sync.

Figure 4: The DQN architecture

to find the target value 𝑄∗ (𝑠𝑡+1, 𝑎𝑡+1). Finally, the gradient
descent attempts to move𝑄 (𝑠𝑡 , 𝑎𝑡) closer to𝑄∗ (𝑠𝑡 , 𝑎𝑡). How-
ever, when we do the second pass we use the same weights
of the network used in the first pass. This makes𝑄∗ (𝑠𝑡 , 𝑎𝑡) to
move at the same direction as 𝑄 (𝑠𝑡 , 𝑎𝑡). As a result, the loss
function always finds a moving target and the optimization
becomes unstable.
In order to solve this, a target network is used in DQN.

The policy network is used to calculate 𝑄 (𝑠𝑡 , 𝑎𝑡) while the
target network includes all updates in the training. The policy
network parameters 𝜃𝑝 and the target network parameters
𝜃𝑡 are synchronized after performing 𝑁 updates over the
dataset.

Experience Replay: In DQN a technique called experi-
ence replay is often used. With experience replay, we store
the agents experiences at each timestep in a dataset called the
replay memory (𝐷). At time t, the agent’s experience is de-
fined as the tuple 𝑒𝑡 = (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1). This tuple gives us the
summary of the agents experience at time 𝑡 which we store
in the replay memory. In practice, we set the size of the re-
play memory with some constant𝑀 . Therefore, it only stores
last𝑀 experiences in the memory. From this replay memory
dataset we randomly sample a batch to optimize the network.
The reason we choose to optimize the network from random
samples from the replay memory rather than providing the
network with the sequential experiences as they occur in the
environment is to break the correlation between consecutive
experiences. If a network is trained only from the consec-
utive samples of experiences as they occur sequentially in
the environment, the samples will be highly correlated and
would therefore lead to inefficient learning. Taking random
samples from replay memory breaks this correlation.

4.2 Training Methodology for BLECS
BLECS uses a state-of-the-art DQN algorithm explained

in Section 4.1 for training purpose. Below we describe the
specifics of this model.

Inputs: After the collection of RF features from BLE de-
vices BLECS forwards those features to the network 𝑠𝑡 . Here,
the state input 𝑠𝑡 = (

−→
𝑡 𝑓𝑡 ,
−→𝑟𝑠𝑡 ,
−−→
𝑝𝑑𝑡), given that

−→
𝑡 𝑓𝑡 is the mea-

surement of ToF, −→𝑟𝑠𝑡 is the RSSI, and
−−→
𝑝𝑑𝑡 is the packet drop

effect. The dimension of these feature vectors are𝑛×𝑘 , where,
𝑛 represents number of consecutive signals concatenated and
𝑘 is number of transmitter BLE devices used.

Action space: After receiving 𝑠𝑡 , BLECS’s RL agent com-
putes the Q-values and takes the application specific action
𝑎𝑡 , where

𝑎𝑡 =

{
0, room unoccupied, turn off light
1, room occupied, turn on light

(4)

Reward function: The RL agent receives a reward 𝑟 (𝑠, 𝑡)
for each action taken at time 𝑡 and, based on this reward, the
agent updates the weights of its policy network. In BLECS,
the agent can receive positive rewards in two scenarios: first,
the agent predicts the room is occupied (𝑎𝑡 = 1) and the feed-
back from environment says the room is occupied (𝑓𝑡 = 1).
Second, the agent predicts the room is unoccupied (𝑎𝑡 = 0)
and the feedback supports this prediction (𝑓𝑡 = 0). In these
two cases the agent receives a positive reward (+1). On the
other hand, if the agent makes a wrong prediction it gets a
negative reward (-1). In our system, there could be another
case when there is no feedback from sensors and IoT de-
vices. In this case the feedback is 𝑓𝑡 = −1 and the agent gets
no reward for the prediction, hence the model stays stable.
Equation 5 defines our reward function.

𝑟 (𝑠, 𝑡) =

1, (𝑎𝑡 = 1 ∩ 𝑓𝑡 = 1) ∪ ((𝑎𝑡 = 0 ∩ 𝑓𝑡 = 0))
−1, (𝑎𝑡 = 1 ∩ 𝑓𝑡 = 0) ∪ ((𝑎𝑡 = 0 ∩ 𝑓𝑡 = 1))
𝑛𝑜𝑛𝑒, 𝑓𝑡 = −1

(5)
Exploration and exploitation: To find a balance be-

tween exploring and exploiting the environment BLECS uses
an Epsilon-Greedy method. This method uses a decaying
probability value 𝜖 which helps the agent to choose between
a random action (explore) and a greedy action based on the
existing knowledge (exploit). At the outset of the training,
we set the 𝜖 = 1, meaning the agent uniformly considers
all possible actions. However, as the training advances, we
slowly anneal 𝜖 to 0.001 and the agent tends to take the opti-
mal action more frequently compared to a random action. As
such, the agent performs more exploration at the beginning
and slowly switches to exploitation.

Loss function: In BLECS, we have used the Huber Loss
function which acts quadratic for small errors and linear
for large errors. This prevents the network from having a
dramatic changes while processing outliers. At each iteration,
we sample a batch 𝐵 from the replay memory dataset and
use the temporal difference error measured in Equation 3 to
calculate the loss function.

137

L =
1
𝐵

∑
𝑒𝑡 ∈𝐵
L(𝜏); where L(𝜏) =

{
1
2𝜏

2, for |𝜏 | ≤ 1
|𝜏 | − 1

2 , otherwise
(6)

Algorithm 1: Training algorithm
Initialize:
𝛾, 𝑁 ,𝑀, 𝜖, 𝐵, 𝛼, 𝐸,𝑇 ,𝑈

Replay memory 𝐷 [𝑀]
if 𝜃𝑝 exists then

𝜃𝑝 = load(𝜃𝑝);
𝜃𝑡 = 𝜃𝑝 ;

while true do
Initialize: 𝑆, 𝐹, 𝐴;
for j ≤ U do

Fetch 𝑠 𝑗 = [
−→
𝑡 𝑓𝑡 ,
−→𝑟𝑠𝑡 ,
−−→
𝑝𝑑𝑡];

