
NexusEdge: Leveraging IoT Gateways for a
Decentralized Edge Computing Platform

Nabeel Nasir
University of Virginia
nabeeln@virginia.edu

Victor Ariel Leal Sobral
University of Virginia
sobral@virginia.edu

Li-Pang Huang
University of Virginia
lh5jv@virginia.edu

Bradford Campbell
University of Virginia
bradjc@virginia.edu

Abstract—Edge computing enables scalability and privacy
improvements for Internet of Things (IoT) systems, by shifting
applications from the cloud to edge servers closer to IoT devices.
Conceptually, IoT devices communicate directly with the edge,
but in real-world IoT deployments often IoT gateways are needed
to bridge devices and edge servers. Design decisions at this
gateway layer directly contribute to the responsiveness of edge
applications and scalability of the platform, yet these gateways
are often overlooked and under-explored. IoT gateways have
a compelling mix of features, including reasonable compute
capabilities, low cost, direct contact with devices, and spatial
distribution in deployments. We hypothesize that a new manage-
ment layer that organizes already existing gateways can replace
expensive edge servers while enabling the privacy, reliability, and
performance benefits of executing IoT applications on the edge.

We utilize a decentralized architecture that creates a nexus
among disjoint gateways using out-of-band discovery, low-
overhead abstraction layers, and runtime application scheduling.
This platform supports heterogeneous devices, minimizes configu-
ration overhead, executes applications, and provides resiliency to
failure. We develop a prototype of the architecture, NexusEdge,
and deploy it across several gateways and hundreds of low-power
and energy-harvesting devices. When compared to Amazon’s
AWS IoT Greengrass, NexusEdge shows a 10x improvement
in application latency, and a 2.5x reduction in network traffic,
indicating better scalability and responsiveness. We demonstrate
how NexusEdge supports applications without cloud support, and
envision future extensions of this platform.

Index Terms—Edge Computing, IoT, Gateways, Middleware

I. INTRODUCTION

The Internet of Things (IoT) is growing at a rapid pace;
projections indicate that there will be more than 41 billion IoT
devices by 2025, generating a colossal 79 billion zettabytes of
data [1]. Edge computing is a potential solution to handle the
scale of this growth, which prescribes executing applications
closer to devices, consequently reducing latency, minimizing
bandwidth, and improving privacy by operating on premises.
Edge computing platforms make it possible for developers to
deploy applications closer to devices while retaining cloud
support. These platforms typically follow a three-tier architec-
ture, as shown in Figure 1a, with sensors and actuators at the
bottom layer, edge nodes in the middle layer (usually server
machines), and cloud data centers at the top.

With the proliferation of low-power and battery-less devices,
IoT devices often employ short-range radios like Bluetooth
Low Energy (BLE), rather than 5G or WiFi, to conserve
power. Since edge server machines are not equipped with the

requisite radios, and even so deploying a large number of edge
servers to provide dense, short-range wireless coverage is cost-
prohibitive, IoT gateways are used instead to bridge this gap
between devices and edge servers, as depicted in Figure 1b.
Although the gateways are necessary, they are usually con-
sidered a part of the implementation rather than the design.
However, how gateways are used can have a significant impact
on the scalability and responsiveness of edge applications built
on IoT sensors and actuators. We take a new approach, and
study the gateway layer from a design perspective, specifically
exploring the feasibility of extending edge computing to better
exploit these gateways, and ultimately increasing the reach of
the edge-centric computing.

Increasing the responsibility of edge gateways, e.g. running
applications directly on the gateways rather than on edge
servers, is counterintuitive. Edge servers offer more resources
for applications including storage and memory, heavy compute
(CPU and GPU), and are less prone to failures. However,
we make five observations that suggest edge computing can
benefit from leveraging these gateways, particularly when
applications are using IoT devices. First, since gateways have
more deployment flexibility and include wireless radios to
communicate with devices, applications running on gateways
can operate one hop from sensors and actuators, and lever-
age protocol-specific information for optimizations. Second,
streaming all data to centralized edge servers increases net-
work traffic and application latency. If applications can be
executed on gateways instead, this overhead can be reduced.
Third, advances in single board computers like the fourth
generation Raspberry Pi [2] have made IoT gateways increas-
ingly performant. Gateways are capable enough to support
containerized environments [3], and are increasingly being
used for various kinds of edge applications [4], [5], [6], [7],
[8]. Fourth, edge servers can be costly (exceeding $1,000),
and leveraging gateways can make edge computing feasible
for cost-conscious deployments. Finally, spatially large IoT
deployments already have multiple gateways for network
coverage, and leveraging them increases their value without
incurring additional hardware and installation costs.

Using gateways for edge computing may not be suitable for
all classes of applications, but we argue there is a nontrivial
set of applications well suited for gateways. Applications
executing in situ on an edge node, requiring only low/moderate
amounts of compute power (CPU, GPU, memory) and storage,

1

Cloud
Layer

Edge
Layer

Device
Layer

apps

(a) Edge Computing Architec-
tures

Cloud
Layer

Edge
Layer

Device
Layer

Gateway
Layer

just forwards
data to/from
devices

(b) Actual implementations use gate-
ways

Cloud
Layer

Device
Layer

Gateway
Layer

Edge
Layer

IoT gateways
as edge layer

not essential,
can interoperate

long-running,
in situ,
moderate
compute

Edge

(c) Shift applications to gateways

Figure 1: a) Edge computing generally follows a layered architecture in which apps execute on edge servers near devices. b)
Actual deployments require IoT gateways to communicate with devices. c) We leverage gateways to execute apps without edge
servers or the cloud. Apps execute fully on gateways, run indefinitely, and have moderate compute and storage requirements.

and run indefinitely once deployed, are good candidates to
execute on gateways. Applications that sense and act in
large-scale IoT deployments, simple if-this-then-that (IFTTT)
applications, machine learning at the edge, and inherently
distributed applications all meet these criteria. A prototypical
IoT application such as triggering alerts for anomalies in plug-
level appliance power data in a factory [9] is an example where
the application can execute on the edge, requires moderate
amount of compute power to handle streaming data, and
executes indefinitely. We do not focus on compute-intensive
tasks such as live video analytics and augmented reality.

We hypothesize that an edge computing platform built using
a network of IoT gateways can support and scale up with
responsive edge applications and cutting-edge IoT devices,
and eases application development, without requiring cloud
support (Figure 1c). To convert a disjoint network of gateways
into a cohesive platform, we build a thin management layer
which can handle application load balancing, optimize latency
and network communication overhead, provide automatic dis-
covery and scalability, ensure resilience to failures, and operate
autonomously without any Internet connectivity. Then, we
design an open-source edge computing platform, NexusEdge,
which aims to manage heterogeneity, minimize configuration,
aid in network management, and support applications.

We describe the key design decisions for our IoT middle-
ware learned from iterating our platform and interfacing with
a variety of devices and applications. Our key design choices
include: i) Remaining agnostic to specific wireless protocols
and data formats to not artificially restrict use cases and future
development. We show through our layered approach how data
models can be applied for specific deployments. ii) Relying on
out-of-band wireless discovery for local gateway coordination.
This eliminates the requirement for cloud interaction and pro-
motes scalability. iii) Using an intentionally thin API between
the platform and applications to allow seamless access control
of data, load balancing, and scaling. Again, we choose a design
focusing on the core edge computing platform, leaving more
sophisticated application support to pluggable software layers.

We showcase the suitability of NexusEdge by deploying
it across five gateways spanning a floor of a building and
supporting 181 low-power and energy-harvesting devices. We

1 2 3 4 5
No. of Gateways

0
10
20
30
40
50
60
70
80
90

100

Co
ve

ra
ge

 o
f D

ev
ice

s (
%

)

Min
Max

Figure 2: Device Coverage

GW 1 GW 2 GW 3 GW 4 GW 5
0

10
20
30
40
50
60
70
80
90

100

Av
er

ag
e

CP
U

Us
ag

e
(%

)

Figure 3: Gateway Load

evaluate NexusEdge by comparing it with a centralized archi-
tecture and show improved application performance and better
gateway utilization at reasonable decentralization overheads.
We demonstrate various applications using the platform, and
present a case study of a federated machine learning approach
that requires no cloud support to show how NexusEdge
eases the burden of developing complex IoT applications. We
compare the performance of our platform with Amazon’s AWS
IoT Greengrass [10], and show improvements in sensor data
latency and network traffic, indicating better scalability, and
highlighting the benefit of a distributed architecture. We also
demonstrate that the middleware stays resilient to failures,
ensuring better reliability operating with gateways. These
experiments collectively validate the feasibility of using IoT
gateways to build an edge computing platform.

Our work provides two key contributions. First, to the best
of our knowledge, our work is the first to demonstrate the fea-
sibility of using IoT gateways to build a cohesive platform that
can execute edge computing applications. Second, we present
the design and implementation of an open-source, cloud-
independent, edge computing platform, which can handle de-
vice heterogeneity and access control of data, and interoperates
with other edge computing platforms. These contributions help
expand the vision of edge-centric computing by enabling new
use cases and opportunities for spatially coupling data and
compute. Specifically for the case of low power IoT devices,
the NexusEdge design increases the opportunity for leveraging
edge computing ideals in a vast number of IoT deployments
that already use gateways to support the devices.

