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ABSTRACT
The rise of the Internet of Things (IoT) has increased standby
energy consumption due to the growing number of smart
devices in homes. Existing approaches use real-time energy
data and machine learning to identify and minimize standby
energy for residential energy management but rely on cloud-
based data aggregation and collaborative training due to
limited edge device data. However, such an approach incurs
extra cloud service costs, risks personal data leakage, and
fails to capture residence diversity, resulting in suboptimal
energy management performance.

In this paper, we propose a privacy-preserving and cloud-
service-free residential energy management system (EMS)
that utilizes personalized federated deep reinforcement learn-
ing (PFDRL) to reduce household standby energy consump-
tion. PFDRL consists of three components: First, we develop
a decentralized federated learning (DFL) framework instead
of using a centralized cloud service to aggregate the model
to keep both the data and the model in the local area. Sec-
ond, we apply DFL with deep reinforcement learning (DRL)
to share the EMS plan among local residences for collabo-
rative training. Third, we divide the neural network in the
DRL into two parts, base layers and personalization layers
to enhance model convergence while maximizing EMS per-
formance for each client in the system. We evaluate the
proposed PFDRL framework on the real-world Pecan Street
dataset [3], demonstrating superior performance compared
to centralized settings and conventional solutions.

CCS CONCEPTS
• Computer systems organization→ Neural networks; •
Security and privacy→ Privacy protections.
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1 INTRODUCTION
Over the past few years, an increasing number of IoT devices
have been installed in residential and commercial buildings
to satisfy the increased demand for users’ comfort, well-
being, and quality of life. However, this increase in buildings’
convenience, functionality, and connectivity requires produc-
ing more energy which raises monetary costs and harmful
gas emissions. In 2019, residential and commercial build-
ings were responsible for 40% of U.S. carbon emissions [19].
Standby energy is one of the reasons that cause the increas-
ing energy consumption. By 2019, standby energy represents
approximately 10% of residential electricity use in most de-
veloped countries and a rising fraction in developing coun-
tries [17]. Previous work [30] has investigated the major
causes of increased standby energy consumption of smart
devices, and for the most part, energy is just wasted by de-
vices waiting for commands.

Accurately distinguishing devices’ standby energy usage
from regular usage is essential for achieving standby energy
reduction in residential buildings. [13]. Collaborative train-
ing of collected energy data from multiple residents can lead
to improved performance in identifying standby energy con-
sumption, which is especially important as individual users
may not have enough data to train a reliable model [15].
Traditional approaches [6, 25] require collecting device-level
energy data for load forecasting using machine learning and
deep learning methods to identify standby energy, then mak-
ing energy management plans based on the prediction result.
This prediction usually happens in the cloud. Although cloud
platforms can bring high computational power and aggre-
gate data from different users, they introduce the critical risk
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of potential personal data leakage [4], such as the central
server becoming a malicious party.

Federated learning (FL) is an emerging tool to address pri-
vacy issues, which allows IoT devices to collaboratively train
a model. Existing approaches [5, 27] present a similar frame-
work for load forecasting and energy management. However,
such FL-based frameworks still face three problems: (1) De-
spite storing data locally, the FL framework still requires
cloud support to aggregate a global model that contains all
the training information from different local IoT devices. The
model remains vulnerable to training data recreation attacks
by model inversion and faces the potential risk of data leak-
age [12]. The cost of cloud service can also disincentivize
users from participating in the energy management system.
(2) Localized EMS may take a prolonged time to converge
due to insufficient training examples. Despite load forecast-
ing being done through FL, the performance of local EMS
in achieving optimal energy management is still challeng-
ing and time-consuming. (3) Existing FL paradigms for EMS
training produce a singular global model for all residents. Re-
alistically, energy data residing across devices is inherently
statistically heterogeneous (i.e., non-IID distribution). The
diversity of users’ data can lead to model convergence delays
and suboptimal EMS performance for certain residents.

In this paper, we propose a framework where residents
can share their energy management plans while achiev-
ing a privacy-preserved and cloud-service-free residential
EMS with a personalized federated deep reinforcement learn-
ing (PFDRL) framework. Instead of sharing just load forecast-
ing results to identify standby energy, our framework also
allows residents to share their energy management plans to
collaboratively train their EMS by aggregating the reinforce-
ment learning agents.

First, we introduce a decentralized federated learning (DFL)
framework to enable distributed edge devices in the residen-
tial area to collaboratively train a model without a cloud
server. The training parameters from each local model are
broadcasted and aggregated between the smart home agents
owned by each residence at a certain frequency. This re-
moves the need of using a central cloud server, and reduces
the possibility of data leakage (e.g., malicious cloud server)
and monetary cost from cloud service. Second, we applied
deep reinforcement learning (DRL) with DFL to share the
EMS plan to enhance the time required to attain optimal EMS
performance. We also use the load forecasting result as an
input feature in the DRL framework to help with decisive RL
action. Third, we further introduce personalized federated
DRL (PFDRL) to handle the energy data heterogeneity and
maximize the residential-level EMS performance as well as
speed up the model converging time. We dynamically divide
the network inside the DRL into base layers and personalized

layers. Our training algorithm comprises the base layers be-
ing trained in a federated fashion and personalization layers
being trained only from local data with stochastic parameter
descent. We evaluate the proposed PFDRL on the real-world
Pecan Street dataset [3] and compare our results with four
different types of EMS. Experimental results show that the
proposed framework can achieve 92% load forecasting accu-
racy and save 98% of total standby energy consumption in
a day which outperforms all other methods. We summarize
the contributions of this paper as follows:

(1) We propose a decentralized FL framework that allows
the processing of all collected data locally on the edge,
and only the model parameters are transferred among
the network, which removes the need to use cloud
service in a residential area.