With probability 𝜖 :
𝑎 𝑗 = random(0,1);
or, 𝑎 𝑗 = argmax𝑎 𝑄 (𝑠 𝑗 , 𝑎;𝜃𝑝));

takeAction(𝑎 𝑗);
𝑓𝑗 = getFeedback();
𝐴.append(𝑎 𝑗), ;
𝑆 .append(𝑠 𝑗);
𝐹 .append(𝑓𝑗);

end
for epoch=1,...,E do

for t=1,...,U-1 do
𝑎𝑡 = 𝐴[𝑡];
𝑠𝑡 = 𝑆 [𝑡];
𝑓𝑡 = 𝐹 [𝑡];
Compute 𝑟𝑡 from 𝑓𝑡 , 𝑎𝑡 ;
𝑠𝑡+1 = 𝑆 [𝑡 + 1];
Store 𝑒 = [𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1] in 𝐷 ;
From 𝐷 , sample a random batch
𝐵 = [𝒔𝑘 , 𝒂𝑘 , 𝒓𝑘 , 𝒔𝑘+1];
for each sample in B do

Calculate target Q value,
𝑦𝑖 = 𝑟 (𝑠𝑖 , 𝑎𝑖) + 𝛾 ·max

𝑎′
𝑄 (𝑖+1, 𝑎′, ;𝜃𝑡);

Calculate error, 𝜏𝑖 = 𝑦𝑖 −𝑄 (𝑠𝑖 , 𝑎𝑖 ;𝜃𝑝);
Calculate loss, L = 1

𝐵

∑
𝑒𝑡 ∈𝐵 L(𝜏);

Update network parameters,
𝜃𝑝 ←− 𝜃𝑝 − 𝛼∇𝜃𝑝L(𝜃𝑝)

end
In every 𝑁 steps, set 𝜃𝑡 = 𝜃𝑝 ;

end
end

end

(a) Nordic
nRF52840 BLE DK

(b) Nordic nRF52
power profiler

(c) Ostart smart socket

(d) UG313: Thunderboard
Sense 2

Figure 5: Devices used for prototyping
Optimization: Once the loss is calculated after applying

an action, the policy network parameters, 𝜃𝑝 , are updated.
To do that, at first the gradient step on the loss function with
respect to 𝜃𝑝 is performed.

∇𝜃L(𝜃𝑝) = −𝜏 · ∇𝜃𝑝𝑄 (𝑠𝑡 , 𝑎𝑡 ;𝜃𝑝) (7)

Once the gradient is measured, the parameters of the pol-
icy network are updated as follows:

𝜃𝑝 ←− 𝜃𝑝 − 𝛼∇𝜃𝑝L(𝜃𝑝) (8)

where, 𝛼 is the learning rate. After performing 𝑁 steps over
the dataset, the target network parameters 𝜃𝑡 is updated as
𝜃𝑡 = 𝜃𝑝 .

Overall algorithm: Algorithm 1 shows the overall pro-
posed scheme. After initializing hyperparameters, the algo-
rithm loads any pretrained agent if it exists. After that, the
agent starts a lifelong approach to sense the environment
and update the model. To prevent the agent from spending
most of its resources on model updates, the BLECS algorithm
updates its model every 𝑇 hours. Suppose the agent receives
𝑈 inputs, takes 𝑈 actions, and collects 𝑈 feedback over this
period. After that, it enters the model update loop. In each
step of the loop, the agent computes the reward and stores the
experience tuple 𝑒 in the replay memory. Then the algorithm
fetches a random batch from the memory. For each sample,
the agent calculates the loss and updates the policy network
parameter. After performing 𝑁 steps, it synchronizes target
network parameters with the policy network parameters.

5 Implementation
To implement BLECS, we deployed up to seven BLE de-

vices inside a single room, where one BLE device acted as a
transceiver BLE and the rest acted as transmitter BLE. For
prototyping, we used seven nRF52840 BLE boards, an Intel
Core-i7 laptop as gateway, two Ostart smart sockets to get
feedback from smart devices, one Thunderboard Sense 2 BLE
as a 𝐶𝑂2 sensor, and an nRF52 power profiler kit to measure
the current draw of BLE boards (Figure 5).

138

Tx 2

Tx 3

Transceiver
BLE Node

Transmitter
BLE Nodes

RL Agent

Gateway Application

Prediction

Environmental
Sensors

RF
Features

Data
Packets

Feedback

IoT DevicesTx n

Tx 1 Data Handler

Interface Processor

Action

Input/Reward

Figure 6: BLECS implementation overview

Figure 6 depicts how transceiver, transmitters, smart de-
vices, environment sensors, and the RL agent inter-operate
to predict the occupancy and update the agents decision
policy. At the beginning, each of the transmitter BLEs es-
tablish a wireless connection with the transceiver BLE. In a
round-robin fashion, the transceiver BLE communicates with
each of the transmitter BLE devices and collects ToF, RSSI,
and PDE. Upon receiving packets from all transmitter BLE
devices and computing the features, the transceiver BLE con-
catenates them and forwards them to a gateway application.
The gateway application contains two modules: the data

handler module and the RL agent. The data handler mod-
ule hides the complex communication protocol from the RL
agent. This module contains a JavaScript sub-module (inter-
face) and a Python sub-module (processor). Each sub-module
contains an MQTT broker which facilitates the connectiv-
ity among them. The interface captures all the messages
broadcasted by the transceiver BLE in a wireless fashion and
publishes to the processor. The interface is also responsible
for capturing feedback generated by IoT devices and the𝐶𝑂2
sensor wirelessly. A smart socket attached to an IoT device
periodically advertises the current draw of its associated de-
vice, and the interface, upon receiving it, analyzes if there is
a sudden rise or fall of the current from its previous recorded
value. If a sudden change is detected the interface tells the
processor that the room is occupied.
To measure feedback from the 𝐶𝑂2 sensor, the interface

sub-module analyzes 𝐶𝑂2 concentration of last three min-
utes. If the difference between maximum concentration and
minimum concentration over that period is not more than
20 ppm the interface decides the room have been unoccu-
pied. In the course of our experimentation, we empirically
selected a three minute monitoring window and 20 ppm

Table 2: Network Hyperparameters

Hyperparameter Values
Model update interval, 𝑇 3 hours

Discounted rate 𝛾 0.9 ∼ 0.99
Learning rate 𝛼 10−3

Replay memory size,𝑀 25,000
Target network synchronization step, 𝑁 5,000

Epochs, 𝑒 10

concentration-difference because it gave fairly accurate pre-
diction. Although there are sophisticated techniques to detect
human presence from𝐶𝑂2 concentration [34] we found that
BLECS performs well with our straightforward technique.
However, in the future we intend to incorporate techniques
[19] that could provide good performance in different win-
dow/door opening settings.