2

II. MOTIVATION

Our motivation for this work stems from our deployment
experience of setting up a testbed of 181 wireless IoT devices
in the floor of a building spanning 17,000 sq.ft. As our IoT
devices have limited transmission ranges and were spread
across a large area, we deployed five gateways to collect data
from the devices and send it to a cloud service. We conducted
some preliminary experiments with the gateways to study the
number of devices they covered and their CPU loads.

Figure 2 shows the minimum and maximum number of
devices that can be covered with different combinations of
our gateways. We observe that for our deployment, a single
gateway at best can cover 74% of devices. To cover more
than 95% of the devices, we need at least 3 well-positioned
gateways, and 5 are required for full device coverage. This
suggests that multiple gateways are required to cover IoT
devices in moderate-sized deployments like ours.

We then investigated the workload of the gateways in our
deployment, which were collecting sensor data on multiple
wireless interfaces, formatting data packets, and publishing
data to a cloud time-series database. We measured the average
CPU usage of our gateways for 60 days and the results are
shown in Figure 3. We noticed that most gateways are lightly
loaded and spend around 80% of their CPU time idle, with
the exception of Gateway 1 which is fetching additional data
streams from four different web APIs. This suggests that IoT
gateways have underutilized computational power.

These insights indicate the availability of multiple underuti-
lized gateways in IoT deployments, which could be leveraged
for edge computing.

III. RELATED WORK

Collaborating IoT Gateways: Clemente et al. use a mesh
network of gateways to cooperate and provide services to
each other [11]. Although similar in their focus on IoT
gateways and inter-gateway cooperation, they do not describe
the interface between devices and the platform, or applications
and devices, which are key components of our design. Ooi
et al. present an architecture in which gateways coordinate to
provide additional routes from devices to the cloud to improve
reliability [12]. This leverages multiple gateways and uses a
similar gateway discovery mechanism, but applications are all
executed on the cloud, and gateways only cooperate to reliably
deliver data to the cloud. In contrast, NexusEdge utilizes
gateway cooperation to execute applications and facilitate
device interaction, without any cloud support.
Comparison with other Edge Computing Platforms: Cloud
platforms provide edge computing solutions such as AWS IoT
Greengrass [10] and Azure IoT Edge [13] to execute edge
applications. We identify four shortcomings of these platforms.
First, they assume a rather simple centralized architecture in
which all device data is available at a central edge node and
applications execute only on this node. Second, there is no
access control of device data, exposing all available data to
all applications. Third, they require a cloud connection for
configuration and application deployment, restricting use cases

with unreliable Internet connectivity. Finally, deploying an
application that interacts with even tens of devices require
substantial configuration, making it intractable at scale [14].
Our work, in contrast, avoids requiring a centralized node,
enforces access control by restricting the data applications
have access to, operates without Internet connectivity, and
provides convenient abstractions for setting up gateways and
devices to reduce development burden.
Handling Device Heterogeneity: IoT devices come with a
wide range of wireless radios, network protocols, and data
formats, which complicate application development. SemI-
oTic [15] maps semantic user commands to device ac-
tions by abstracting the underlying device heterogeneity with
a DeX API that provides support for protocols including
CoAP, MQTT, and XMPP. However, this excludes resource-
constrained devices which cannot support these application
protocols. TinyLink 2.0 [14] is a programming language for
IoT which automatically generates programs and configuration
for the cloud, device, and mobile layers. However, they require
devices to be programmable to support specific functions
which is not always feasible, and is difficult to scale as the
device API varies based on the underlying device. Instead,
NexusEdge does not assume devices to be programmable, and
supports modules to interact with all types of devices.

Middleware for IoT: There are some prior works on IoT
middleware which address challenges such as heterogene-
ity and resource sharing. ThingsJS [16] can schedule IoT
applications on heterogeneous edge hardware. They assume
that sensors and actuators can run Javascript code to support
device interaction for applications, which excludes low-power
and energy-harvesting devices. The middleware also require
developers to create and maintain MQTT topics for interacting
with devices. Instead, NexusEdge supports software modules
on gateways to interact with devices, and reduces developer
burden by means of simple APIs to get data streams from
devices. The Hive middleware [17] decouples applications,
sensors, and processors to maximize resource utilization at
the edge. But they do not support actuator devices, is not
resilient to gateway failures, and their application scheduling
is optimized to reduce energy consumption which may not
be relevant for wall-powered edge gateways. Our middleware
supports both actuators and sensors, can migrate applications
or provide alternative data streams if gateways fail, and
schedules applications based on device data locality to reduce
network traffic and minimize application latency.

IV. MOTIVATING APPLICATIONS

To design our edge computing platform and to set the scope
of our work, we first categorize IoT applications based on
four features, namely execution model, compute requirements,
storage requirements, and lifecycle.

We focus on IoT applications that would traditionally
execute in the cloud, and explore how they would either
run on an edge node, or offload tasks to the edge node.
Applications can have low, moderate, or high compute require-
ments. Gateways (typically single-board computers like the

3

Distinguishing Features Other Features

Application Type Execution Storage Compute Lifecycle Latency Distributed

Simple IFTTT in situ low low indefinite 10ms no

Sense and actuate in situ low moderate indefinite 100ms no

Machine learning in situ moderate moderate indefinite 10ms no

Inherently distributed in situ low moderate indefinite 100ms yes

Compute-intensive offloaded high high short 10ms no

Table I: NexusEdge can support applications which operate in
situ on gateways, has moderate storage and compute, and is
long running (supported applications types are marked green).

Raspberry Pi) cannot provide high compute because of CPU,
GPU, and memory constraints. So we focus on low compute
complexity apps, and leave applications with high compute
requirements such as live video analytics [18], and augmented
reality [19] to edge server machines. Applications may require
low, moderate, or high data storage requirements. Since current
gateways offer only moderate amounts of storage, applications
that require long term storage like historical data analysis and
visualization [20] would be a better fit for server machines
or the cloud. However, current gateways support flash storage
up to hundreds of gigabytes [21], making them suitable for
low and moderate storage applications. Applications can either
execute for a short duration or run indefinitely. Typically
IoT applications are long-running, and we focus on those.
Applications supported by our platform are categorized into
four types based on these characteristics in Table I.

Simple if-this-then-that (IFTTT) applications. These type
of applications process data from a few sensors, observe
some event, and actuate devices. They can operate in situ, on
streaming data with limited to no storage requirements, and
with low compute requirements, but require low latency. For
example, an app that controls the window blinds based on the
time or weather [22], or one that controls the lights when a
smart door lock is unlocked [23].

Sense and act in large-scale IoT deployments. These appli-
cations use tens or hundreds of sensors and actuators and re-
quire multiple gateways to interact with devices. They can op-
erate in situ, have limited to no storage requirements, moderate
compute requirements, and usually don’t require low latency.
Examples include an application which performs condition-
dependent agricultural irrigation using multiple sprinklers and
soil moisture level sensors [24], [25], and an app that performs
building-level energy forecasting with power-meter data and
room-level occupancy data in a building [26], [27].

Machine Learning at the Edge. Recent advances in ma-
chine learning techniques have enabled fast predictions on
constrained hardware without compromising on accuracy [28],
[29], [30], [31], [32]. Examples of machine learning applica-
tions for IoT include fall detection of elderly patients [33],
real-time object detection [34], and greenhouse temperature
forecasting [35]. Such applications operate in situ, require low
to moderate amounts of storage to store sensor data, have
moderate compute requirements, and operate at low latencies.

Inherently distributed applications. Some IoT applications

ES

D D D

Gateway

D D D

G G

data
flow

Device

(a) Centralized Edge Server
Architecture

D D D D D D

G G

reqmt.
based

data flow

control
flow

(b) Decentralized Gateway
Architecture

Figure 4: Our work proposes shifting from a centralized server
based architecture to a decentralized network of gateways.

must be spatially distributed and cannot run in a centralized
manner. For example, SeamBlue [36] provides cellular-like
handover functionality to BLE devices, and must run on
spatially distributed gateways to transfer BLE connection state
as the BLE device moves throughout a space. Similarly, IoT
services for wireless devices including time updates [37],
firmware updates [38], and fault detection heartbeat mes-
sages [39] require gateways near devices that can provide those
services. These applications operate in situ but span multiple
gateways, with limited to no storage requirements, moderate
compute, and usually do not have low latency requirements.

V. SYSTEM DESIGN

We first describe the architecture we chose for our gateway-
based edge computing platform, and the rationale behind
it. We then describe the design of a system to realize this
architecture as well as insufficient alternatives.

A. Architectures for Edge Computing

Building on the success of cloud computing, current edge
computing implementations use an architecture that largely
tries to mimic cloud abstractions but runs the computation
on edge servers. This centralized architecture is described
in Figure 4a. AWS IoT Greengrass [10] takes this approach
where the cloud sends applications to an edge server. This
server interacts with all devices through gateways and executes
all local applications. Just as serverless computing exploits
small, short-lived pockets of unused cloud compute, Green-
grass enables small lambda functions to leverage the capability
of the edge server machine.