(2) We proposed a federated reinforcement learning based
framework to reduce standby energy for each resi-
dence in a residential area. Through sharing EMS plans,
this framework can achieve optimal EMS performance
in a short time.

(3) We proposed a personalization aspect in federated
learning by treating the neural networks in deep rein-
forcement learning models as a combination of base
and personalization layers. The base layers serve as
shared layers while the personalization layers are trained
locally, allowing for the capture of personal informa-
tion from IoT devices.

(4) We conduct experiments on real-world energy dataset.
The results demonstrate that our proposed method
outperforms other comparison methods in energy re-
duction and achieves the fastest convergence speed.

2 RELATEDWORK
2.1 Load Forecasting & Energy Management
Various works in load forecasting majorly focus on two dif-
ferent aspects: aggregated household-level forecasting and
device-level forecasting. Since device-level forecasting suf-
fers from high volatility and uncertainty of device usage
that is not significant on aggregated loads, their major ap-
proaches are different. Kong et al. [16] introduced a cen-
tralized density-based clustering technique to evaluate and
compare the inconsistency between the aggregated load and
individual loads, then they adopted Long Short-Term Mem-
ory (LSTM) and designed a load forecasting framework for
individual residential households. However, they require all
data to be transmitted to a central hub, which can cause
privacy concerns regarding sensitive user data. Din et al. [8]
introduced a single device level load forecasting based on the
Deep Neural Network approach, which they do not require
the collection of lengthy historical data. However, their ap-
proach failed to conduct any load control and data privacy,
which is a key contributor to our research.
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2.2 Data Privacy & Federated Learning
Only a few works in home energy management systems
have considered data privacy [10, 21, 34]. Most of their work
aims to deal with the tradeoffs between energy data privacy
and energy costs. For example, Yang et al. [34], developed an
online control algorithm using the Lyapunov optimization
technique to balance the problem between cutting down elec-
tricity bills and keeping the privacy of load requirements and
electricity bill processes. A recent trend in maintaining user
privacy is using federated learning approaches, where each
agent processes its own collected data locally, and only trans-
mits the calculated parameter to a central node. This reduces
the amount of data transmission and preserves user privacy.
There have been several papers [18, 29] using federated learn-
ing. Lee et al. [18] propose a novel federated reinforcement
learning (FRL) approach for the energy management of mul-
tiple smart homes with home appliances, a solar photovoltaic
system, and an energy storage system. However, the current
FL focus on building a global model instead of a personalized
model to maximize the energy management performance for
each client. On the other hand, FL still utilizes cloud service
to aggregate the model, which can be malicious and vulnera-
ble and lead to personal data leakage from model inversion.

2.3 Energy Management Personalization
To better serve a large number of users with custom settings,
personalized federated learning is proposed. In the FL ap-
proaches proposed in [9, 11, 31], the lower layers between
all users are shared to the cloud server while keeping several
user-specific upper layers on the edge. In this design, the
more general features are saved on the lower layers while
the upper layers capture a higher level of abstraction, which
contains more user-specific features. However, these person-
alized methods rely on a pre-defined structure of model shar-
ing, thus limiting the optimization of performance for each
user. In this paper, we added a parameter 𝛼 that determines
the number of layers to be transmitted, thus can optimizes
the performance for every single user. Other personalization
energy management systems for residential buildings focus
on personalized scheduling and demand response, with many
using Bayesian networks for decision making [23]. However,
these methods rely on the full support of the cloud service,
which might be malicious and bring data privacy issues.

3 SYSTEM DESIGN
3.1 System Overview
We present a personalized federated deep reinforcement
learning (PFDRL) framework, which contains two parts: a
decentralized federated learning (DFL) framework and a per-
sonalized deep federated reinforcement (PRL) framework.
Figure 1 shows the structure of the proposed system.

Our proposed DFL framework removes the requirement
for cloud services. First, each agent collects the device load
data from every IoT device deployed in its local residence
and trains a load forecasting model with the same machine
learning method. Second, the agents broadcast the parame-
ters of each device at a certain time frequency 𝛽 , so that each
agent has the parameter information from the same kind of
device in other residences. Third, the load forecasting result
is calculated based on the updated model. After each agent
updates its local model by aggregating the qualified parame-
ter for each device, the agent predicts the future power draw
for each device to identify standby energy. In the meantime,
the devices are still recording load data for the next train-
ing phase, and this process happens at the same interval, by
default hourly. Fourth, the output of DFL, which is the load
forecasting result, will be used as the input for the PFL frame-
work along with the real-time load data. The proposed PRL
framework will optimize the percentage of the base layer
and personalized layer to achieve the best performance for
each client in the system by the performance optimization
parameter 𝛼 . The base layer will be broadcast to other agents.
The PFL framework is deployed on each agent in each res-
ident. The load forecasting result can reflect the predicted
mode for each device; the real-time load data can reflect the
current mode for each device. Such information will be fed to
the DRL agent to take the standby energy-reducing actions,
such as switching the IoT device mode from standby to off.