Upon receiving the RF features, the processor sub-module
performs feature augmentation by aggregating consecutive
signals and forwards them to the RL agent. Using those fea-
tures as input, the RL agent makes a prediction on room
occupancy and takes an action. In our prototype, we have
used switching a light on or off as an action taken by the
agent. If the agent turns off the light predicting the room is
unoccupied, while it is not, the occupant turns it on and the
feedback is sent to the processor. Using this feedback and
the prediction of the agent, the processor module calculates
a reward and forwards to the agent. Vice versa, if the agent
turns on the light of an unoccupied room, feedback from
environmental sensors helps to correct the agent. The BLECS
RL agent does not need to completely rely on the reaction
of the occupant (or the action of the agent) to calculate a
reward since the processor is able to generate a reward us-
ing the feedback received from an occupants spontaneous
interaction with a device.

The underlying policy neural network which the RL agent
uses consists of an input layer, three hidden layers, and an
output layer. The input layer has 3 × 𝑘 × 𝑛 neurons as each
of the 𝑘 transmitter BLE devices provides 3 RF features and
the processor sub-module aggregates 𝑛 signals. Results from
this input layer are forwarded to hidden layers each having
100 neurons followed by a ReLU function. The output layer
consists of two neurons providing Q-values of the occupied
and unoccupied state. The target network follows the same
NN structure. To implement the neural network architecture
we leveraged a Python-based deep learning API, Chainer [1].

Table 2 represents the hyperparameters we use while train-
ing the network. Throughout our experimentation we keep
all of these hyperparameters unchanged. We did not perform
any sophisticated tuning on the hyperparameters mentioned
in the Table 2 as we noticed BLECS performs pretty well for
a wide range of these hyperparameter values.

6 Evaluation
In this section, we describe the extensive experimenta-

tion we conducted to evaluate BLECS. Our experimentation
answers the following questions:

• How does BLECS perform compared to the state-of-
the-art supervised learning algorithms in a dynamic
environment? We show that BLECS outperforms state-
of-the-art baseline models.

139

(a) Living room 1 (b) Living room 2

(c) Bedroom (d) Office room

Figure 7: BLECS deployment in different settings

• Can BLECS provide accurate result in a completely
unknown environment without a pretrained agent?
We show that BLECS is able to achieve an 89.23% F1
score with no initial trained model.
• How sensitive is BLECS to different parameter settings
including number of BLE devices, number of occu-
pants, and changes in the environment? We observe
that BLECS performance remains high in different set-
tings.
• What is the overhead of providing a single prediction?
Our experimentation tells that on average BLECS re-
quires 1.29 milliseconds to make one prediction with
average power consumption of 20.5 mJ.

6.1 Methodology
Evaluation metric:We use F1 score to evaluate the per-

formance of BLECS. F1 score is the harmonic mean of preci-
sion and recall. In our case, precision is how often the agent
correctly predicts the room is occupied, whereas recall means
the number of times the agent correctly identifies the room
as occupied out of all "occupied" decisions. Throughout the
evaluation we determine the ground-truth label from our
direct observation. Additionally, we evaluate the average
energy consumption of associated BLE devices and average
execution time for one prediction.

Benchmark: To evaluate BLECS, we develop four base-
line models. All of these models are RF dependent and make
use of different supervised learning classifiers to predict in-
door occupancy. We train these models with the RF features
collected using our system and fine tune them with optimal
parameters obtained through experimentation.
The comparisons are 1) PADS: Qian et. al. [27] propose

a human detection technique using an RF metric extracted
and shaped from CSI measurement. From the physical layer

of 802.11n standard this scheme at first gets the raw CSI and
then extracts features from amplitude and phase information.
Later they train a SVM classifier to predict human presence.
2) FreeSense: Xin et. al. [33] propose FreeSense where they
use time and frequency domain information of Wi-Fi signals
and trains a k-nearest neighbor (KNN) classifier to perform
human identification. 3) FreeDetector: This scheme obtains
channel state information from the PHY layer of commodity
WiFi devices, analyzes the CSI variations and feeds them to
a random forest classifier [40] to sense human presence. 4)
WiWho: This model monitors the variation in the CSI data
and collects walk segment feature of a person. Later, this
model trains a decision tree classifier to identify a person
[35]. 5) LSTM: We also implement a LSTMmodel to compare
with BLECS. The RF features BLECS collects are sequential
and LSTM is known to perform better on sequential data
compared to other traditional classifiers.

Testbed:We conduct experiments in five rooms including
two office rooms, one bedroom, and two living rooms (Fig-
ure 7), and with up to four individuals. All of these rooms are
equipped with regular furniture. The experiments include
four different room states: 1) empty, 2) occupant with ac-
tivity: occupant walked around or exercised in the room, 3)
occupant with fine movement: occupant was sitting still but
doing activities like writing, typing, or eating, and 4) still
occupant: occupant was sitting still or lying down with no
movement. In the bedroom and living rooms, we evaluated
BLECS for seven days each, whereas in the office we were
limited by COVID-19 restrictions and evaluated for up to
three hours.

Dynamic environment creation:To create the dynamic
environment we either added, rearranged, or removed ob-
jects from the room under test in a controlled fashion. We
evaluated the system robustness by changing the arrange-
ment of small objects, medium objects, and large objects
(i.e. cups, chairs, and beds, respectively). Furthermore, we
changed the orientation of transceiver BLE and transmitter
BLE devices by putting them on different walls of the room
while the system was running. We also tested the system
by covering some of the BLE devices with large objects (i.e.
bookshelf).

Structured test and unstructured test: In our experi-
mentation we performed two kinds of tests: structured and
unstructured. The structured test was done in the bedroom
for 10 hours in a very controlled fashion (e.g. controlled oc-
cupant activity, dynamic environment creation in a systemic
fashion). The purpose of this test was to tune BLECS with
optimal parameters. Once we found the optimal parameters
we started the unstructured test. This test was performed for
up to seven days in five different rooms. The unstructured
test demonstrates how BLECS performs in a more realistic
deployment.