While conceptually attractive, mapping the centralized cloud
architecture to the edge has several drawbacks. First, scaling
up compute capabilities can be difficult, expensive (i.e. buying
and installing a new server) [40], [41], or unsupported. Second,
all data streams are centralized, incurring network traffic over-
head [42]. Third, to move applications from the cloud to the
edge, devices must use a standard protocol like MQTT [10],
which either excludes emerging resource constrained devices
or necessitates numerous gateways. Even resource optimized
protocols like CoAP [43] and CBOR [44] can be difficult to
map to protocols like BLE, and standardization and agreement
has also remained elusive.

Instead, our proposed architecture (Figure 4b) observes
that as gateways can execute applications, the edge server

4

(a) Platform Deployment

Hardware

Wireless Protocol

Device Drivers

Gateway Coordination

Application Deployment

Device Data Representation

IoT Programming Environment

Application Logic

Ap
pl

ica
tio

n
La

ye
r

Ga
te

w
ay

 La
ye

r
De

vi
ce

 La
ye

r

Data Stream Routing

(b) IoT Stack

Figure 5: NexusEdge platform across a floor of a building, and
layers of the IoT stack for edge computing. We focus on the
highlighted gateway layers, while ensuring that developments
in other layers are compatible with the platform.

is largely redundant (for the set of applications that we
enumerated in Section IV). Removing the server simplifies
deployments and re-uses gateway hardware that is commonly
already deployed. We use a fully decentralized network of
gateways, which also eliminates a central point of failure.
Additionally, gateways coordinate with each other to provide
intelligent optimizations in data stream routing, i.e., forward-
ing data streams only if they are required by applications. This
approach does incur overhead costs related to setup, consensus,
and organization among gateways. However, this is mostly
one-time, and does not affect the critical path of applications
(i.e. the time taken for sensing, processing, and actuating).

B. Design Goals

To realize the selected decentralized architecture and eval-
uate potential design alternatives, we first describe the goals
necessary for a successful design. G1: Manage heterogeneity.
The Internet of Things is ripe with heterogeneity, encompass-
ing different hardware platforms, data formats, communication
protocols, operating modes, energy sources, and mobility pat-
terns. Further, gateways themselves can be attached to different
networks (e.g. WiFi vs. 4G). A successful design should cope
with this heterogeneity. G2: Support applications. Ultimately
the goal of any edge platform is to enable applications to
leverage the available data streams. The design should provide
useful APIs and abstractions for applications while reduc-
ing complexity for developers. G3: Minimize configuration
overhead. In small deployments the configuration required to
add a new device or gateway is inconsequential, however,
at scale per-device configuration is laborious. A design that
simplifies this enables edge computing systems to be more
widely deployed. G4: Simplify network management. Any
deployment will require management over time, and a design
that aids with this management is preferable to one that does
not. G5: Provide resiliency. As gateways are typically not as
robust as server-class machines, the design should still provide
resiliency for applications and data streams.

C. Design Overview

NexusEdge uses multiple gateways to provide connectivity
for IoT devices deployed throughout a space, as shown in

Figure 5a. Each gateway is connected to one or more IoT
devices. The gateways automatically discover each other to
form the gateway platform, even if the gateways are connected
to different backhaul networks. Once discovered, the gateways
coordinate to provide applications with the illusion that there is
a single gateway with connections to all devices. Any gateway
can execute applications, and the platform optimizes where to
execute applications locally.

The NexusEdge platform supports IoT-on-the-edge deploy-
ments, but does not address all challenges in developing
IoT systems and applications. Figure 5b provides a view of
many common IoT layers, and highlights the gateway-focused
aspects that NexusEdge addresses. Other layers are meant to
plug into the platform, and the platform’s APIs are designed to
ensure compatibility as new advancements are made in other
areas, including wireless protocols, device standardization, and
IoT programming frameworks.

D. Gateway Discovery

NexusEdge gateways must coordinate to create a cohesive
platform, and the first step is a gateway discovery process.
The simplest approach would be to expect manual discovery
where a user or network administrator explicitly configures a
new gateway and adds it to the network. This is not consistent
with G3, however, and complicates scaling the platform.

To avoid manual configuration, and since we assume the
gateways are connected to some backhaul network (although
not necessarily the wider internet), gateways could use an
established network discovery protocol, such as the Simple
Service Discovery Protocol (SSDP) [45] or IPv6’s Neigh-
bor Discovery Protocol (NDP) [46]. This fails in complex
deployments—exactly the deployments where manual config-
uration is most difficult—as gateways may not be on the same
LAN, and routers typically do not forward discovery messages.

Instead, we observe that since gateways by definition sup-
port wireless IoT devices that use common wireless proto-
cols, gateways must be distributed spatially based roughly
on the communication range of these protocols. Therefore,
we perform wireless discovery using a standard IoT wireless
protocol. Gateways send encrypted beacons and listen for other
beacons to discover nearby gateways. This allows gateways to
form networks based on their physical proximity, even if from
a LAN networking perspective they are several hops apart.

E. Unified Gateway Platform

After gateways discover each other and create a common
“gateway network”, they must coordinate to provide a cohesive
edge computing platform. Following the lead of today’s edge-
to-cloud IoT platforms like AWS IoT Greengrass [10], the
platform could take a gateway-centric view and expose each
gateway and the network topology to users, developers, and
network administrators. This would enable the administrator to
deploy applications to specific gateways and configure exactly
how gateways share data streams. Since administrators know
which applications they require and the physical deployment
environment, they may be able to help optimize the platform.

5

Device Interaction Distributed
Interaction

Application APIs Management Support
App

Deployment
Network

Management

NexusEdge Core Services

Sensor Stream Manager Device Manager App Manager

data streams control messages apps, debug streams

Link Graph GenerationDevice Handling

Handlers Controllers

control msgs network topology

Gateway Discovery Service

registration, data streams

device
info gateway info

Application
&

Management
Layer

Platform
Layer

Hardware
Layer

Apps Auxiliary
Devices

Other
NexusEdge
Gateways

IoT
Devices

Figure 6: Layered architecture of NexusEdge.

The drawback is that a real-world deployment is likely quite
complex, and it is difficult to understand the optimal place-
ment and expected wireless communication patterns between
devices and gateways. Also, this sets a high bar for using the
platform, and complicates development as applications need
to understand the deployment topology. In fact, existing edge
computing platforms aimed at smartphones require significant
overhead for edge resource discovery and usage [47], [48].

Instead, our design folds the topology complexity into the
platform, and presents the abstraction of the “single gateway
model”, as if all devices in the deployment are connected to the
same gateway. This abstraction is essential for meeting goals
G1 and G2. Developers write apps as if all data streams are
immediately available, and the platform itself chooses which
gateway to actually execute the application on and ensures
the necessary data streams are available to that gateway. The
tradeoff is increased routing and platform complexity, but as
we show in Section VII the overhead is minimal.

To enable this abstraction, we maintain a network-wide
graph data structure that encodes the topology of the gateway
network with gateways as nodes, and discovery links (Sec-
tion V-D) as edges. This “link graph” also tracks which devices
are connected to which gateways, the backhaul addresses
of each gateway, and applications that are currently running
on each gateway. All algorithms for routing data, placing
applications, and managing device mobility only need the
link graph data structure. The gateways update and propagate
changes to the link graph as the network changes over time
(e.g. if a new gateway or device is added).

F. Handling Device Heterogeneity

The key task of the gateway platform after discovery and
unification is to actually interface with the distributed IoT
devices. However, IoT devices are inherently heterogeneous,
coming from different manufacturers with different sensors,
energy sources, operating modes, form factors, data formats,
and wireless protocols. Addressing this heterogeneity requires
answering the question: between which layers of Figure 5b
should the “narrow waist” for IoT networks be put? We
explore the available options.

Unifying at the wireless hardware level (e.g. Thread [49],
ANT [50], DigiMesh [51], and Sigfox [52]) has gotten little

traction. As wireless protocols inherently contain numerous
tradeoffs, it is not clear what the one wireless standard and
data format every device should agree on. Alternatively, if
every device did conform to some networking standard, for
example IPv6 6LoWPAN, then IoT gateways could directly
support that protocol, much in the way that a WiFi access
point works. If or when such a standardization occurs, the
device driver layer in Figure 5b could be simplified and the rest
of the gateway platform would operate as described. Again,
consensus remains elusive in practice.

To avoid the overhead of full standardization, NexusEdge
could specify only the data format (e.g. requiring JSON or
protobufs). The gateways would need to support multiple
communication protocols but device data would be in a known
format with a known schema. For example, the KubeEdge [53]
platform requires a device model based on YAML for each
device configured on its platform [54], and Azure IoT sup-
ports an optional device format in JSON [55]. Since not all
devices currently share a common schema (although efforts
like One Data Model [56], Open Data Format [57], and Zigbee
Alliance’s Dotdot [58] are attempting to), gateways would
include small “converter” software modules that re-format
data from devices into its canonical format. In attempting
this design, we found it unsuitable as crafting a common data
format works well for a few types of sensors, but it became
increasingly difficult to conform to the standard format as we
added more devices to the platform.