3.2 Decentralized Federated Learning for
Load Forecasting

Traditional distributed machine learning techniques require
a certain amount of private data to be aggregated and ana-
lyzed at central servers (e.g., cloud servers) during the model
training phase using distributed stochastic parameter de-
scent (DSGD). Such a training process suffers from potential
private data leakage risks. To address such privacy chal-
lenges, a collaboratively distributed machine learning para-
digm, called federated learning (FL), was proposed for edge
devices to train a global model while keeping the training
datasets local and without sharing raw training data. How-
ever, traditional FL requires a cloud aggregator to obtain the
global model by aggregating sparse parameters and sending
this global model to the local agent. Such a method will cre-
ate a global model in the cloud which suffers from not only
potential private data leakage risks but expensive communi-
cation costs caused by the cloud.

In this paper, we focus on solving the above issue in a res-
idential building. We remove the need for a central server by
allowing the residents to process all collected data locally on
edge and broadcasting the model updates between the smart
home agent in each residence inside the residential building.
Such setup has the following benefits: (1) Remove the need
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Figure 1: Overview of the PFDRL Framework: 1○ Local energy data collection and training for standby energy
identification; 2○ Parameters broadcasting at certain time frequency 𝛽 between each residence; 3○ Local testing
with the updated model; 4○ Feed load forecasting result together with real-time energy value as deep reinforcement
learning environment; 5○ State observation; 6○ Reward calculation; 7○ Action selection to determine device mode;
8○ Divide neural networks inside the deep reinforcement learning models as base and personalization layers using
optimization parameter 𝛼 . Broadcast base layers at a certain time frequency 𝛾 and keep the personalization layers
locally. Each residence will use the updated PFDRL framework to perform energy management locally.

for cloud service, which will save extra monetary cost from
cloud usage, and avoid the possibility of a malicious central
server. (2) The model information will only be broadcasted
inside the residential building, which we believe is much
easier to operate and privacy-preserved for residences.
3.2.1 Locally Training Process: In our system, we con-
sider a residential home that includes 𝑁 residents. Each resi-
dence 𝑛 has an agent such as Google Home or Amazon Alexa,
which has the connection between the IoT devices in certain
residence 𝑛, where 𝑛 ∈ {1, 2, ..., 𝑁 }. We denote 𝐴𝑛 as the
agent in the system, which represents its residence 𝑛. For
each agent 𝐴𝑛 , we have the same default training model ini-
tially, such as Long Short Term Memory (LSTM). We denote
𝐷𝑋𝑛

as different IoT devices, in different residents, and 𝑋

refers to the type of certain IoT device. Since each IoT de-
vice, 𝐷𝑋𝑛

has its own local dataset (i.e., sensing time-series
data from IoT nodes), we train the model separately for each
device on the connected agent. For example, the TV in resi-
dence one, we define as 𝐷𝑇𝑉 1 , TV in residence two, we define
as 𝐷𝑇𝑉 2 , the lighting in residence one, we define as 𝐷𝑙𝑖𝑔ℎ𝑡1 ,
etc. We train the model for each device in each residence
on the connected agent locally and separately. Thus every
device has a certain parameter. For example, a parameter
𝐺𝑇𝑉 1 is calculated for the TV in residence one in a certain

time period. In each resident’s home, an agent will record
the parameter for all the resident’s devices. As an instance,
for residence one, the agent 𝐴1 has the parameter informa-
tion 𝐺𝑇𝑉 1 , 𝐺𝑙𝑖𝑔ℎ𝑡1 , 𝐺𝐻𝑉𝐴𝐶1 and all the other devices that are
connected to 𝐴1.

Given a local dataset recorded by an IoT device 𝐷𝑋𝑛
, our

goal is to predict the future energy consumption for this
certain device for the following hour. We choose different
machine learning and deep learning models for the training
set to learn the usage pattern of the device, and the testing set
is used to predict the estimated energy consumption after the
parameter aggregation. We also select the prediction method
with the best performance for the following step. For each
device 𝐷𝑋𝑛

, we first predict the energy consumption 𝑉𝑋𝑛
in

every minute for the next hour. Then, we calculate and record
the parameter for each device 𝐷𝑋𝑛

locally, respectively, for
broadcasting. To avoid high frequency broadcasting, we set
𝛽 hours as the parameters broadcast rate to reduce the fre-
quency of broadcasting parameters. In our experiment, we
will determine the hyperparameter 𝛽 that has the best result.
3.2.2 Parameter Aggregation. After each agent 𝐴𝑛 deter-
mines the selected parameters from other agents for each
device 𝐷𝑋𝑛

, each agent will update the model with such pa-
rameters 𝐺𝑋𝑛

. To do so, we use DSGD for iterative updates,



PFDRL: Personalized Federated Deep Reinforcement Learning for Residential Energy Management ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA

and the loss function to be optimized is defined as follows:

𝐹 (𝑤) = 1
𝐷𝑋𝑛

∑︁
𝑛∈𝐷𝑋𝑛

𝑓 (𝑛,𝑤) (1)

where 𝐹 (𝑤) is the loss function for the updated model, 𝑓 (𝑛,𝑤)
is the loss function for the previous model, and 𝑤 is the
model’s weight.