140

Table 3: Structured test stages

Step Activity Duration
1 The room was kept empty 20 min
2 A person entered the room and per-

formed following four activities in or-
der: Sitting, Lying, Walking, and Exer-
cising

5 min each

3 Admitted a refrigerator into the room,
then the room was kept empty

20 min

4 A person entered the room and per-
formed activities described in step 2

20 min

5 Removed a chair from the room, then
the room was kept empty

20 min

6 A person entered the room and per-
formed activities described in step 2

20 min

7 Changed the orientation of table and
chairs, covered a transmitter BLE with
bookshelf, then the room was kept
empty

20 min

8 A person entered the room and per-
formed activities described in step 2

20 min

9 Changed the orientation of BLE devices,
then the room was kept empty

20 min

10 A person entered the room and per-
formed activities described in step 2

20 min

6.2 BLECS Parameter Sensitivity
To understand how BLECS performs under different pa-

rameters such as the number of BLE transmitters and the
number of aggregated signals, we performed a structured
test in the bedroom.We deployed six transmitter BLE devices
and one transceiver BLE device in the room and collected
RF features for 600 minutes. The first 200 minutes involved
10 stages each having a time span of 20 minutes with one
occupant. Table 3 describes these stages. During the course
of the next 200 minutes we followed the same stages, but
with two occupants. In the last 200 minutes we had three
occupants. While collecting the data, we labeled each sample
with the ground truth so that once the agent takes an action
it can be given a reward using the label. The performance
of our RL agent over this dataset is described next.

Number of BLE devices: As we collected RF features
from transmitter BLE devices in a round robin fashion the
dataset we created contains features from BLE nodes in a
sequential manner. To vary the number of BLE devices, at
each iteration we left out the sample which came from a
distinct transmitter. Figure 8 represents the effectiveness
of changing number of transmitter BLE devices. As shown,
the prediction performance improves with increasing BLE
devices within 10 prediction epochs. For instance, BLECS has
a 83% F1 score with only one transmitter BLE device. With

2 4 6 8 10
epoch

0.4

0.5

0.6

0.7

0.8

0.9

F1
 sc

or
e

Tx.: 1
Tx.: 2
Tx.: 3

Tx.: 4
Tx.: 5
Tx.: 6

Figure 8: Effect of num-
ber of transmitters used.
Increasing transmitters
provides increased per-
formance. Three trans-
mitters are sufficient.

2 4 6 8 10
epoch

0.4

0.6

0.8

1.0

F1
 sc

or
e

agg. signals: 4
agg. signals: 3
agg. signals: 2
agg. signals: 1

Figure 9: Effect of signal
aggregation. Aggregating
four rounds of signals
provides 9.5% perfor-
mance improvement.

2 4 6 8 10
epoch

0.4

0.6

0.8

1.0

F1
 sc

or
e

: 0.88
: 0.91
: 0.94

: 0.97
: 1

Figure 10: Effect of dis-
counted rate 𝛾 . With 𝛾 =
0.88 BLECS performs opti-
mally.

2 4 6 8 10
epoch

0.4

0.6

0.8

1.0

F1
 sc

or
e

d: 0.01
d: 0.05
d: 0.1

d: 0.15
d: 0.2

Figure 11: Effect of 𝜖 de-
crease rate. 𝜖𝑑 = 0.1 pro-
vides the optimal perfor-
mance.

three transmitter BLE devices the performance increases up
to 90%. However, performance did not improve much having
more than three transmitter BLE devices. As a result, for all
of the following evaluation steps we used three transmitter
BLE devices.

Signal aggregation:Asmentioned earlier, BLECS receives
signals from all transmitter BLE devices in a round robin
fashion. After receiving a round of signals it stacks the RF
features of all involved transmitter BLE devices. A common
technique in RL algorithms is to stack consecutive samples
and represent them as one state so that the state can contain
temporal information. This is why we further stack more
rounds of signals in order they are received by the transceiver
BLE and represents them as one state. Figure 9 shows the
effectiveness of signal aggregation. By stacking four rounds
of signals, BLECS achieves a 9.5% performance improvement
compared to having one round of signal as the input state.

Discounted rate, 𝛾 : Figure 10 represents the effect of the
value of the discounted rate 𝛾 . When 𝛾 is set to one, future
rewards are considered as important as immediate reward.
When 𝛾 is decreased immediate rewards are more important
to the agent than future reward. Figure 10 tells us that the
BLECS agent performs better when 𝛾 is set to 0.88. This
means the agent does not need to look very far to obtain
maximum performance. This is understandable, since the
environment the agent is working in is very dynamic, it can
receive a negative reward for the same state it received a

141

0 1 2 3 4 5 6 7
Time (days)

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

Bedroom
Living room 1
Living room 2

(a) Living rooms and bedroom

0 30 60 90 120 150 180
Time (m)

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

Office Room 1
Office Room 2

(b) Office rooms

Figure 12: Testing BLECS in known environments. Re-
sults indicate that BLECS can maintain high perfor-
mance over time. (a) Agent was pretrained in each
room for five hours before deployment. (b) Agent was
pretrained in each room for two hours before deploy-
ment.

0 1 2 3 4 5 6
Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

Bedroom
Living room 1
Living room 2

(a) Living rooms and bedroom

0 30 60 90 120 150 180
Time (m)

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

Office Room 1
Office Room 2

(b) Office rooms

Figure 13: Testing BLECS in unknown environments.
Results suggest that BLECS can quickly adapt itself in
an unknown environment.

0 20 40 60
Update

2000

3000

4000

5000

6000

Re
wa

rd

Bedroom
Living room 1
Living room 2

(a) Living rooms and bedroom

0 5 10 15 20
Update

150

200

250

Re
wa

rd

Office room 1
Office room 2

(b) Office rooms

Figure 14: Total reward per update. The agent im-
proves itself with time. (a)Model was updated in every
three hours. (b) Model was updated in every 10 min.

positive reward for earlier. This being the case, the agent
performs better when immediate rewards are preferred.
𝜖 decrease rate: At each step of the learning process, the

RL agent of the BLECS explores a new environment with a
decaying probability 𝜖 . Initially, 𝜖 is set to one and the agent
randomly explores new actions. However, with time 𝜖 decays
and the agent focuses more on optimal action rather than
exploring. Our evaluation tells that the decaying rate of 𝜖
has an impact of BLECS performance. Figure 11 depicts the
performance of BLECS with varying decay rate. We observe
that, with decaying rate 0.1, BLECS performance reaches
maximum.