Thus, our platform design eschews any attempt to manage
the heterogeneity, and instead embraces it, as shown in the
hardware layer of Figure 6. We only require that devices have
some identifier so we can track them on the platform, and some
general type so we can cluster them to support application
APIs. Our experience indicates these requirements enable IoT
scaling and broad interoperability. Data sent to or from devices
is treated entirely as a binary sequence with no expectations of
structure, much like the application layer data of a traditional
networking packet. Interpreting data or understanding devices
is left entirely to upper layers. This approach maximizes device
scalability by imposing the fewest requirements on devices,
and allows the design to entirely support G1. Note, however,
this design choice does not preclude using an IoT data schema
with NexusEdge, just that the platform does not enforce it. As
we show in Figure 5b, NexusEdge only provides a few layers
of the overall IoT stack, and other layers can be plugged in
to support different deployment and application objectives.

To support this device interface, the platform includes a
three-function API for managing devices. This API must be
implemented for new classes of devices.

• register(deviceId, deviceType): Informs the
platform of a new connected device with given ID and type.

• deliver(deviceId, data): Pass the specified binary
data from the device to the platform. The platform ensures
that it receives data only from registered devices.

• dispatch(deviceId, data): Pass binary data from
the platform to the specified device.

6

G. Auxiliary Devices

Without a central entity to manage the distributed network,
there is no clear interface to manage the overall platform.
To provide such an interface, the platform enables devices
including laptops and smartphones to temporarily connect to
the network. These devices connect to a neighboring gateway
using the same discovery radio as any other gateway. This is
analogous to searching for a WiFi connection from a mobile
device where the device needs to be present in a WiFi router’s
coverage area. Once a device is connected to the platform
as an auxiliary device, it can use the same internal platform
APIs to manage the platform. This includes visualizing the link
graph to study the network topology, deploying applications
on the gateway platform, monitoring which applications are
currently executing, viewing the standard logs of applications
for troubleshooting, and terminating applications.

H. Application Support

The ultimate goal of the platform is to support applications
that run locally on the edge operating on the rich sensor
data. We do not specify the exact runtime and execution
format for applications, but only specify how they interact
with the core platform. Once an application is loaded (via
an auxiliary device) to an arbitrary gateway, that gateway
uses the link graph to identify gateways with spare compute
resources, chooses a gateway which minimizes data transfer to
execute the application (i.e. it tries to choose a gateway with
the relevant sensors connected to it), loads the application on
that gateway, and finally configures the relevant gateways to
forward any relevant data streams to the executing gateway.

Due to the single gateway abstraction, developers can write
applications as though data from every device in the network
is immediately available. These applications interface with the
platform through a narrow API with four functions. This API
can be simple due to the design choice of using opaque binary
data. Additional software layers outside the scope of this work
can help with developers manage the binary data.
• receive(deviceId, callback(data)): Request

data from specific devices. Due to the event-based nature
of sensor data, data is returned as a callback.

• receiveAll(deviceType, callback(data)):
Request data from all devices of a certain type.

• send(deviceId, data): Send data to a specific de-
vice. The transmitted data is similarly treated as a binary
sequence, and could contain an actuation command.

• sendAll(deviceType, data): Send data to all de-
vices of a certain type. For example, an application can
send a new set point temperature to all thermostats.

• poll(deviceId, request, callback(data)):
Query a specific device by sending it binary request data
and expecting a response. For example, an application can
request an air quality sensor to get the latest measurements.
In addition to executing an application on a single gateway,

developers can also leverage the distributed nature of the
platform to execute the same application on multiple gateways.

The platform provides a message passing interface to let ap-
plication instances interact with each other. This is especially
useful to split and run applications at spatially close spaces,
for example, different apartments in an apartment complex, or
labs in a university building. The provided API follows.
• disseminate(tag, data): Send a message to all

other instances of the same application, with a tag to
differentiate message types.

• query(tag, query, callback(response)): Re-
trieve disseminations for a specific tag from other instances.
Similar to the data API, the events arrive as callbacks.

I. Providing Resilience

A key benefit of a distributed architecture is that the
platform can provide better resilience for applications in the
event of faults, when compared to a centralized architecture.
Gateways can fail due to power loss, gateway movement, OS
bugs, physical disturbances, or other issues. In the event of a
gateway failure, the platform ensures resiliency to meet G5.

If a gateway that was executing an application fails, the
application must be restarted on a different gateway. When
the platform receives an application to schedule, it identifies
an executor gateway to execute the application and a watcher
gateway to watch for failures on the executor gateway. The
watcher stores a copy of the application and periodically
checks the link graph to see if the executor failed, and if
so, the watcher chooses a new pair of executor and watcher
gateways for the application, restarts the application, and stops
watching. Additionally, the executor also checks for failures
for its watcher, and if the watcher fails it nominates a new
watcher for the application.

If a gateway that is collecting and forwarding data to an
application fails, then the platform identifies one or more
alternative gateways which can provide the same data streams
to the application (since devices could be sending their data
to multiple gateways). The executor gateway receives periodic
heartbeat messages from each provider gateway, and if a
provider fails, the executor uses the link graph to identify
new provider gateways for the required data streams, trying to
minimize the number of provider gateways (i.e., maximize the
number of streams from each provider) to reduce dependency.

VI. IMPLEMENTATION

The implementation is open source and is available on
GitHub1.

A. Hardware and Testbed

To prototype gateways we use Raspberry Pi 4 Model
B [2] boards which support onboard BLE and WiFi, and
we augment with an EnOcean [59] radio via USB. Any
single-board computer should be sufficient. Our testbed has
BLE and EnOcean wireless devices including temperature,
door, lighting, air quality, and occupancy sensors, as well as
Estimote beacons [60], power monitors, and smart sockets.
The gateways and devices are shown in Figure 7.

1https://github.com/uva-linklab/nexusedge

7

Figure 7: Gateways and devices in our deployment. Column-
wise, top to bottom: CO2 sensor, Occupancy sensor, Estimote
beacon, Power meter, Raspberry Pi, Light sensor, Temperature
sensor, Location beacon, Contact sensor, Smart socket.

B. Gateway Discovery using BLE

To minimize configuration overhead, gateways use their
Bluetooth Low Energy (BLE) radio to discover each other.
They send and receive discovery messages as BLE advertise-
ments, using a pre-shared key that is made available during
their initial configuration. The discovery messages contain the
IP address of a gateway’s backhaul network, and discovered
gateways use this higher bandwidth network for further com-
munication. The ubiquity of BLE in IoT gateways, its low
power draw and cost, and native support for advertisements
makes it a compelling choice for our discovery radio. Also,
since laptops and smart phones have BLE radios, they can be
auxiliary devices for management and application deployment.

C. Link Graph Network Abstraction

The link graph encapsulates knowledge about the current
network topology. Each gateway tracks its discovered neigh-
bors, connected devices, and running applications and encodes
this as a graph. Additionally, each gateway hosts a web server
which exposes this information to other gateways via well-
defined endpoints. Once a gateway learns another’s IP address,
it can query the peer gateway to retrieve the link graph and
update it with its local state. If the graph has changed, it also
notifies the peer gateway. For simplicity, we encode the link
graph as a JSON file. Other layers that rely on the link graph
information simply parse the graph to adapt to the current
network topology and structure.

D. Interfacing with Devices

NexusEdge handles device heterogeneity by not enforcing
any constraints on communication protocols or data formats. It
supports this with two module types: controllers, to communi-
cate using a specific wired/wireless technology, and handlers,
the device-specific code to communicate with devices. Each
handler plugs into a specific controller. Handlers must imple-
ment the device-facing API defined in Section V-F. Because
of a lack of standardization, each device type needs a custom
handler (as in IoT systems like openHAB [61] or Home
Assistant [62]), and users can load their custom controllers
and handlers. The intent is a fixed number of controllers per-
gateway (one for each communication channel), and device
manufacturers can provide handlers for their devices.

E. Core NexusEdge Services

To enable the NexusEdge design, each gateway runs three
background services, as shown in Figure 8. The Device Man-

Sensor Stream
Manager

Device
Manager

App
Manager

IoT Devices

Handlers Controllers

app device
reqmt all data

device data
control msgs

device data
control msgs

data

Auxiliary Devices
apps +
device reqmt

filtered
data

all data

Core Service

MQTT

App1

App2

...
AppNexusEdge

Library
Node.js / Python

runtime

App + Environment

mqtt
access Device Handling

executes on gateway

Figure 8: NexusEdge core service overview.

Figure 9: Sample NexusEdge application in Node.js to control
a sprinkler based on soil moisture levels.

ager service loads controllers and handlers, tracks registered
devices, and associates specific devices and device types with
handlers. It receives data streams from registered devices, and
publishes them to a Core Service MQTT topic for other core
services to use. The Application Manager service accepts
incoming requests to execute applications. It tracks which
applications are currently running, sets up their execution
environments, maintains log files, and processes termination
requests. The Sensor Stream Manager service ensures access
control of device data to applications. It branches data from
the Core Service topic to different applications based on their
requirements. If data is unavailable at the gateway, it requests
other gateways to send data to the app.