In the parameter aggregate phase, the agents obtain an
updated model 𝑤𝑡+1 for the next iteration as follows:

𝑤𝑡+1 = 𝑤𝑡 − [
1
𝑁𝑏

𝑁∑︁
𝑛=1

∑︁
𝑥∈𝐵𝑛,𝑘

▽𝑓 (𝑥,𝑤𝑡 ) (2)

where [ is the learning rate, 𝐵𝑛, 𝑘 is the data sample for the
𝑘𝑡ℎ round of training, and each local dataset size of 𝑏. All
the collaborated agents repeat the above process until the
model reaches convergence. Then we use the updated model
to predict the energy consumption for a certain device for
the next hour.

Algorithm 1 shows the training process of DFL load fore-
casting. Each home agent initialized its load forecasting
model with the same structure for each device. The param-
eter for each model is set as random. For each device 𝐷𝑋𝑛

,
first, it locally trains its own model and finds the conver-
gence𝑊𝑛,𝑡 . After all models are converged, the smart home
agent will broadcast the fine-turned model parameters to
all other smart agents from other residences. The broadcast
frequency 𝛽 will be determined from our experiment. Upon
receiving all𝑊𝑠 , each agent aggregates the model parameters
locally and updates its own model. The load forecasting re-
sult for standby energy identification is also predicted using
the updated model locally.

Algorithm 1: DFL load forecasting Algorithm
Initialize load forecasting model for each device 𝐷𝑋𝑛

;
Initialize model weight𝑊𝑛,0 at random;
for n =0 to N do

for t =0 to T do
𝑊𝑛,𝑡 ← SGD(𝑊𝑛,𝑡−1, [); (Local Training Step)
Check if each device 𝐷𝑋𝑛

finished local
training;

Broadcast𝑊𝑛,𝑡 to other residences;
Receive𝑊𝑠 from all other residences;
𝑊𝑛,𝑡+1←

∑𝑁
𝑛=1

𝑊𝑛,𝑡

𝑁

end
Update local model with𝑊𝑛,𝑡+1;
Localized load forecasting

end

3.3 Personalized Federated DRL For Energy
Management

After the load forecasting is made from the DFL framework,
each DRL agent 𝐴𝑛 needs to decide whether the mode of
a certain device 𝐷𝑋𝑛

should be changed or not. In the DRL
framework, the action is made every minute based on the re-
sult from the DFL framework. So, the DRL agent performance
is highly influenced by the DFL load forecasting accuracy. In
our system, we first formulate this problem as a Markov De-
cision Process (MDP) and use a reinforcement learning (RL)
method based on Deep Q-Network (DQN) as our base energy
management system. Then, we divide the neural network
inside the DRL as base layers and personalization layers.
We broadcast the base layers to other residences and keep
the personalization layers locally. The combined model with
global aggregated base layers and localized personalization
layers can achieve a collaborative training process as well as
better energy management results for each residence.

3.3.1 DRL for energymanagement: Reinforcement learn-
ing is a method where at each time step 𝑡 , an agent observes
a state 𝑠𝑡 in an environment, takes an action 𝑎𝑡 based on the
observation, and receives a positive or negative reward 𝑟𝑡
for the action taken. The objective of the DRL agent is to
find an action policy 𝜋 that would maximize the expected
cumulative reward [∑∞𝑡=0 𝑟𝑡 ].

We first formulate this problem as a Markov Decision
Process (MDP), denoted by M = (S,A,P,R), where S is the
state, A is the action, P is the probability between each two
states and R is the reward. Below, we introduce the elements
in the MDP for our problem.
State Space: The state space S is defined as the input of

the DRL model. For each device 𝐷𝑋𝑛
, it has three operation

modes: off, standby, and on. Each mode can be reflected by
energy consumption. In our system, the state space consists
of two separate parts: The first part is the predicted energy
consumption, which reflects the predicted device mode. The
second part is the real-time energy consumption, which re-
flects the real device mode.

We denote the predicted energy consumption by:

V = {𝑉1,𝑉2, ...𝑉𝑡 , ...𝑉𝑇 } (3)

where𝑉𝑡 means the 𝑡𝑡ℎ predicted energy consumption and𝑇
is the total number of predicted energy consumption. Since
in the DFL prediction phase, each prediction is made for the
next hour, the total number 𝑇 is set as 60 minutes. The real-
time energy consumption is recorded at the same timestamp
as the predicted value:

