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Abstract—
Smart and connected devices offer enormous potential to

enable context-aware, localized, and multi-device orchestrations
that could substantially increase the reach and utility of com-
puting. The growth of these applications has been hampered,
however, as devices, their data, and their control have been
largely sequestered to their own vendor-specific APIs, clouds,
and applications—a largely stove-piped state of affairs. Where
barriers between devices have been pierced, the connections
often occur between vendor clouds, affecting the latency, privacy,
and reliability of the original application, while simultaneously
increasing complexity. Locally executing applications have not
materialized as devices with incompatible communication pro-
tocols, inconsistent APIs, and incongruent data models rarely
communicate. We claim that what is needed to unlock the
application potential is an architecture tailored to facilitating
applications composed of networked devices.

Our proposed architecture addresses this by providing a port-
based abstraction for devices using a small wrapper layer. This
device abstraction provides a consistent view of devices, and em-
beddable runtimes provide existing applications straightforward
access to devices. The architecture also supports device discovery,
shared interfaces between devices, and an application specifica-
tion interface that promotes creating device-agnostic applications
capable of operating even when devices change. We demonstrate
the efficacy of our architecture with two application case studies
that highlight the abstraction layers between applications and
devices and employ the embeddability of our system to add new
functionality to existing systems.

I. INTRODUCTION

Low power sensing systems, wearables, smart devices, and

other connected devices—both from the research community

and from the commercial realm—have traditionally formed

homogeneous networks of identical devices or devices from

the same origin [13], [14], [29], [32]. This homogeneity does

not prevent these devices from achieving their intended goals,

but typically they use applications that are single purpose or

directed by the original vendor, often using a vendor-specific

mobile application, vendor-supplied cloudlet, or cloud service.

While this has been a successful model, as devices become more

prevalent, implementation techniques become better understood,

and standards become widely implemented, a shift is beginning

to emerge: from building devices to building applications.

The motivation behind the shift is clear: opening lines of

communication across vendor boundaries will enable richer

experiences and applications than are currently possible. The

beginnings of this trend are materializing as a range of devices,

such as smart deadbolts, washing machines, and lighting,

advertise compatibility with Nest [3] to immediately increase

their functionality and appeal to customers who already own

the thermostat [9]. Other possible applications motivate this as

well and are infeasible without cross-vendor device interaction.

One can envision applications such as automatic machinery

lockout based on localization of employees, end-to-end asset

environmental metrics and management, or even a mixed-reality

view of assembly lines that overlays health and status.

While conceiving these applications can be straightforward,

reasoning about how to build them is less so and raises many

challenges and requirements. 1) There must exist a common

methodology for interacting with devices. Conceptually, devices

often provide simple functionality (“how many steps have I

taken”), but programmatically expressing this is more difficult.

2) Device communication protocols vary, and some interface

logic will be required. It should be minimized, however, and

not require a custom adapter between each pair of devices. 3)

The applications must execute inside of some context. Browser-

based web applications, for instance, execute mainly in the

cloud, but it is less clear where low power device-to-device

applications should execute. 4) While this genre of applications

is inherently local, the cloud may still be useful, though it raises

questions concerning reliability and privacy.

Current approaches designed to work with today’s devices

suffer from many of these issues. Application support from

manufacturers is often tied to vendor gateways or clouds,

meaning that device data for applications must be routed

through them. This leads to applications which are cumbersome

to scale, often exhibit high execution latency due to round

trips to the cloud, reduce privacy by routing all data through

the cloud, and are exposed to failure due to network outages.

So-called vendor-agnostic systems such as IFTTT [1] and

Zapier [10] connect vendor clouds together, still relying on

each vendor’s vertical device-to-cloud silo, and expose device

information to yet another cloud service. Newer device-level

or locally executing approaches, such as AllJoyn [11] and

the Thing System [7], require complete participation from

devices or are monolithic approaches that support limited

execution scenarios. In the enterprise context, this absence

of interoperability manifests as limitations on real options for

IT investment and has slowed adoption [25].
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We advocate for a new architecture for structuring, organizing,

and implementing applications of connected devices. This

architecture attempts to address the shortfalls of current

approaches by providing a core “kernel” abstraction around

devices and focusing on facilitating interactions between

devices. Each device provides and extends common interfaces

for device classes, so, for instance, all thermostats can be

accessed with the same base API. We carefully design the

abstraction layers to encourage flexibility when devices change,

execution environments change, or applications change.

The architecture is structured in three main layers: device

representation, device communication abstraction, and applica-

tion interface. We simplify devices and encourage consistency

by modeling devices as a collection of ports and a bundle

of internal state. Device control and feedback occurs through

the ports, and the cache of device state simplifies application

design. This model is implemented for devices with small

snippets of code that abstract the low-level specifics of a device.