BL
EC

S

PA
DS

W
iW

ho

Fr
ee

Se
ns

e

LS
TM

Fr
ee

De
te

ct
or0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 F
1

sc
or

e

(a) Bedroom

BL
EC

S

PA
DS

W
iW

ho

Fr
ee

Se
ns

e

LS
TM

Fr
ee

De
te

ct
or0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 F
1

sc
or

e

(b) Living room 1

BL
EC

S

PA
DS

W
iW

ho

Fr
ee

Se
ns

e

LS
TM

Fr
ee

De
te

ct
or0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 F
1

sc
or

e

(c) Living room 2

BL
EC

S

PA
DS

W
iW

ho

Fr
ee

Se
ns

e

LS
TM

Fr
ee

De
te

ct
or0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 F
1

sc
or

e

(d) Office room 1

Figure 15: Average F1 score of BLECS and baseline
models over a seven-day period in different environ-
ments.

6.3 Field Test
After fine tuning BLECS with optimal parameters we eval-

uated the system for seven days in the bedroom, living room
1, and living room 2. In office room 1 and 2 we evaluated
BLECS for three hours. Here, we discuss our findings.

Performance inknownenvironment:To evaluate how
BLECS performs in known environment we pretrained the
agent in the bedroom, living room 1, and living room 2 by col-
lecting five hours worth of data from each room. To pretrain
the agent in the office room 1 and 2 we collected samples
for two hours from each room. Figure 12 depicts the system
performance in different rooms with a pretrained agent. It
can be seen that, over the course of the whole evaluation
period BLECS was able to maintain high performance in ev-
ery room with an average F1 score of 86.52% in the bedroom,
85.76% in living room 1, 84.14% in living room 2, 80.93% in
office room 1, and 75.54% in office room 2.

Performance in unknown environment: To monitor
BLECS performance in unknown environment we initialized
the RL agent with randomnetwork parameters before deploy-
ment. Figure 13 illustrates BLECS performance in unknown
environment. We can see that, within six hours BLECS was
able to achieve maximum F1 score of 89.23% in the bedroom,
86.71% in living room 1, and 89.03% in living room 2. In office

142

1 2 3 4 5 6 7
Time (days)

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 F
1

sc
or

e

BLECS
PADS
WiWho

FreeSense
LSTM
FreeDetector

(a) Bedroom

1 2 3 4 5 6 7
Time (days)

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 F
1

sc
or

e

BLECS
PADS
WiWho

FreeSense
LSTM
FreeDetector

(b) Living room 1

1 2 3 4 5 6 7
Time (days)

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 F
1

sc
or

e

BLECS
PADS
WiWho

FreeSense
LSTM
FreeDetector

(c) Living room 2

20 40 60 80 100120140 160180
Time (m)

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 F
1

sc
or

e

BLECS
PADS
WiWho

FreeSense
LSTM
FreeDetector

(d) Office room 1

Figure 16: Average F1 score per day of BLECS and base-
line models. BLECS retains high performance over
time but performance of baseline models degrades
with time.
room 1 and 2 BLECS was able to achieve maximum F1 score
of 70.39% and 64.85% within three hours.

Average reward: We monitored total reward the pre-
trained agent receives for each model update over the whole
period of evaluation. Figure 14 illustrates that the reward
trend-line follows an upward direction in all rooms. In the
bedroom and living rooms the agent updated its learning
model every 3 three hours, while in the office rooms the
agent updated its model every 10 minutes.

Comparison with baseline models: To evaluate how
BLECS performs compared to other supervised learningmod-
els, we developed PADS[27], FreeSense[33], FreeDetector[40],
WiWho[35], and an LSTM classifier. We trained these models
with our radio frequency features and fine tuned them with
optimal parameters found by our empirical study. Figure 15
illustrates the performance of BLECS compared to these mod-
els in different environment settings. We deployed BLECS
along with these baseline models in four different rooms and
monitored their performance for seven days in the bedroom
and living rooms. In the office room we monitored these
model’s performances for three hours. Results indicate that
BLECS achieves 86.52% average F1 score over this seven days
period in the bedroom. The next best model LSTM achieves
79.04% average F1 score during this period. In living room 1,
BLECS achieves 85.76% F1 score on average, whereas the best
performing model FreeSense achieves 72.95% F1 score on
average. In the living room 2, BLECS performs with 84.14%

1 2 3 4
Occupants

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

F1
 sc

or
e

Figure 17: Average accuracy BLECS obtains over a
seven day period with respect to the number of occu-
pants. Results indicate thatwith increasing number of
occupants performance of BLECS improves.

0 20 40 60 80 100
Number of predicitons

0

1

2

3

4

Ti
m

e
(s

)

avg. time

(a) Execution time to make a pre-
diction

0 20 40 60
Update

4

5

6

7

8

9

Ti
m

e
(m

)

avg. time

(b) Execution time to make an up-
date

Figure 18: End-to-end time requirement for execution.
On average BLECS requires (a) 1.29 seconds to make a
prediction, (b) 6.74 minutes to update the model

average F1 score compared to the 77.5% F1 score of LSTM.
Finally, in office room 1, BLECS gets 80.93% F1 score, whereas
LSTM gets 78.71% F1 score.
To truly understand the contribution of BLECS, we need

to analyze the system’s performance in later periods. Fig-
ure 16 illustrates the day by day performance of BLECS
and baseline models in different environment settings. Our
evaluation shows that over time all of baseline models perfor-
mance decrease due to their inability to adapt with dynamic
environment. In contrast, BLECS is able to adapt with chang-
ing environment and maintain high performance over time.
For instance, at day seven in the bedroom BLECS maintains
a F1 score of 91.66%, whereas the performance of PADS,
FreeSense, FreeDetector, WiWho, LSTM drops to 64.70%,
43.82%, 50.25%, 64.70%, and 70.25% respectively. Compared
to the best performing model LSTM, BLECS achieves a 21.4%
performance improvement at the last day of evaluation. In
living room 1, BLECS was able to keep up its high F1 accu-
racy with 19.35% performance improvement compared to the
best performing model FreeSense, whereas in living room
2 BLECS gains 19.12% performance improvement compared
to LSTM. In office room 1, BLECS on average achieves 1.65%
performance improvement compared to LSTM and 11.6%
compared to PADS over the whole duration of the evaluation.