RV = {𝑅𝑉1, 𝑅𝑉2, ...𝑅𝑉𝑡 , ...𝑅𝑉𝑇 } (4)

where the value of 𝑡 for 𝑅𝑉𝑇 is the same as 𝑉𝑡 .
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For each device 𝐷𝑋𝑛
, it has a default value for each op-

eration mode where 𝑉𝑜 𝑓 𝑓 means the device is off, 𝑉𝑠 means
the device is in standby mode, 𝑉𝑜𝑛 means the device is in
on mode. For each 𝑅𝑉𝑇 and 𝑉𝑡 , if the value is 0, we define
the predicted and real mode of a certain device as off mode.
If the value is between 0.9 ∗ 𝑉𝑠 and 1.1 ∗ 𝑉𝑠 , we define the
predicted and real mode of a certain device as in standby
mode. If the value is between 0.9 ∗𝑉 𝑜𝑛 and 1.1 ∗𝑉 𝑜𝑛 , we
define the predicted and real mode of a certain device as on
mode [14]. We denote 𝑆 as predicted mode for certain device,
where 𝑆 ∈ { 𝑆𝑜 𝑓 𝑓 , 𝑆𝑠 , 𝑆𝑜𝑛} as off, standby and on mode. We
denote 𝑅𝑆 as the real mode for certain device, where 𝑅𝑆 ∈
{𝑅𝑆𝑜 𝑓 𝑓 , 𝑅𝑆𝑠 , 𝑅𝑆𝑜𝑛} as off, standby and on mode.

Action Space: The action space A is defined as the agent
𝐴𝑛 can make decisions on whether the mode of a certain
device𝐷𝑋𝑛

should be changed or not at time 𝑡 . After receiving
the predicted and real mode of certain devices, the action 𝑎𝑡
is expressed in the following:

𝑎𝑡 =


0, Off mode
1, Standby mode
2, On mode

(5)

Probability: The state space is changed with certainty, so
the probability between states is always 1.

Reward: Based on action space A, the DRL agent receives
a reward 𝑟 (𝑡) for each action taken at time 𝑡 . In the system,
the agent can receive positive rewards in one scenario: the
predicted mode and the real mode for a certain device are
the same at the time. In this case, the reward is set as 10. On
the other hand, the agent can receive negative rewards in
two scenarios: first, the predicted mode and the real mode
for a certain device are different at time 𝑡 , and the predicted
mode should be moved up or down for one mode. In this
case, the reward is set as -10. Second, the predicted mode
and the real mode for a certain device are different at time 𝑡 ,
and the predicted mode should be moved up or down for two
modes. In this case, the reward is set as -30. An exception for
the reward is that we wish once the real mode is standby, we
want to change it to off mode, so we mark the reward as 30
in this scenario. Based on the aforementioned statement, we
define reward 𝑟𝑡 at time 𝑡 for action 𝑎𝑡 as shown in table 1.
𝑄-value calculation: The agent takes the action 𝑎𝑡 that

satisfies max𝑄 (𝑠𝑡 , 𝑎𝑡 ) and receives a reward 𝑟 (𝑠𝑡 , 𝑎𝑡 ). The
goal is to find a policy 𝜋 that will approximate the optimal
Q-function 𝑄∗ (𝑠𝑡 , 𝑎𝑡 ) which always satisfies Bellman’s opti-
mality equation. That is,

𝑄∗ (𝑠𝑡 , 𝑎𝑡 ) = 𝑟 (𝑠𝑡 , 𝑎𝑡 ) + ^ ·max
𝑎𝑡+1

𝑄∗ (𝑠𝑡+1, 𝑎𝑡+1) (6)

where, 𝑄∗ (𝑠𝑡+1, 𝑎𝑡+1) is the next-step’s optimal Q value.
As there will also be new load data coming from each

device, we keep training our DRL agent to achieve the best

Table 1: Reward Function
Ground truth mode DRL action Reward Value

On On 10
On Standby -10
On Off -30

Standby On -10
Standby Standby 10
Standby Off 30

Off On -30
Off Standby -10
Off Off 10

performance over time. After the first time DRL agent train-
ing process, each DRL agent has its own DRL model ready for
broadcast. We apply a performance optimization parameter
𝛼 to determine which part of the model will be broadcasted
and updated to achieve the best energy management perfor-
mance in the following section.

3.3.2 Federated Personalization for Reinforcement
Learning: We divide the neural network in DRL into two
parts: base layers and personalization layers. Base layers
act as the shared layers which are trained in a collaborative
manner. Equation (7) shows the model aggregation step for
base layers:

𝑊 (𝐷𝑅𝐿𝐵)𝑛,𝑡+1 =𝑊 (𝐷𝑅𝐿𝐵)𝑛,𝑡−𝛿
𝑁∑︁
𝑛=1

∑︁
𝑥∈𝐵𝑛,𝑘

▽𝑓 (𝑥,𝑊 (𝐷𝑅𝐿𝐵)𝑛,𝑡 )
𝑁

(7)
where𝑊 (𝐷𝑅𝐿𝐵)𝑛,𝑡 denotes the base layers model weight

for the 𝑛𝑡ℎ residence at time 𝑡 . 𝛿 is the learning rate, 𝐵𝑛, 𝑘 is
the data sample for the 𝑘𝑡ℎ round of training, and each local
dataset size of 𝑏. By uploading and aggregating only part of
the models, PFDRL requires less computation and communi-
cation overhead, which is essential in IoT environments. On
the other hand, in PFDRL, the participants share the param-
eters of their DRL model, which can achieve better perfor-
mance in a shorter time because of the collaborative training.