Abstraction code is designed to be transparently embedded

inside applications. A system library handles finding, fetching,

loading, and executing the snippets, and allow the snippets

to execute in a variety of contexts: on a user’s device, in a

cloudlet, in the cloud, or directly on a device. Applications can

be described independent of the mechanism they execute on

top of. Additionally, applications can be created independently

of specific devices, by relying on shared and well-specified

device interfaces for classes of common devices.

The balance between structure and flexibility of the architec-

ture makes it well suited for building applications of connected

devices. The known interfaces, format and content of the code

snippets, and system library interface provide structure that

expands application functionality while eliminating duplicated

code, encouraging rapid development of device-specific code

snippets, and simplifying application development. Other as-

pects of the system, including the ability to write arbitrary

code to interact with device-specific APIs and protocols, and

to execute the snippets on multiple platforms, provide the

adaptation layer to handle the realities of this application space.

Expecting all devices to natively conform to the same protocols

and APIs, relying on a common gateway to communicate with

all devices, or restricting application logic to the cloud are

all approaches that are unlikely to be successful. We argue a

successful architecture must be able to adapt to present and

future variability while providing a consistent framework to

build applications against.

To test and explore our architecture we provide a prototype

implementation of each of the layers. As every device requires

a code wrapper, we make an extensive effort to minimize the

burden of authoring these snippets. Further, our implementa-

tion includes supporting infrastructure for hosting, grouping,

displaying, and debugging device specific code snippets. We

provide the system library that implements several execution

environments for running the snippets. We close with two

case studies, examining two applications that leverage different

aspects of our infrastructure to provide concrete examples

of the advantages provided by our architecture. The first

Devices

Device Adapters

Devices provide a native interface

The adapters provide a 
standard, port based interface

Application Specification

Tools help users generate 
application specifications

Application Creation

Fig. 1: Layered application architecture. An application

specification describes a means of achieving a desired be-

havior. Specifications are runnable, instantiatable constructs

and achieve the end goal of realizing devices interacting and

operating in an intelligent manner. The adapter layer provides

a means of abstracting the functional behavior of devices from

details of their exact interfaces and implementations. Teasing

out application creation from specification decouples the means

of achieving desired behavior from an abstract concept of what

should happen. We advocate for these abstractions as the right

balance of modularity and expressivity for creating meaningful

applications with connected devices.

creates localized responsive lighting using power meter sensors.

The application is specified once and implemented twice

to demonstrate flexibility as devices change. The second

shows how the infrastructure can be integrated into existing

applications and how device discovery and generic device ports

ease the burden of writing portable applications.

II. OVERVIEW

Today, low power and locally networked devices employ

a range of interaction paradigms to enable user control,

cloud-based control, and device-to-device communication. The

breadth of patterns is an artifact of enabling a wide range of

applications that leverage different aspects of local gateways,

user devices, cloud services, and end devices. A common theme

throughout the patterns is the presence of an adapter, or some

gateway or software library that implements the communication

protocol supported by a given device. These adapters are often

built into smartphone apps, cloud services, and gateways in a

device and application specific fashion.

Our architecture supports the range of application-enabling

interaction patterns but focuses on defining abstractions be-

tween the relevant components that allow for reusable adapters.

We claim that a well-specified abstraction layer for devices

will enable modular and reusable adapters that are critical for

building meaningful applications with connected devices. These

adapters can then run in a range of contexts depending on what

best suits the environment and application: on a smartphone,

on a laptop, in a local cloudlet, in a remote cloud, or even

directly on a device itself.

The architecture’s main purpose is to support and enable

applications. Our system is a collection of support structures
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Fig. 2: Heterogeneous interactions require adaptations.
Applications involving communication between heterogeneous

devices require either global standardization or an adaptation

layer, on the source device, the destination device, a local

gateway (cloudlet), or in the cloud. Our architecture simplifies

these interaction patterns by providing standardization for these

adaptations, allowing the adaptation of seamlessly move to

an appropriate execution context based on device or network

capability and application requirements.

that both aid creating portable applications and provide a

framework for new devices to easily integrate into applications.

The abstractions provided by the architecture, shown in Figure 1,

allow application descriptions to be decoupled from application

implementations, creating a clean separation between the

myriad possible methods for constructing applications: visual

block editors, natural language processors, or online learning

algorithms, for example, and the abundance of possible imple-

mentation strategies: directly linking devices, coordinating with

a cloudlet, or distributing computation on available resources,

for example. The ultimate system goal is to facilitate authoring

applications the are constrained to a specific behavior but not

to currently available resources or a specific set of devices.