143

Table 4: Exploring related research

Theme Reference General Idea Limitations
Fingerpr-inting [7, 29, 30, 33, 35, 40,

41]
Recognize dissimilarities between
RF measurements

applicable in stationary environ-
ment only

Threshold [23, 27, 28, 31] Compare RF measurements with a
predefined threshold

Low performance when occupant is
still

Respiratory [15, 25, 31] Development of RF profile from
chest motion

Requires a dense link of networks

Environ-mental
Sensors

[2, 3, 6, 10, 34] Measure 𝐶𝑂2, temperature of hu-
midity

Not instantaneous

Ultrasound, RFID,
Infrared, Camera

[4, 8, 20, 21, 24, 26,
39]

Monitor a space to detect change in
sensor data

Privacy violation or need a con-
trolled environment

Door sensor [9, 13, 14, 16–18, 22] Monitor entrance of a space Low accuracy in near door event

Impact of number of occupants: To identify the im-
pact of number of occupants we monitored BLECS over a
seven-day period in the bedroom. Figure 17 shows the aver-
age accuracy BLECS achieves with respect to the number of
occupants present in the room. As can be seen, with increas-
ing number of occupants performance of BLECS increases
to some degree. This is due to the fact that an increasing
number of occupants creates more disruption over the noise
profile and as a result the RL agent can differentiate between
the silent profile and noise profile with higher accuracy.

Execution time: Figure 18a shows the time required for
BLECS to make one prediction. On average BLECS requires
1.29 seconds to collect data from three transmitter BLE de-
vices, aggregate four consecutive signals, preprocess the
sample and make a prediction with the sample. Figure 18b
illustrates the required time to update the model. Initially,
when the replay memory is not full it requires less time to
update the model. Once the memory is full BLECS requires
on average 6.74 minutes to update the learning model.

Energy consumption: Using the nRF52 power-profiler
test kit, we monitored how much energy the transceiver
BLE and transmitter BLE consumes. From our analysis, the
transceiver BLE node draws only 20.5mJ power on average to
collect data from six transmitter BLE devices, process the data
to infer RF features and forward the features to the gateway
application. Each transmitter BLE draws less power (3.0 mJ
on average) over one cycle of data collection since its only
task is to communicate with the transceiver BLE device. Our
system design facilitates 𝐵𝐿𝐸𝐶𝑆 to predict occupancy in a
continuous fashion. We believe, by controlling the prediction
frequency, the average energy cost could be further reduced.
We intend to incorporate such control mechanism in our
future work.

7 Related Work
Recent years have seen many efforts to device-free hu-

man sensing using wireless signals. Unobtrusive, wireless

occupancy detection systems works via analyzing the hu-
man impact on propagated signals, with no device attached
to human body. These techniques can be broadly grouped
into two categories: RF-based techniques and Non RF-based
techniques. In Table 4 we summarize the existing occupancy
detection techniques.

7.1 RF-Based Techniques
This approach can be bundled into three groups: a finger-

printing based approach, a threshold-based approach, and a
respiration detection approach. The fingerprinting-based ap-
proach attempts to recognize dissimilarities between the CSI
measurements caused by human presence in the occupied
room and unoccupied room. Soltanaghaei et.al. proposed
PeriFi which can detect people with no movement by ana-
lyzing multipath reflections of WiFi signals [29]. Rapid[7],
proposed by Chen et.al. is another framework that analyzes
CSI and acoustic information for robust person identifica-
tion. FreeSense[33] captures the human influence over CSI
measurement by performing a series of operations including
principal component analysis, dynamic time wrapping, and
discrete wavelet transform. WiWho[35] is another device-
free sensing scheme that analyzesWiFi signals to find charac-
teristics which can distinguish a person from a group of peo-
ple. Other alternate approaches [30, 40, 41] use commodity
WiFi routers and analyze the variations in RF measurements
to predict human presence.
Threshold-based wireless sensing approaches compare

RF features such as RSSI measurement with a predefined
threshold [23, 27, 28, 31]. This approach is able to provide
prediction with high accuracy when the occupant is moving,
however, often fails when then occupant is stationary.

A common limitation of fingerprinting-based and threshold-
based approaches is that they can only operate in a stationary
environment where they are initially trained [28, 33, 35, 40].
We notice that when the system is stationary these systems
achieve up to 91% accuracy, but if the environment is dy-
namic accuracy falls to 70%. Moreover, the energy cost and

144

deployment complexity of these schemes are very high due
to involvement of WiFi routers. Our work, on the other hand,
can profile the dynamic nature of environment through pe-
riodic updates to the the learning model, is easily to deploy,
and draws minimal current.Respiration detection is another
popular approach for human sensing, where, a particular RF
profile is developed caused by chest motion during breathing
[15, 25, 31]. Using commodity WiFi devices this approach de-
tects a certain breathing pattern and detects human presence.
Although this scheme performs well in certain scenarios, it
requires a dense network created by many transceivers.

7.2 Non RF-based Techniques
There exists various approaches which use environmental

sensors for human sensing. By measuring 𝐶𝑂2, temperature,
and humidity [2, 3, 6, 10, 34] variation in the room these
schemes determine indoor occupancy. Although these ap-
proaches are fairly accurate when the room is occupied or
unoccupied for long period, they are incapable to provide
instant prediction since the alteration of𝐶𝑂2 or temperature
is slow with respect to human presence. Moreover, this ap-
proach requires complex tuning for different window/door
opening setting.
Other approaches involve door sensors [9, 13, 14, 16–

18, 22] to detect human entrance or exit. This approach often
fails to decide the occupancy situation of the room as it con-
fuses its count if there is a near door event or if multiple
people walk through the door simultaneously. Some pioneer-
ing solutions use ultrasonic sound [20, 24], infrared [4, 8],
Camera [26], RFID [39], and electric field sensor [21] for
occupancy detection. Deployment of camera or the infrared
sensor increases the localization and occupancy detection
capability however with a cost of increased privacy violation.
Ultrasound sensors, RFID and electric field sensors on the
other hand involves complex signal processing steps operate
in an extremely controlled environment.