While the personalization layers are trained locally, thereby
enabling to capture of personal information of IoT devices.
Equation 8 shows the model aggregation step for PFDRL:

𝑊 (𝑃𝐹𝐷𝑅𝐿)𝑛,𝑡+1 =𝑊 (𝐷𝑅𝐿𝑃 )𝑛,𝑡 +𝑊 (𝐷𝑅𝐿𝐵)𝑛,𝑡+1 (8)
where𝑊 (𝐷𝑅𝐿𝑃 )𝑛,𝑡 is the weight of personalization layers,

and𝑊 (𝑃𝐹𝐷𝑅𝐿)𝑛,𝑡+1 is the updated model weight for PFDRL.
In this way, the globally-shared base layers can be broad-
casted to participating IoT devices for constituting their own
EMS plan with their unique personalization layers. Thus,
our proposed PFDRL is able to capture the fine-grained in-
formation on a particular device for superior personalized
inference or classification and address the statistical het-
erogeneity to some extent. We define an 8 hidden layers
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architecture of neural networks inside the DRL agent and
determine a performance optimization parameter 𝛼 to decide
the proportion of base layers and personalization layers. To
avoid high-frequency broadcasting of base layers, we set 𝛾
hours as the parameters broadcast rate to reduce the fre-
quency of broadcasting parameters. In our experiment, we
determine the hyperparameter 𝛾 that has the best result.

Algorithm 2 shows the training process of personalized
deep federated reinforcement (PFDRL). DRL agents will take
actions based on DRL state space, which is the load forecast-
ing value and real-time energy value. The reward will be
calculated based on the action. The system calculates the 𝑄-
value and finds the maximum value based on the selection of
action space. We adopt the Huber Loss function [22] which
acts quadratic for small errors and linear for large errors. This
prevents the network from having a dramatic change while
processing outliers. After the local training step is done, we
select 𝛼 base layers of the model broadcasted to other resi-
dences, each residence combines the updated model with the
aggregate base layers and localized personalization layers to
perform energy management plans.

4 EVALUATION
In this section, we evaluate our proposed framework using
various hyperparameter configurations.

Energy Consumption: To demonstrate the performance
of the proposed framework, we apply it to a real-world
dataset called the Pecan Street dataset [3]. The Pecan Street
dataset contains the energy consumption data for various
home appliances in 669 residents located in Texas from Jan-
uary 1, 2013, to December 31, 2017 [24].
Electricity Price: Since the electricity price can be di-

vided into fixed-rate electricity plans and variable rate elec-
tricity plans. We obtain the electricity price from the websites
of Texas Electricity Rates [2] and the websites of Energy In-
formation Administration [1]. For fixed-rate electricity prices
in TX, the average rate is 11.67 cents per kilowatt-hour (kWh).
For variable rate electricity prices in TX, the range is between
0.08 cents to 20 cents per kWh depending on the time. We
compare both in our experiments to see the price difference.
Experiment Settings: The experiments are deployed in

our local server with a GTX 2070 super GPU. For both energy
load forecasting and management, we first use 80% of the
energy consumption dataset as the training set and use them
to calculate the parameter and aggregate the parameters from
other agents to get the updated model. Second, we use the
rest 20% of the dataset for testing. For the hyperparameters
in PFDRL, we set the learning rate as 0.001, discounted rate
as 0.9, the memory capacity as 2000, and the target replace
iteration as 100. Each hidden layer has 100 neurons followed
by a ReLU function. The output layer has 3 neurons providing
𝑄-values of the state of the three modes.

Algorithm 2: PFDRL Algorithm
Initialize DRL environment with load forecasting
result V and real-time energy value RV for each
device 𝐷𝑋𝑛

;
for n =0 to N do

for t =0 to T do
𝑎𝑡 = random(0,2);
or, 𝑎𝑡 = arg max𝑎 𝑄 (𝑠𝑡 , 𝑎);
TakeAction(𝑎𝑡 );
𝐴.append(𝑎 𝑗 ), ;
𝑆 .append(𝑠 𝑗 );
𝑎𝑡 = 𝐴[𝑡];
𝑠𝑡 = 𝑆 [𝑡];
Compute 𝑟𝑡 from 𝑠𝑡 , 𝑎𝑡 ;
𝑠𝑡+1 = 𝑆 [𝑡 + 1];
for each iteration do

Calculate Q value,
𝑦𝑖 = 𝑟 (𝑠𝑖 , 𝑎𝑖 ) + ^ ·max

𝑎′
𝑄 (𝑠𝑖+1, 𝑎′) ;

Calculate error, 𝜏𝑖 = 𝑦𝑖 −𝑄 (𝑠𝑖 , 𝑎𝑖 );
Calculate loss, L = 1

𝐵

∑
𝑒𝑡 ∈𝐵 L(𝜏);

Update network parameters;
end
for 𝛼 ∈ (1, 8) do

Broadcast 𝛼 layers in DRL to other
residences;

Keep (8 − 𝛼) layers locally;
Receive 𝛼 layers from all other residences;
Do Equation 7

end
end
Do Equation 8;
𝛼 = 𝛼 + 1

end

Compared Methods: For load forecasting, we compare
four prediction algorithms: Linear regression (LR) [32], Sup-
port vector machine (SVM) [7], Back-propagation network
(BP) [28], and Long short-term memory (LSTM) [26] with
the same experiment settings in order to choose the method
with the best performance applied to the PFDRL model.