F. Applications on NexusEdge

The application APIs described in Section V-H support
arbitrary execution environments. In our prototype, we support
Node.js and Python based environments, to aid in asyn-
chronous programming and machine learning. We package the
APIs as a library, using MQTT for streaming data, and HTTP
for other request-based operations. The application interface
uses the device-facing interface for device interaction. An
example NexusEdge application is illustrated in Figure 9.

G. Deploying and Scheduling Applications on the Platform

We provide a tool on auxiliary devices (user laptops) for
users to deploy applications by selecting the runtime environ-
ment and the necessary sensor streams. The application is sent
to the App Manager on any NexusEdge gateway, which selects
the best gateway to execute the application. Our scheduler

8

uses a simple heuristic based on data locality to identify the
gateways that can provide the most number of required sensor
streams. The scheduler also considers the CPU and memory
usage of each gateway, and selects a gateway to promote
locality while avoiding overburdening a single gateway.

H. Containerization and Deployability of NexusEdge

Gateway devices are heterogeneous and have different hard-
ware or runtime environments with various subtle differences.
To handle this heterogeneity, we containerize our middleware
using Docker [63] to provide operating system-level virtu-
alization. This vastly improves the ease of deployment, and
abstracts out the hardware, OS, and runtime environment. The
NexusEdge Docker container is public on Docker Hub [64].

Additionally, to reduce the tedious burden of deployment
on many gateways, we utilize K3S [65], a lightweight version
of Kubernetes [66] container orchestrator built for IoT and
Edge Computing. Gateways join a cluster, and the cluster
executes a DaemonSet [67] to start the NexusEdge container
on all cluster nodes. DaemonSet ensures that NexusEdge starts
automatically on all new gateways.

VII. EVALUATION

In this section, we first evaluate certain microbenchmarks
for our platform. Additionally, we focus on a case study to
showcase our platform’s utility for real world applications.

A. Microbenchmarks

We first compare the architecture of NexusEdge with a
centralized edge server based architecture. We validate re-
sults from this experiment by comparing our platform to a
real-world edge computing platform. We then evaluate the
resiliency of our middleware to gateway failures. Finally,
we compare the decentralization overhead for application
deployment on NexusEdge to a centralized edge server.

1) Comparison with a Centralized Edge Server Architec-
ture: To evaluate our hypothesis that a decentralized archi-
tecture adopted by NexusEdge fares better than a centralized
architecture, we conduct two studies. First, we measure the
CPU usage, memory usage, and the network traffic as the
number of connected IoT devices increases. Next, we measure
the CPU usage, memory usage, network traffic, and the
application latency as the number of applications increases.
We use five different Raspberry Pi devices and use them as
Edge Servers and Gateways, and generate synthetic data to
simulate a deployment of sensors.

Evaluation Setup: We setup a test deployment for two
architectures: 1) Centralized Edge Server Architecture (ES):
A single Edge Server and 4 gateways. All gateways forward
data to the server. Applications are executed only on the server.

2) Decentralized NexusEdge Architecture (NE): 5 gateways
operating without a server. Gateways coordinate to decide
where to execute apps, and route device streams among them.

We assumed this deployment to be within the floor of a
smart building, and simulated data for five classes of devices.
We considered a total of 125 devices with different payload

sizes, and streaming rates. We simulated 10 smart meters at
500 bytes/s, 50 temperature sensors at 100 bytes every 5 min.,
50 occupancy sensors at 100 bytes every 5 min., 10 CO2
sensors at 100 bytes every 15 min., and 5 IP cameras at
100 KB/s assuming 720p at 15 fps [68].

i) Evaluation of Device Scaling: For this experiment, the
125 devices are equally distributed among each edge server
or gateway, i.e. each hosting 25 devices (we assume devices
over a WiFi network, so even edge servers can support them).
The measurements are illustrated in Figure 10. These are
the key takeaways: 1) Figure 10a and Figure 10b show that
resource usages are relatively higher for centralized archi-
tecture, because of getting flooded with device data. This
indicates that a centralized architecture could be a bad pick
if there are lots of high streaming devices. In contrast, the
decentralized architecture of NexusEdge fares better in terms
of resource utilization. 2) Figure 10c shows that NexusEdge
has substantially lower network traffic compared to the central
server, as NexusEdge gateways only stream data over the
network when applications request for it.

ii) Evaluation of Application Scaling: We developed five
different applications for the platform, each with its own
device requirements, and deploy them in this order: 1) Power
meter anomaly detection: Monitors power meter data from 10
smart meters, and sends an alert for anomalous power spikes.
2) Object detection in secure areas of building: Obtains images
from five IP cameras, and uses an image classification model
based on MobileNetV2 [69] to check for suspicious objects.
3) User comfort monitor: Collects data from 50 temperature
sensors from different areas and alerts for overheating or over-
cooling. 4) Air quality monitoring: Monitors ten CO2 sensors
and alerts for dangerous ppm levels. 5) Room scheduling: Uses
data from all occupancy sensors and user calendars to display
available conference rooms.

NexusEdge schedules applications on gateways based on
data locality, i.e. how devices are distributed among gateways.
So we considered three different device distribution schemes
in this experiment. 1) Colocated: All devices of a class are
exclusively available on one node (we use node to refer to
an edge server or a gateway). Specifically, all five IP cameras
on one node, all ten CO2 sensors on a second node, etc. 2)
Distributed: Devices are equally distributed on all five nodes.
Specifically, each node has 1 (of the 5) IP camera, 10 (of the
50) occupancy sensors, etc. 3) Random: Devices are randomly
distributed on the five nodes.

For each of these schemes, we deployed the applications
successively, and measured the average CPU utilization, mem-
ory usage, network traffic, and the application latency (time it
takes for an application to receive a sensor packet after it was
created). The application latency does not include the machine
learning inference time for the object detection application,
with our intent being to measure how fast an application gets
to consume data. The measurements are shown in Figure 11.

These are the key findings: 1) Average memory usage of ES
is roughly 90% higher than NE, across device distributions.
This can be attributed to having a single node to execute ap-

9

0 25 50 75 100 125
Number of Devices

1.5

2.0

2.5

3.0
Av

er
ag

e
CP

U
Ut

iliz
at

io
n

(%
)

Edge Server
NexusEdge

(a) CPU Utilization

0 25 50 75 100 125
Number of Devices

150

155

160

165

170

Av
er

ag
e

M
em

or
y

Us
ag

e
(M

B)

Edge Server
NexusEdge

(b) Memory Usage

0 25 50 75 100 125
Number of Devices

0

100

200

300

400

Ne
tw

or
k

Tr
af

fic
 (K

B/
s) Edge Server

NexusEdge

(c) Network Traffic

Figure 10: Illustrates the CPU usage, memory usage, and network traffic for the device scalability study.

0 1 2 3 4 5
Number of Apps

0

1

2

3

4

5

6

7

8

Av
er

ag
e

CP
U

Ut
iliz

at
io

n
(%

)

NexusEdge (colocated)
NexusEdge (random)
NexusEdge (distributed)

Edge Server (colocated)
Edge Server (random)
Edge Server (distributed)

(a) CPU Utilization

0 1 2 3 4 5
Number of Apps

0

100

200

300

400

500

600
Av

er
ag

e
M

em
or

y
Us

ag
e

(M
B)

NexusEdge (colocated)
NexusEdge (random)
NexusEdge (distributed)

Edge Server (colocated)
Edge Server (random)
Edge Server (distributed)

(b) Memory Usage

0 1 2 3 4 5
Number of Apps

0

100

200

300

400

500

600

700

800

Ne
tw

or
k

Tr
af

fic
 (K

B/
s)

NexusEdge (colocated)
NexusEdge (random)
NexusEdge (distributed)

Edge Server (colocated)
Edge Server (random)
Edge Server (distributed)

(c) Network Traffic
Colocated Random Distributed

0

50

100

150

200

250

Ap
pl

ica
tio

n
La

te
nc

y
(m

s)

NexusEdge Edge Server

(d) Application Latency

Figure 11: Measurements for application scalability with varying device distribution schemes (colocated, distributed, random).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Network Traffic (KB/s)

0
10
20
30
40
50
60
70
80
90

100

Cu
m

ul
at

iv
e

Pe
rc

en
ta

ge
 (%

)

NexusEdge
AWS IoT
Greengrass

Figure 12: CDF for network
traffic

1 10 100 1000 10000
Sensor Data Reception Latency (ms)

0
10
20
30
40
50
60
70
80
90

100

Cu
m

ul
at

iv
e

Pe
rc

en
ta

ge
 (%

)

NexusEdge
AWS IoT Greengrass

Figure 13: CDF for applica-
tion latency

plications. We acknowledge that since there are more gateways
used in NE as compared to ES (1 server), the total memory
usage for NE would be higher than ES (1103 MB for NE, com-
pared to 404 MB for ES, for the random device distribution).
But we note however that gateways are still needed for the
centralized approach (packet forwarding), and their memory
use is not considered. 2) ES suffers from a higher network traf-
fic. NE deploys applications based on the locality of devices
on gateways, thereby reducing additional network traffic as
shown in Figure 11. However, if devices are equally distributed
among gateways, applications end up needing data from all
gateways, effectively performing similar to the centralized ES
architecture. 3) NexusEdge offers better application latency for
the colocated and random device distributions, but is slightly
higher for the distributed case (Figure 11). 4) The CPU and
memory usages of gateways in NexusEdge are very low, at
3% and 250 MB (with 4 GB available), even with five apps
running. This shows that gateways can indeed support edge
applications, and also scales up well.