III. BACKGROUND & RELATED WORK

Our system builds on the foundation laid out by Latronico et

al. who first introduced accessors, an actor-model representation

of networked devices [24]. We adopt the principle of their acces-

sor building block, although we modify the implementation to

allow addressing some of the open questions from the original

accessor work, including search and discovery of accessors,

versioning, static analysis, and automatic resource management.

A. Device Abstractions

For heterogeneous devices to interoperate, either all net-

worked devices must adhere to a global (future-aware!) appli-

cation layer standard or more realistically somewhere some

adaptation code must execute. Figure 2 shows the typical

placement of these adaptations, at one or both of the end

devices, on a supporting gateway or cloudlet, or in the cloud.

There are several competing device abstraction strategies that

impose different expectations on where these adaptations are

implemented and as a consequence what types of device-to-

device interactions are possible. We ultimately select and extend

accessors as they afford the most flexibility for the instantiation

of adaptations and device interaction patterns.

The Thing System provides a web server that presents a

common GUI for interacting with a range of devices [7]. To inte-

grate devices, a dedicated Thing System server runs JavaScript

libraries for each device, on a local cloudlet. Alternatively,

devices can implement the Thing Sensor Reporting Protocol [8]

or the Simple Thing Protocol [6] to directly connect to the

central server, or Steward. In all cases, however, the goal is to

integrate the device into the Steward. The Steward federates

all communication and is responsible for all device discovery.

AllJoyn pushes towards a more distributed approach [11].

Conceptually, AllJoyn takes the established DBus protocol

for inter-process communication and extends it to inter-device

communication. As a message bus, AllJoyn does enable direct

device-to-device discovery and communication, however, the

system requires buy-in from all devices on the bus, and only

devices on the same logical bus can communicate. While nodes

can proxy, scaling AllJoyn in practice remains an open question.

MTConnect is an open standard specially designed to meet

the requirements of the manufacturing industry [2]. It can

enhance the data acquisition capabilities from equipment in

manufacturing facilities. It can also expand the use of data

driven decision making in manufacturing operations and aims

to shift software applications atop manufacturing equipment

towards a plug-and-play environment, reducing the integration

cost of software systems. However, one major limitation for

MTConnect is the read-only method allowing monitoring of

the asset [12], which provides the manufacture no capability

for control of the asset. Another limitation to MTConnect is

the non-adoption of PMC data and tooling in the specification.

The analysis of PMC and tooling data is highly critical to

various visualization and optimization processes. Ultimately,

MTConnect’s structure limits its scope for use in practice.

OPC Unified Architecture (OPC-UA) is a platform indepen-

dent service-oriented architecture that provides machine to ma-

chine communication for industrial automation [5]. It focuses on

communicating with industrial equipment and systems for data

collection and control. The architecture supports multi-platform

implementations, scalability, multi-threaded operation, security,

timing controls, and chunking of big datagrams. However, the

major drawback of the architecture is the resulting complexity

that makes it difficult to develop reusable client applications,

those that are independent of the specific implementation of

each server. This suggests that OPC-UA may not achieve its

complete interopability promise in practice. This can be seen

in factories and infrastructures where each project integrates

independently using various PLC technologies delivered with

differing and limited implementations of OPC-UA.

From the research community, the BOSS building control

system [18] leverages sMAP [17] as its principle abstraction

mechanism. In this design, the burden for adhering to the

system abstraction interface is pushed onto the participating

devices or dedicated, pre-deployed proxy servers translating on

behalf of inflexible devices. HomeOS [21] takes the opposite

approach, with a centralized “Device Functionality Layer” that

coalesces devices onto a single “PC” abstraction similar to the

Steward from the Thing System.

3



B. The Accessor Abstraction

In contrast to these designs, the accessor abstraction shim

acts as a standalone kernel. This makes the decision of where

and how to integrate much more flexible. Applications can

instantiate adapters in their native runtime to communicate

directly with devices that have no knowledge of our ecosystem.

Local cloudlets or intelligent gateways can run shims to act

as proxies for devices. This differentiation is key to the

flexibility facilitated by our design. Pushing abstractions to the

device like AllJoyn and sMAP requires the ability to either

change code on devices or instantiate proxies on their behalf.

Placing abstractions in the cloud like the Thing System or

IFTTT necessarily centralizes device control and information.

Enforcing standards like MTConnect or OPC-UA requires buy-

in and limits opportunities for revision or enhancement. By

creating a shim layer that exposes a clean interface not tied to

any application framework, our model supports significantly

greater flexibility than previous device connectivity frameworks.

To provide a consistent view of a wide range of devices,

accessors model all device interactions as a write or subscription

to well-defined ports or (newly) a read to a device attribute.

Device ports are defined by their direction characteristics

relative to the device itself, either “input” or “observe”, or

both. Ports that support the input direction allow for control

of the device, and observe ports allow the device to generate

events. Attributes allow for the state of the device to be queried.