8 Limitations and Future Directions
Edge cases limitation: In this paper, we primarily fo-

cused on enabling RF-based sensing to work in changing
spaces. We have not evaluated BLECS in a few corner cases
such as multiple people entering or exiting the room, and
people walking through the doorway. In future work, we
intend to test and facilitate BLECS to work in these scenarios.

Robust feedback system: We have used a straightfor-
ward approach to provide feedback using𝐶𝑂2 concentration
level. We would like to incorporate advanced 𝐶𝑂2 based
occupancy detection techniques that can work in different
ventilation system to make the feedback system more robust.
An interesting alternative would be to see how a motion

sensor-based feedback system would work in lieu of 𝐶𝑂2-
based feedback system.

Counting occupants: We have designed BLECS to pre-
dict whether the room is occupied or not. We believe, by
modifying our existing 𝐶𝑂2 based feedback mechanism we
could extend BLECS to count the number of people inside a
room.

Incorporating AoA and AoD: A major feature added in
new commodity BLE devices is the capability of direction
finding. Our future endeavour would be to find angle of ar-
rival (AoA) and angle of departure (AoD) using existing BLE
beacons which we believe could offer improved performance.

Multi-agent reinforcement learning: The BLECS RL
agent works in a single-agent environment. An exciting ex-
tension of this platform would be in a smart-building where
multiple agents deployed in various rooms could collaborate
for better prediction.

9 Conclusion
Accurately detecting when a room is occupied has proven

to be a thorny challenge, with a system that is inexpensive,
accurate, and privacy-preserving remaining elusive. How-
ever, BLECS revisits this challenge in light of several trends:
i) promising wireless sensing techniques, ii) a wealth of ma-
chine learning approaches, and iii) an explosion of IoT de-
vices. By sacrificing some capability yet reducing the power
requirements of wireless sensing, BLECS can accurately de-
tect occupancy without privacy-invasive sensors (e.g. cam-
eras), is easily deployable, and adapts over time to changes in
the environment. Central to extracting the necessary signal
from the wireless channel measurements is a new reinforce-
ment learning-based technique that learns from existing IoT
devices. Importantly, this is not a black-box approach and
our algorithm is stable with changes to its hyperparameters.
After implementing and deploying BLECS, we demon-

strate the accuracy of this approach with a maximum 89.23%
F1 score for occupancy detection in an unknown environ-
ment after six hours. Requiring only four BLE-based devices,
BLECS can be retrofitted in existing buildings to enable the
responsive, occupant-driven applications smart buildings re-
quire. Further, BLECS provides an example for howmatching
the correct machine learning approach to a new data stream
(in this case wireless sensing with BLE) can produce new
solutions to long-standing sensing challenges.

Acknowledgement
We sincerely thank the anonymous reviewers and the

Shepherd for their valuable suggestions and feedback. This
work is supported in part by the National Science Foundation
under grant CNS-1823325.

145

References
[1] 2020. Chainer. https://chainer.org//. Accessed: 06-05-2020.
[2] M. Abedi and F. Jazizadeh. 2019. Deep-learning for Occupancy De-

tection Using Doppler Radar and Infrared Thermal Array Sensors. In
Proceedings of the IAARC.

[3] R. Adeogun. 2019. Indoor occupancy detection and estimation using
machine learning and measurements from an IoT LoRa-based moni-
toring system. In Global IoT Summit (GIoTS).

[4] Y. Agarwal, B. Balaji, S. Dutta, and R. Gupta. 2011. Duty-cycling
buildings aggressively: The next frontier in HVAC control. In 10th
ACM/IEEE IPSN.

[5] M. Billah and B. Campbell. 2019. Unobtrusive Occupancy Detection
with FastGRNN on Resource-Constrained BLE Devices. In Proceedings
of the 1st ACM International Workshop on Device-Free Human Sensing.

[6] C. Brennan, G. Taylor, and P. Spachos. 2018. Designing learned CO2-
based occupancy estimation in smart buildings. IET Wireless Sensor
Systems (2018).

[7] W. Chen, Y.and Dong, Y. Gao, and X. Liu. 2017. Rapid: A multimodal
and device-free approach using noise estimation for robust person
identification. In Proceedings of the ACM on Interactive, Mobile, Wear-
able and Ubiquitous Technologies.

[8] Robert H Dodier, Gregor P Henze, Dale K Tiller, and Xin Guo. 2006.
Building occupancy detection through sensor belief networks. Energy
and buildings 38, 9 (2006), 1033–1043.

[9] H. Elkhoukhi, Y. NaitMalek, and A. Berouine. 2018. Towards a real-time
occupancy detection approach for smart buildings. Procedia computer
science (2018).

[10] Alessandro Franco, Francesco Leccese, and Lorenzo Marchi. 2019. Oc-
cupancy modelling of buildings based on CO2 concentration mea-
surements: an experimental analysis. In Journal of Physics: Conference
Series, Vol. 1224. IOP Publishing, 012016.

[11] D. Giovanelli and E. Farella. 2018. Rssi or time-of-flight for bluetooth
low energy based localization? an experimental evaluation. In 11th
IFIP Wireless and Mobile Networking Conference (WMNC).

[12] L. Gong and Z. Yang, W.and Zhou. 2016. An adaptive wireless passive
human detection via fine-grained physical layer information. Ad Hoc
Networks (2016).

[13] E. Griffiths, A. Kalyanaraman, J. Ranjan, and K. Whitehouse. 2017.
An Empirical Design Space Analysis of Doorway Tracking Systems
for Real-World Environments. ACM Transactions on Sensor Networks
(TOSN) (2017).

[14] T. Hnat, E. Griffiths, R. Dawson, and K. Whitehouse. 2012. Doorjamb:
unobtrusive room-level tracking of people in homes using doorway
sensors. In Proceedings of the 10th ACM Conference on Embedded Net-
work Sensor Systems.