Overall, both studies highlight the benefits of NexusEdge
with substantial improvement in network load, better resource
usage, especially when there is spatial locality in data.

2) Comparison with AWS IoT Greengrass: To validate
our results from Section VII-A1, we compare our platform

with AWS IoT Greengrass. Greengrass has an architecture
that is similar to the centralized edge computing architecture
(Figure 4a). We evaluate with our testbed and an application
for monitoring users’ thermal comfort.

Evaluation Setup: This application obtains data from 70
actual sensors from our deployment (14 occupancy sensors
and 56 temperature sensors). The occupancy sensors only send
data when they detect motion, and the temperature sensors
send data every 5 minutes. We partition the space into 14
regions based on the location of the occupancy sensors, and an
app analyzes the average temperature of each region. The app
periodically checks if the temperatures of regions are within an
acceptable comfort range, and also reports energy wastage for
unoccupied and overcooled regions. We built the application
for our platform and for the Greengrass platform.

Evaluation Results: We let the application run for 30 min-
utes, and measured network traffic, and time taken for sensor
data to reach the app. We repeat this for 10 runs and plot
CDFs for the measurements, as shown in Figure 12 and
Figure 13. The mean network traffic for our platform is
3.46 KB/s, 2.5x lower than the 8.48 KB/s of Greengrass.
The application latency for Greengrass is 142.74 ms and
13.83 ms for NexusEdge, which is 10x faster. This is because
Greengrass requires one gateway to be configured as the
“Greengrass Core” which is the only one that can run apps.
This limits application optimizations like shifting apps closer
to device streams. We take advantage of this to reduce the
latency and network traffic.

The results shown here are for a single app, and in central-
ized platforms it will exacerbate when there are more appli-
cations, devices, or devices with higher data rates. Increased
network traffic would also result in applications that are less
responsive. This experiment also highlights the benefits of
executing applications at the gateway layer, one hop closer to

10

the devices, rather than at a central point like an edge server.
3) Resiliency to Gateway Failures: Since gateways are not

as sturdy as edge servers, they can be subject to faults such as
unexpected failures, deployment changes, etc. The NexusEdge
middleware ensures application resiliency in two scenarios: (a)
executor failure: if the executing gateway fails, the application
is migrated to a different gateway, and (b) provider failure:
if a gateway providing data streams to an application fails,
the middleware reinstates data streams from other gateways if
possible. For both scenarios, we use a periodic timer of 60
seconds to detect the failure, which is configurable. As the
time taken to detect a failure depends on this period, we skip
measuring the failure detection and instead evaluate the time
it takes to recover once a failure is detected. We describe our
evaluation setup and results below.

(a) Executor Failure: We define migration time as the time
taken to restart the application on a different gateway, when the
executor fails. This includes time for rescheduling the appli-
cation, generating the link graph, dispatching the application
to the new executor, and setting up data streams from provider
gateways. Since the link graph generation time is dependent on
the number of gateways and devices, we measure the migration
time with varying number of gateways and devices.

We start with 2 gateways and 40 devices and go up to
5 gateways with 100 devices, with each gateway hosting
20 devices. We generate synthetic data for devices, with
each device connected to exactly one gateway. We execute
an application on one of the gateways which receives data
streams from all devices. We then fail the executor gateway
and measure the time taken to migrate the application once
the failure is detected. We repeat this 10 times and plot the
average migration time as shown in Figure 14a. Migrating
an application that requires data from 100 devices distributed
among 5 gateways only takes around 1.2 s, and the migration
time follows a linear trend as gateways and devices increase.

(b) Provider Failure: If a gateway that was providing data
streams fails, and there are other failover gateway(s) which
can provide the same data streams, the middleware requests the
failover gateway(s) for the data. We define the recovery time as
the time it takes to complete these requests and reinstate data
streams. This includes generating the link graph, identifying
failover gateways, and requesting them for data.

Similar to the previous experiment, we varied the number of
devices and gateways, but from 3 gateways and 60 devices to
5 gateways and 100 devices. We excluded the 2 gateways case,
since there is no failover gateway when one of the gateway
fails. For 4 gateways, after a providing gateway fails, there can
be 1 or 2 failover gateways that can provide the streams. As
the number of failover gateways increase, the recovery time
slightly increases as more gateways need to be requested to
forward data streams. We distributed devices among gateways
so that there is some redundant providers and thus a scope to
recover when the original provider gateway fails.

We induced failure for one of the provider gateways, and
measured the average recovery time for 10 runs as shown
in Figure 14b. Since reinstating data streams doesn’t require

migrating the application, the recovery time is faster than
migration time, taking only 712.3 ms even with 5 gateways,
100 devices while using 3 failover gateways.

Both these experiments show that NexusEdge can recover
quickly from gateway failures, by migrating applications or
reinstating data streams from alternative providers. It high-
lights the significance of our middleware in building a cohesive
edge platform with gateways, that can operate with resiliency
without suffering from a single point of failure.

4) Decentralization Overhead: Shifting from an edge
server to decentralized gateways adds some overhead for
gateway coordination, and we evaluate if this overhead is rea-
sonable. We compare the time taken to deploy an application
on a centralized edge server and on NexusEdge. For the edge
server, scheduling is not needed as the application executes on
the same machine. Also, since all device streams are available
on the server, deploying the application only includes sending
it to the server, and to subscribe to the MQTT broker providing
all streams. However, for NexusEdge, deploying an application
involves sending it to a scheduling gateway, generating the link
graph, scheduling the application, dispatching the application
to an executing gateway, setting up streams from provider
gateways, and subscribing to all data streams.

We deploy an application which receives data from multiple
devices (virtual sensors sending a small payload every 5s), and
measure the deployment time at varying number of devices.
For centralized, the application always executes on the server
and we vary the number of devices from 20 to 100, at steps of
20. For decentralized, we vary the numbers of gateways and
devices starting from 1 gateway with 20 devices and going
up to 5 gateways with 100 devices. We also consider three
device distribution schemes i.e., how devices are distributed
among the gateways: colocated (best case), random (average
case), and fully distributed (worst case), as the distribution
affects the latency (Section VII-A1). The measurements from
our study are shown in Figure 14c.

As expected, the deployment time for centralized is lower
than decentralized. But even with 5 gateways, 100 devices,
and the worst case device distribution, the deployment time for
NexusEdge is 1110.4ms compared to 690.1ms for centralized,
with an overhead of 420ms. This overhead is reasonable
since deployment for long running applications happens in-
frequently. Also, applications in centralized require additional
time to filter out data streams, which is handled for NexusEdge
and included in its deployment time.

B. Case Study: Federated Learning without Cloud Support

We describe an illustrative example application on
NexusEdge to predict turn on times of an appliance based on
its power data. Accuracy of the application can be improved
by training with data of the same appliance type from different
sources. For instance, usage data of dryers from multiple users
can be used, but users may not be comfortable sharing such
data. So we modelled this as a federated learning problem.

Federated ML is typically used by mobile devices to learn a
shared prediction model. Devices keep their data private, but

11

2 gw
60 devices

3 gw
60 devices

4 gw
80 devices

5 gw
100 devices

0

200

400

600

800

1000

1200
Av

er
ag

e
M

ig
ra

tio
n

Ti
m

e
(m

s)

(a) Resilience to Executor Failures

3 gw
60 devices

4 gw
80 devices

5 gw
100 devices

0

100

200

300

400

500

600

700

800

Av
er

ag
e

Re
co

ve
ry

 T
im

e
(m

s)

1 failover gw
2 failover gw
3 failover gw

(b) Resilience to Provider Failures

1 gw
2 gw

3 gw
4 gw 5 gw

(c) Decentralization Overhead

Figure 14: a) and b) illustrate the application migration and recovery time respectively for the middleware when gateways fail.
c) illustrates the application deployment time on NexusEdge compared to a centralized edge server.

can still run predictions, and retrain their models. Changes
from all local models are sent to the cloud to improve the
shared model, which is then synchronized back. We demon-
strate how our platform can natively run federated ML on
gateway devices without the need of a cloud.

1) Modeling Federated ML on NexusEdge: As described
in Section V-H, NexusEdge allows an application to be dis-
tributed on different gateways. Each app instance uses the
receive function to receive power meter data from the
gateway it runs on. The apps are initialized with the global
model, and retrain their models whenever they get substantial
amount of data. Over time, when the data received by an app
crosses a threshold, it uses the query function to request
model parameters from all other apps. It then performs a
federation step by taking a weighted average of model weights
to generate an updated model. It uses the disseminate
function to share this updated model to all other apps.