We choose the following four methods as comparisons.
(1) Local based load forecasting + Local based EMS [33] (Lo-
cal). (2) Cloud based load forecasting + Local based EMS [20]
(Cloud). (3) Federated learning based load forecasting + Lo-
cal based EMS [27] (FL). (4) Federated learning based load
forecasting + Federated learning based EMS [18] (FRL). We
train the models with the same dataset under their settings.
Table 2 shows the details of compared methods.
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Table 2: Comparison methods.
Method Load

Forecasting EMS Local
Area

Data
Privacy

Small Batch
Model Training

Sharing
EMS Personalization

Local Local NN Local RL ✓ ✓ × × ✓
Cloud Cloud NN Local RL × × ✓ × ×

FL Federated
Learning Local RL × × ✓ × ×

FRL Federated
Learning

Federated
RL × × ✓ ✓ ×

PFDRL
Decentralized

Federated
Learning

Personalized
Federated RL ✓ ✓ ✓ ✓ ✓

4.1 Performance Metrics
1. Hyperparameters selection. We measure the hyperparam-
eter 𝛼 , 𝛽 , and 𝛾 to determine the threshold for broadcast fre-
quency and the number of broadcasted layers in our system.

2. Prediction accuracy. To measure the prediction accuracy
of energy consumption, we measure the prediction accuracy
as below: 𝐴𝑐𝑛 = 1 − |𝑉𝑛−𝑅𝑉𝑛 |

𝑅𝑉𝑛
where 𝐴𝑐𝑛 is the prediction

accuracy of 𝑛𝑡ℎ prediction, 𝑉𝑛 is the predicted value of 𝑛𝑡ℎ
prediction and 𝑅𝑉𝑛 is the real value of 𝑛𝑡ℎ prediction.

3. Saved energy value. To measure the saved energy value,
we use 𝑅𝑉𝑛 −𝑉𝑛 to calculate the value.

4. Saved monetary cost. We calculate the total monetary
cost based on real price dataset [1, 2] for fixed-rate electric-
ity plans and variable rate electricity plans under 𝐶𝐷𝑋𝑛 ,𝑡

=

(𝑅𝑉𝑛,𝑡 −𝑉𝑛,𝑡 ) ·𝑝𝑡 where𝐶𝐷𝑋𝑛 ,𝑡
is the monetary cost for device

𝐷𝑋𝑛
at time 𝑡 . 𝑝𝑡 is the energy price at time 𝑡 .

5. Time overhead. We use training time latency and testing
time latency to show the time overhead of the load forecast-
ing methods and the energy management methods.

5 EXPERIMENTAL RESULTS
Hyperparameters Selection of PFDRL: Figure 2 shows
the saved standby energy of the PFDRL framework with
different shared layers 𝛼 . We use 𝛼 ∈ {1, 2, 3, 4, 5, 6, 7, 8} to
determine the best 𝛼 of the proposed framework. We ob-
serve that 𝛼 = 6 has the best result, which means the best
performance comes from we set 6 layers as base layers and 2
layers as personalization layers. Figure 3 shows the accuracy
of our proposed DFL framework with different broadcast fre-
quencies 𝛽 . We employ 𝛽 ∈ {0.1, 0.5, 1, 2, 6, 12, 24} to adjust
the best frequency of the proposed framework. We observe
that 𝛽 = 6 and 12 have the best prediction accuracy for load
forecasting, which means the parameters should be broad-
casted every 6 or 12 hours. Since higher broadcast frequency
will cause lower communication efficiency, we choose 𝛽 =
12 as the best frequency of our framework. Figure 4 shows
the saved standby energy of our proposed PFDRL frame-
work with different broadcast frequencies 𝛾 . We employ
𝛾 ∈ {0.1, 0.5, 1, 2, 6, 12, 24} to adjust the best frequency of
the proposed framework. We observe that 𝛾 = 2, 6, and 12
have the best performance, which means the parameters
should be broadcasted every 2, 6, or 12 hours. Due to the
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Figure 4: The saved standby energy PFDRL with differ-
ent broadcast frequency 𝛾 .

same reason as described in Figure 3, we choose 𝛾 = 12 as
the best frequency of our framework.

Load forecasting Accuracy: Figure 5 shows the cumula-
tive distribution function (CDF) of the load forecasting result.
The result follows LR<SVM<BP<LSTM. For LR, it’s normal
to face under-fitting and low precision, so the load forecast-
ing accuracy is lower. For SVM, its performance with large
datasets is lower than the others. For BP, it is easy to fall into
a local extreme value, and the weights converge to a local
minimum point, which causes the network training to fail.
For LSTM, it can capture the long-term pattern based on the
memory cell, which can bring higher load forecasting accu-
racy. Figure 6 shows the load forecasting accuracy in a day at
different times. The result follows LR<SVM<BP<LSTM due
to the same reason as explained in Figure 5. We also observe
that the accuracy from 2 AM to 6 AM and from 12 PM to
16 PM are higher than the other time in the day. The reason
is that, in such a time frame, residences usually have the
same energy usage patterns for each device. From 8 AM to
10 AM and in the evening time, the energy usage in different
residences is vary depending on the date.