[15] O. Kaltiokallio, H. Yiğitler, and R. Jäntti. 2014. Non-invasive respiration
rate monitoring using a single COTS TX-RX pair. In 13th International
Symposium on IPSN.

[16] A. Kalyanaraman, D. Hong, E. Soltanaghaei, and K. Whitehouse. 2017.
Forma track: tracking people based on body shape. Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
(2017).

[17] A. Kalyanaraman, E. Soltanaghaei, and K. Whitehouse. 2019. Doorpler:
A Radar-Based System for Real-Time, Low Power Zone Occupancy
Sensing. In IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS).

[18] N. Khalil, D. Benhaddou, O. Gnawali, and J. Subhlok. 2016. Nonintru-
sive occupant identification by sensing body shape and movement.
In Proceedings of the 3rd ACM International Conference on Systems for
Energy-Efficient Built Environments.

[19] W. Liang andM.Qin. 2017. A simulation study of ventilation and indoor
gaseous pollutant transport under different window/door opening
behaviors. In Building Simulation.

[20] W. Mao, M. Wang, and L. Qiu. 2018. AIM: Acoustic imaging on a
mobile. In Proceedings of the 16th Annual International Conference on
Mobile Systems, Applications, and Services.

[21] Kevin C Mccarthy, Lori L Burgner, David W Taylor, Niall R Lynam,
Eugenie V Uhlmann, Mitchell J Hourtienne, and Kenneth Schofield.
2004. Vehicle compartment occupancy detection system. US Patent
6,768,420.

[22] S. Munir. 2017. Real-time fine grained occupancy estimation using
depth sensors on ARM embedded platforms. In IEEE Real-Time and
Embedded Technology and Applications Symposium.

[23] S. Palipana, P. Agrawal, and D. Pesch. 2016. Channel state informa-
tion based human presence detection using non-linear techniques. In
Proceedings of the 3rd ACM International Conference on Systems for
Energy-Efficient Built Environments.

[24] Ashish Pandharipande and David Caicedo. 2011. Daylight integrated
illumination control of LED systems based on enhanced presence
sensing. Energy and Buildings 43, 4 (2011), 944–950.

[25] N. Patwari, J. Wilson, and S. Ananthanarayanan. 2013. Monitoring
breathing via signal strength in wireless networks. IEEE Transactions
on Mobile Computing.

[26] Ioannis Pavlidis, Peter F Symosek, and Bernard S Fritz. 2004. Near-
infrared disguise detection. US Patent 6,718,049.

[27] K. Qian, C.Wu, Z. Yang, and Y. Liu. 2018. Enabling contactless detection
of moving humans with dynamic speeds using CSI. ACM Transactions
on Embedded Computing Systems (TECS) (2018).

[28] K. Qian, Z. Wu, C.and Yang, and Y. Liu. [n.d.]. PADS: Passive detection
of moving targets with dynamic speed using PHY layer information.
In 2014 20th ICPADS.

[29] E. Soltanaghaei, A. Kalyanaraman, and K.Whitehouse. 2017. Peripheral
wifi vision: Exploiting multipath reflections for more sensitive human
sensing. In Proceedings of the 4th International on Workshop on Physical
Analytics.

[30] J. Wang, N. Tse, and J. Chan. 2019. Wi-Fi based occupancy detection in
a complex indoor space under discontinuous wireless communication:
A robust filtering based on event-triggered updating. Building and
Environment (2019).

[31] C. Wu. 2015. Non-invasive detection of moving and stationary human
with wifi. IEEE Journal on Selected Areas in Communications (2015).

[32] Dan Wu, Daqing Zhang, Chenren Xu, Hao Wang, and Xiang Li. 2017.
Device-free WiFi human sensing: From pattern-based to model-based
approaches. IEEE Communications Magazine 55, 10 (2017), 91–97.

[33] Tong Xin, Bin Guo, Zhu Wang, Mingyang Li, Zhiwen Yu, and Xingshe
Zhou. 2016. Freesense: Indoor human identification with Wi-Fi signals.
In 2016 IEEE Global Communications Conference (GLOBECOM). IEEE,
1–7.

[34] S. Zemouri, Y. Gkoufas, and J. Murphy. 2019. A Machine Learning Ap-
proach to Indoor Occupancy Detection Using Non-Intrusive Environ-
mental Sensor Data. In Proceedings of the 3rd International Conference
on Big Data and Internet of Things.

[35] Y. Zeng, P. Pathak, and P. Mohapatra. 2016. WiWho: wifi-based per-
son identification in smart spaces. In 15th ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN).

[36] R. Zhou, X. Lu, P. Zhao, and J. Chen. 2017. Device-free presence
detection and localization with SVM and CSI fingerprinting. IEEE
Sensors Journal (2017).

[37] Z. Zhou, Z. Yang, and C. Wu. 2013. Towards omnidirectional passive
human detection. In Proceedings IEEE INFOCOM.

[38] Z. Zhou, Z. Yang, C. Wu, L. Shangguan, and Y. Liu. 2013. Omnidi-
rectional coverage for device-free passive human detection. IEEE

146

https://chainer.org//

Transactions on Parallel and Distributed Systems (2013).
[39] H. Zou, L. Xie, and H. Jia, Q.and Wang. 2014. Platform and algorithm

development for a rfid-based indoor positioning system. Unmanned
Systems (2014).

[40] H. Zou, Y. Zhou, J. Yang, and C. Spanos. 2017. Freedetector: Device-free
occupancy detection with commodity wifi. In 2017 IEEE International

Conference on Sensing, Communication and Networking (SECON Work-
shops).

[41] H. Zou, Y. Zhou, J. Yang, and C. Spanos. 2018. Device-free occupancy
detection and crowd counting in smart buildings with WiFi-enabled
IoT. Energy and Buildings (2018).

147

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Overview of BLECS
	3.1 BLECS Feedback Generation Mechanism

	4 Learning Algorithm
	4.1 The DQN Algorithm
	4.2 Training Methodology for BLECS

	5 Implementation
	6 Evaluation
	6.1 Methodology
	6.2 BLECS Parameter Sensitivity
	6.3 Field Test

	7 Related Work
	7.1 RF-Based Techniques
	7.2 Non RF-based Techniques

	8 Limitations and Future Directions
	9 Conclusion
	References