Measuring Overhead and Performance: The query and dis-
seminate calls only amount to 25 LOC. The model parameter
exchanges were each of 8 KB. One federation step required
32 KB of data transfer between the apps. For the federated
learning model, we used a neural network with two hidden
layers and used all time-based features. We simulated appli-
ance level power data from the UK-DALE dataset [70] (around
900,000 data points). The model’s accuracy increased from
73.39% to 78.93% after one round of federated learning. To
measure the effectiveness of the distributed approach, we also
compared this with a non-federated baseline (which has access
to all data) which reported an accuracy of 79.93%.

The accuracy numbers do not mean much in the context of
our platform. The key takeaway is that NexusEdge can ease the
burden in developing complex IoT applications by providing
useful abstractions, including a distributed interaction API.

VIII. DISCUSSION

We list interesting research problems that can be studied
with our platform, and also study limitations of our work.

User-Driven Privacy Enforcement in IoT: Device data col-
lected from environments directly affect the privacy of people
in those spaces. However, users have no way of controlling
which applications can access their data. NexusEdge’s access
control can be extended to allow users to set custom privacy

policies, for example, permitting access to their occupancy
data only during work hours.

Matching Applications with Gateway Capabilities: Gate-
ways are becoming increasingly diverse, with powerful
GPUs [71], multi-protocol support [72], and custom acceler-
ators [73]. But, this diversity is not considered by platforms
when mapping apps onto the edge. A new scheduler can match
app requirements to gateway capabilities, for example, running
a machine learning app on a gateway with GPUs, even if the
gateway is not close to the sensors.

Security Challenges: Security is a major consideration for
edge computing systems. We use a limited threat model in
this work with preliminary security provisions. To enhance
security, we need to explore different threat models for the
platform, apps, devices, auxiliary devices, and data. Certain
interfaces including device registration, gateway discovery, and
auxiliary device connections, could support security features.

IX. CONCLUSION

Edge computing platforms generally consider the IoT gate-
way layer an implementation detail, yet how data flows from
devices to edge resources affects performance, robustness, and
scalability. Further, this layer presents significant untapped
potential for addressing key challenges in IoT deployments: la-
tency, reliability, and privacy. NexusEdge utilizes a distributed
architecture for the gateway layer, and provides a concrete
example of the abstractions, design decisions, and software
components required to realize it. Through microbenchmarks,
a real-world deployment, and a case study, we demonstrate
how NexusEdge increases performance compared to a central-
ized architecture. However, NexusEdge still remains one new
component of an otherwise complex and nuanced IoT com-
puting platform, and we show how NexusEdge is extensible to
support related techniques that address other IoT challenges.
As the IoT is deployed for new use cases and managing scale
is a growing burden, a decentralized gateway layer promotes
scalability while leveraging hardware that is already deployed.

ACKNOWLEDGMENT

This work was supported by the University of Virginia
Strategic Investment Fund under grant SIF128, and by the
National Science Foundation under award CNS-2144940.

12

REFERENCES

[1] L. Dignan. (2019) Iot devices to generate 79.4zb of data in
2025, says idc. [Online]. Available: https://www.zdnet.com/article/
iot-devices-to-generate-79-4zb-of-data-in-2025-says-idc/

[2] T. R. P. Foundation. (2021) Raspberry pi 4. [Online]. Available:
https://www.raspberrypi.org/products/raspberry-pi-4-model-b

[3] P. Bellavista and A. Zanni, “Feasibility of fog computing deployment
based on docker containerization over raspberrypi,” in Proceedings of the
18th international conference on distributed computing and networking,
2017, pp. 1–10.

[4] F. Jalali, A. Vishwanath, J. De Hoog, and F. Suits, “Interconnecting fog
computing and microgrids for greening iot,” in 2016 IEEE Innovative
Smart Grid Technologies-Asia (ISGT-Asia). IEEE, 2016, pp. 693–698.

[5] J. Canedo and A. Skjellum, “Using machine learning to secure iot
systems,” in 2016 14th annual conference on privacy, security and trust
(PST). IEEE, 2016, pp. 219–222.

[6] S. Cirani, G. Ferrari, N. Iotti, and M. Picone, “The iot hub: A fog node
for seamless management of heterogeneous connected smart objects,”
in 2015 12th Annual IEEE International Conference on Sensing, Com-
munication, and Networking-Workshops (SECON Workshops). IEEE,
2015, pp. 1–6.

[7] A. W. Services. (2020) Developer guide - aws iot greengrass.
[Online]. Available: https://docs.aws.amazon.com/greengrass/latest/
developerguide/setup-filter.rpi.html

[8] Microsoft. (2020) Developer guide - azure iot hub.
[Online]. Available: https://docs.microsoft.com/en-us/azure/iot-hub/
iot-hub-raspberry-pi-kit-node-get-started

[9] L. Zhou and H. Guo, “Anomaly detection methods for iiot networks,”
in 2018 IEEE International Conference on Service Operations and
Logistics, and Informatics (SOLI). IEEE, 2018, pp. 214–219.

[10] A. W. Services. (2020) Aws iot greengrass. [Online]. Available:
https://aws.amazon.com/greengrass/

[11] J. Clemente, M. Valero, J. Mohammadpour, X. Li, and W. Song, “Fog
computing middleware for distributed cooperative data analytics,” in
2017 IEEE Fog World Congress (FWC). IEEE, 2017, pp. 1–6.

[12] B.-Y. Ooi, Z.-W. Kong, W.-K. Lee, S.-Y. Liew, and S. Shirmohammadi,
“A collaborative iot-gateway architecture for reliable and cost effec-
tive measurements,” IEEE Instrumentation & Measurement Magazine,
vol. 22, no. 6, pp. 11–17, 2019.

[13] Microsoft. (2020) Azure iot edge. [Online]. Available: https://azure.
microsoft.com/en-us/services/iot-edge/

[14] G. Guan, B. Li, Y. Gao, Y. Zhang, J. Bu, and W. Dong, “Tinylink 2.0:
integrating device, cloud, and client development for iot applications,”
in Proceedings of the 26th Annual International Conference on Mobile
Computing and Networking, 2020, pp. 1–13.

[15] R. Yus, G. Bouloukakis, S. Mehrotra, and N. Venkatasubramanian,
“Abstracting interactions with iot devices towards a semantic vision of
smart spaces,” in Proceedings of the 6th ACM International Conference
on Systems for Energy-Efficient Buildings, Cities, and Transportation,
2019, pp. 91–100.

[16] J. Gascon-Samson, M. Rafiuzzaman, and K. Pattabiraman, “Thingsjs:
Towards a flexible and self-adaptable middleware for dynamic and
heterogeneous iot environments,” in Proceedings of the 4th Workshop
on Middleware and Applications for the Internet of Things, 2017, pp.
11–16.

[17] A. Essameldin, M. N. Hoque, and K. A. Harras, “More than the sum of
its things: Resource sharing across iots at the edge,” in 2020 IEEE/ACM
Symposium on Edge Computing (SEC). IEEE, 2020, pp. 206–219.

[18] G. Ananthanarayanan, P. Bahl, P. Bodı́k, K. Chintalapudi, M. Philipose,
L. Ravindranath, and S. Sinha, “Real-time video analytics: The killer
app for edge computing,” computer, vol. 50, no. 10, pp. 58–67, 2017.

[19] H. Wang and J. Xie, “You can enjoy augmented reality while running
around: An edge-based mobile ar system,” in 2021 IEEE/ACM Sympo-
sium on Edge Computing (SEC). IEEE, 2021, pp. 381–385.

[20] G. Tricomi, Z. Benomar, F. Aragona, G. Merlino, F. Longo, and
A. Puliafito, “A nodered-based dashboard to deploy pipelines on top
of iot infrastructure,” in 2020 IEEE International Conference on Smart
Computing (SMARTCOMP). IEEE, 2020, pp. 122–129.

[21] R. Tips. (2022) What’s the best micro sd card for raspberry
pi? (benchmark). [Online]. Available: https://raspberrytips.com/
best-sd-card-raspberry-pi/

[22] IFTTT. (2021) Activate a powerview shade scene when the temperature
changes. [Online]. Available: https://ifttt.com/applets/QxHysZRg

[23] I. Hue and August. (2021) Automatically turn on your hue lights
on when you unlock your august smart lock. [Online]. Available:
https://ifttt.com/applets/mqs4CUv9

[24] D. A. Winkler and A. E. Cerpa, “Wisdom: watering intelligently at scale
with distributed optimization and modeling,” in Proceedings of the 17th
Conference on Embedded Networked Sensor Systems, 2019, pp. 219–
231.

[25] T. Meyer and G. Hancke, “Design of a smart sprinkler system,” in
TENCON 2015-2015 IEEE Region 10 Conference. IEEE, 2015, pp.
1–6.

[26] G. R. Newsham and B. J. Birt, “Building-level occupancy data to
improve arima-based electricity use forecasts,” in Proceedings of the
2nd ACM workshop on embedded sensing systems for energy-efficiency
in building, 2010, pp. 13–18.

[27] Y. Tang, S. Zhao, C.-W. Ten, K. Zhang, and T. Logenthiran, “Estab-
lishment of enhanced load modeling by correlating with occupancy
information,” IEEE Transactions on Smart Grid, vol. 11, no. 2, pp.
1702–1713, 2019.