Figure 7 shows the prediction accuracy while we accu-
mulatively train the DFL framework with different numbers
of days. We set the number of residences as 100 in this ex-
periment. The result follows LR<SVM<BP<LSTM due to
the same reason as explained in Figure 5. Since we accu-
mulatively train the DFL framework, for each hour, each
agent has the aggregated parameter for each device. The
updated parameter will be used for the next training period,
which will improve the prediction accuracy over time. On
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Figure 8: Prediction accu-
racy with different resi-
dences.

the other hand, from day 1 to day 30, the growth of accu-
racy is higher than from day 70 to 100. The reason is that
the aggregated parameter tends to approach the best value
for load forecasting. Figure 8 shows the prediction accuracy
with different numbers of residences participating in the
DFL framework. We set the number of days as 365 in this
experiment. For the number of residences under 100, the
result follows LR<SVM<BP<LSTM due to the same reason
as explained in Figure 5. For the number of residences above
100, the result shows a drop. The reason is that the four
methods use all the parameters or data to train the model
together. Such methods can indeed improve the average ac-
curacy when the number of total participants is small. When
the number of residences goes up, the number of different
kinds of load patterns also goes up. In this case, using all the
parameters or data to train the model may cause prediction
accuracy to drop in some devices.

Performance Comparison with Compared Methods:
Figure 9 shows the amount of saved energy per residence
and the percentage of standby energy usage versus different
training days. The result for saved energy per client follows
Cloud≈FL≈FRL<Local≈PFDRL. Because the local method
and PFDRL have personalization, the EMS plan is more ac-
curate, which leads to the result that more energy can be
saved from standby energy. The result for achieving the best
performance time follows: PFDRL≈FRL<FL≈Cloud<Local.
Because PFDRL and FRL are sharing the EMS plan with other
clients in the system, which leads to the fact that sharing the
EMS plan with all participants can speed up the system to
achieve better performance. For FL and cloud, since they only

0

1

2

3

4

5

1

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

S
a

v
e

d
 e

n
e

r
g

y
 p

e
r
 

c
li

e
n

t
 (

K
W

h
)

Days

Local Cloud FL FRL PFDRL

 s
t
a

n
d

P
e

r
c
e

n
t
a

g
e

 o
b

y
 e

n
e

r
g

y
 

f

1

0.8
0.6
0.4
0.2
0

Figure 9: Saved energy
per residence.
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do load forecasting in the sharing mechanism, they have a
more accurate input feature for the localized EMS, but since
the EMS plans are not shared, so they will need to spend more
time to achieve the best performance. For local based method,
since both load forecasting and EMS plan are locally based,
it has the lowest speed. Figure 10 shows the saved monetary
cost per residence and the percentage of the total monetary
cost versus different months. We compare both the fixed-rate
electricity plan and the variable rate electricity plan using our
system. The result follows Fixed Rate≈Variable Rate. Since
the amount of saved energy is the same, the difference in
the total monetary cost in a month is between the electricity
plan. On average, we can observe that Fixed Rate≈Variable
Rate. From April to June, the variable rate plan will save
more money for each resident. From August to October, the
fixed-rate plan will save more money for each resident.

Figure 11 shows the amount of saved energy per residence
at different times of the day. We can observe that the re-
sult follows Cloud≈FL≈FRL<Local≈PFDRL due to the same
reason as explained in Figure 9. We can also observe that,
between 2 AM and 4 AM, the saved energy is at a minimum.
The reason is that the total usage of energy is at the lowest
level. On the other hand, between 12 PM and 0 AM, the saved
energy is at maximum since residents are using more energy
at such time in the day. Figure 12 shows the system perfor-
mance in personalization. We show the mean accuracy of the
personalized model and not the personalized model. We can
observe that the personalized model has better performance
than the not personalized model. Also, from the error bar,
we can observe that personalized model can achieve better
performance for most residences.
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Figure 13 and 14 show the time overhead of each method.
The time overhead contains both training and testing for load
forecasting and energy management. For load forecasting,
the result follows LR≈SVM≈BP≈LSTM. For energy manage-
ment, the result follows PFDRL<FL≈Cloud≈Local<FRL. The
reason is that, for local based model, since both load forecast-
ing and DRL are local, the training time overhead is small.
For cloud and FL, since they need to broadcast the load fore-
casting parameters but the DRL is local based, so they require
more training time than local based method. For FRL, both
load forecasting and DRL are based on the FL framework,
which means they need to broadcast two times, which will
need the longest training time. As for PFDRL, because of
the layer selection, the number of broadcasted parameters is
smaller, which leads to a shorter training time.
6 CONCLUSION
In this paper, we propose a privacy-preserved energy man-
agement system that can achieve the best performance in a
short time and minimize the energy usage caused by standby
energy. First, we introduce decentralized federated learn-
ing (DFL) framework to enable distributed edge devices to
collaboratively train a model without using cloud service.
Second, to further improve the time to achieve the best EMS
performance, we applied deep reinforcement learning (DRL)
with FL in order to share the EMS plan. Third, we design a
personalized federated DRL (PFDRL) to maximize the EMS
performance for each individual client in the sharing system
by dividing the network inside the DRL into localized-based
layers and personalized layers. We evaluate the proposed
PFDRL energy management system on the real-world Pecan
Street dataset, which saves 98% of total standby energy con-
sumption per day in a residential building.
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