[28] A. Kumar, S. Goyal, and M. Varma, “Resource-efficient machine learn-
ing in 2 kb ram for the internet of things,” in International Conference
on Machine Learning. PMLR, 2017, pp. 1935–1944.

[29] S. S. Ogden and T. Guo, “{MODI}: Mobile deep inference made
efficient by edge computing,” in USENIX Workshop on Hot Topics in
Edge Computing (HotEdge 18), 2018.

[30] T.-H. Yang, H.-Y. Cheng, C.-L. Yang, I.-C. Tseng, H.-W. Hu, H.-S.
Chang, and H.-P. Li, “Sparse reram engine: Joint exploration of activa-
tion and weight sparsity in compressed neural networks,” in Proceedings
of the 46th International Symposium on Computer Architecture, 2019,
pp. 236–249.

[31] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[32] C. Gupta, A. S. Suggala, A. Goyal, H. V. Simhadri, B. Paranjape,
A. Kumar, S. Goyal, R. Udupa, M. Varma, and P. Jain, “Protonn: Com-
pressed and accurate knn for resource-scarce devices,” in International
Conference on Machine Learning. PMLR, 2017, pp. 1331–1340.

[33] C. C.-H. Hsu, M. Y.-C. Wang, H. C. Shen, R. H.-C. Chiang, and C. H.
Wen, “Fallcare+: An iot surveillance system for fall detection,” in 2017
International conference on applied system innovation (ICASI). IEEE,
2017, pp. 921–922.

[34] S. Tuli, N. Basumatary, and R. Buyya, “Edgelens: Deep learning based
object detection in integrated iot, fog and cloud computing environ-
ments,” in 2019 4th International Conference on Information Systems
and Computer Networks (ISCON). IEEE, 2019, pp. 496–502.

[35] G. Codeluppi, A. Cilfone, L. Davoli, and G. Ferrari, “Ai at the edge:
A smart gateway for greenhouse air temperature forecasting,” in 2020
IEEE International Workshop on Metrology for Agriculture and Forestry
(MetroAgriFor). IEEE, 2020, pp. 348–353.

[36] S. R. Hussain, S. Mehnaz, S. Nirjon, and E. Bertino, “Seamblue:
Seamless bluetooth low energy connection migration for unmodified
iot devices,” in Proceedings of the 2017 International Conference on
Embedded Wireless Systems and Networks, ser. EWSN ’17.
USA: Junction Publishing, 2017, pp. 132–143. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3108009.3108027

[37] T. Beke, E. Dijk, T. Ozcelebi, and R. Verhoeven, “Time synchronization
in iot mesh networks,” in 2020 International Symposium on Networks,
Computers and Communications (ISNCC). IEEE, 2020, pp. 1–8.

[38] S. Choi and J.-H. Lee, “Blockchain-based distributed firmware update
architecture for iot devices,” IEEE Access, vol. 8, pp. 37 518–37 525,
2020.

[39] M. Banerjee, C. Borges, K.-K. R. Choo, J. Lee, and C. Nicopoulos,
“A hardware-assisted heartbeat mechanism for fault identification in
large-scale iot systems,” IEEE Transactions on Dependable and Secure
Computing, 2020.

[40] F. Wang, X. Huang, H. Nian, Q. He, Y. Yang, and C. Zhang, “Cost-
effective edge server placement in edge computing,” in Proceedings
of the 2019 5th International Conference on Systems, Control and
Communications, ser. ICSCC 2019. New York, NY, USA: Association
for Computing Machinery, 2019, p. 6–10. [Online]. Available:
https://doi.org/10.1145/3377458.3377461

[41] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE

13

Communications Surveys Tutorials, vol. 19, no. 4, pp. 2322–2358,
Fourthquarter 2017.

[42] J. Ren, D. Zhang, S. He, Y. Zhang, and T. Li, “A survey on end-
edge-cloud orchestrated network computing paradigms: Transparent
computing, mobile edge computing, fog computing, and cloudlet,”
ACM Comput. Surv., vol. 52, no. 6, Oct. 2019. [Online]. Available:
https://doi.org/10.1145/3362031

[43] IETF. (2014) The constrained application protocol (coap). [Online].
Available: https://tools.ietf.org/html/rfc7252

[44] I. E. T. Force. (2020) Rfc 8949 concise binary object representation.
[Online]. Available: https://cbor.io/

[45] S. Albright, P. J. Leach, Y. Gu, Y. Y. Goland, and T. Cai, “Simple Service
Discovery Protocol/1.0,” Internet Engineering Task Force, Internet-Draft
draft-cai-ssdp-v1-03, Nov. 1999, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-cai-ssdp-v1-03

[46] W. A. Simpson, D. T. Narten, E. Nordmark, and H. Soliman, “Neighbor
Discovery for IP version 6 (IPv6),” RFC 4861, Sep. 2007. [Online].
Available: https://www.rfc-editor.org/info/rfc4861

[47] I. Murturi, C. Avasalcai, C. Tsigkanos, and S. Dustdar, “Edge-to-
edge resource discovery using metadata replication,” in 2019 IEEE 3rd
International Conference on Fog and Edge Computing (ICFEC), 2019,
pp. 1–6.

[48] B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and D. S. Nikolopou-
los, “Challenges and opportunities in edge computing,” in 2016 IEEE
International Conference on Smart Cloud (SmartCloud), 2016, pp. 20–
26.

[49] T. Group. (2021) Thread protocol. [Online]. Available: https:
//www.threadgroup.org/

[50] G. C. Inc. (2021) Ant / ant+ defined. [Online]. Available: https:
//www.thisisant.com/developer/ant-plus/ant-antplus-defined

[51] DigiMesh. (2021) Digimesh products. [Online]. Available: https:
//www.digi.com/products/browse/digimesh

[52] S. S.A. (2021) Sigfox - the global communications service provider for
the internet of things (iot). [Online]. Available: https://www.sigfox.com/

[53] C. N. C. Foundation. (2020) Kubeedge. [Online]. Available: https:
//kubeedge.io/en/

[54] K. Project. (2021) Device model for kubeedge. [Online]. Available:
https://kubeedge.io/en/docs/developer/device\ crd/

[55] Microsoft. (2021) Understand and use device twins in iot hub.
[Online]. Available: https://docs.microsoft.com/en-us/azure/iot-hub/
iot-hub-devguide-device-twins

[56] O. D. Model. (2021) Onedm: Solving the problem of lack of a
common data model for iot and iot devices. [Online]. Available:
https://onedm.org/

[57] T. O. Group. (2021) Open data format (o-df), an open group internet
of things (iot) standard. [Online]. Available: http://www.opengroup.org/
iot/odf/

[58] Z. Alliance. (2021) Dotdot: a common language for the smart objects.
[Online]. Available: https://zigbeealliance.org/solution/dotdot/

[59] E. GmbH. (2019) Energy harvesting wireless sensor solutions and
networks from enocean. [Online]. Available: https://www.enocean.com/

[60] Estimote. (2021) Estimote proximity beacons. [Online]. Available:
https://estimote.com/

[61] openHAB Community. (2021) openhab. [Online]. Available: https:
//www.openhab.org/

[62] H. Assistant. (2021) Open source home assistant. [Online]. Available:
https://www.home-assistant.io/

[63] D. Inc. (2022) Docker. [Online]. Available: https://www.docker.com/
[64] DockerHub. (2022) Docker hub. [Online]. Available: https://www.

docker.com/products/docker-hub/
[65] K. P. Authors. (2022) Lightweight kubernetes. [Online]. Available:

https://k3s.io/
[66] T. K. Authors. (2022) Kubernetes - production-grade container

orchestration. [Online]. Available: https://kubernetes.io/
[67] DaemonSet. (2022) Kubernetes daemonset. [Online]. Available: https:

//kubernetes.io/docs/concepts/workloads/controllers/daemonset/
[68] Arxys. (2021) Nvr bandwidth and storage calculator. [Online].

Available: https://www.arxys.com/bandwidth-storage-calculator/
[69] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,

“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510–4520.

[70] J. Kelly and W. Knottenbelt, “The UK-DALE dataset, domestic
appliance-level electricity demand and whole-house demand from five
UK homes,” Scientific Data, vol. 2, no. 150007, 2015.

[71] N. Corporation. (2021) Jetson xavier nx developer kit. [Online]. Avail-
able: https://developer.nvidia.com/embedded/jetson-xavier-nx-devkit

[72] L. Intwine Connect. (2021) Intwine connected gateway.
[Online]. Available: https://www.intwineconnect.com/index.php?p=
products-and-platforms/intwine-m2m-enablement-kit

[73] P. Gonzalez-Guerrero, T. Tracy II, X. Guo, R. Sreekumar, M. Lenjani,
K. Skadron, and M. R. Stan, “Towards on-node machine learning for
ultra-low-power sensors using asynchronous σ δ streams,” ACM Journal
on Emerging Technologies in Computing Systems (JETC), vol. 16, no. 4,
pp. 1–20, 2020.

14