This model allows for a clean representation of a range

of devices. The ports are designed for push operation, where

computation and control can occur spontaneously in reaction

to events. This facilitates real-time applications and interac-

tions. Human interface devices, environmental monitors, event

detection sensors, and other event-generating devices can all

publish data on their output ports at appropriate times. These

events can then feed to other devices on their inputs, and cause

applications to execute when there is useful computation and

communication to be done. Attributes are designed for a pull

model and allow for queries on devices. Asking for the current

temperature, if the light is on, or what the current power draw

of a house is are all operations that map to reading attributes.

Attributes are an extension not included in the original

accessor design. Broadening the model beyond just ports

by adding attributes makes it better suited for characterizing

the breadth of devices. Implementing queries with ports is

cumbersome for accessor authors, as it requires an input port to

ask the query, and an output port for the response. Decoupling

this is counterintuitive, and the environment the device model

is executing in must determine how to send the output to

the requester, which is often difficult to implement. Instead,

allowing device models to expose attributes which can simply

be read greatly simplifies interacting with devices in practice.

IV. DESIGN

We describe the design of our application architecture, Fig-

ure 3, starting from conceptual abstractions for devices, adding

the components required to enable applications, and building

to our comprehensive system for multi-device applications.

D

Application

Runtime

Device 
Wrapper

Modeled 
device

{ IR }

App 
Logic

{ IR }

Interfaces

Ports

Fig. 3: Architecture overview. Devices are modeled abstractly

using a port and attribute representation, and these are logically

grouped into interfaces. An application leverages the device’s

model by fetching the intermediate representation of a device-

specific wrapper. The wrapper executes inside of a runtime

which is embedded inside of the application. This architecture

allows applications to be structured around a conceptual view of

devices and to push the complexities and specifics of interacting

with devices into the wrapper layer.

A. Device Interfaces and Interface Ontology

Accessors allow ports and attributes to be specified individ-

ually on a device-by-device basis, however, this provides little

standardization between devices. To allow for better grouping

of devices, ports and attributes are grouped into interfaces,

and devices can provide interfaces instead of individual ports.

This difference allows applications that are using this system to

choose and program against devices based on the interfaces they

provide rather than the specific device. Applications or their

runtimes can then fanout commands to all matching devices

instead of needing to enumerate all devices explicitly.

Defining a standard set of interfaces requires defining

an ontology for interfaces and their ports. The design of

this ontology is critical for the utility and usability of our

proposed design as these interfaces are the principle mechanism

that application authors will interact with. Additionally, the

interfaces are only useful if they are capable of encapsulating

the functionality of multiple devices. If every device has a

custom interface, then the system has essentially been reduced

to writing applications for specific devices again.

To balance these design goals, we principally define our

interface tree as a wide, shallow structure. While simple single-

purpose devices may fall neatly in one interface, many devices

will cover multiple interfaces. The shallow tree maximizes the

flexibility of interfaces by maximizing the number of devices

that will fit into a given top-level category. Depth in the tree

allows for specifying more advances features, e.g. all smart

lights can turn on or off but only some can change color.

To simplify the burden of mapping devices to all available

interfaces, we design interfaces to be inheritable to allow for

sharing ports between interfaces. Sharing ports allows for more

advanced device grouping without creating excess ports. As an

example, consider two likely interfaces, /onoff for devices

that can be turned on and off, and /lighting/light for

devices which are lights. To allow lights to be both grouped

in the lighting group and in the group of all devices that

can be power toggled, the /lighting/light interface
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Well-known methods that authors implement
init Called when the wrapper is loaded

cleanup Called when the wrapper is unloaded

<Port>.input Called when an input port is written to

<Port>.output Called when an attribute is read

<Port>.subscribe Called to register a callback to subscribe to this port

Framework init API
provide_interface Implement a standard interface

create_port Create device-specific port

create_attribute Create device-specific attribute

Framework Runtime API
get_parameter Get a configuration parameter

load_library Third-party library support

load_dependency Load a sub-wrapper

Built-in libraries
{a}rt.{log,time,color,encode,http,coap,socket,amqp,mqtt,...}

TABLE I: System framework. To minimize learning overhead

and maximize code reuse, we carefully target a minimum frame-

work API. Authors need only declare ports and attributes and

support their actions. Our implementation provides an extensive

runtime (rt) library and a load_library mechanism for

third-party extensions.

inherits from the the /onoff interface. Each light that

provides the /lighting/light implicitly provides the

/onoff interface. This eliminates the need to author both

a /onoff/Power port and a /lighting/light/Power
port, while permitting applications to transparently use either.

The inheritance mechanism supports multiple inheritance as

interfaces can extend multiple other interfaces.

Beyond the standard interfaces, devices may also choose

to add additional ports. These device-specific ports provide

a mechanism for device or vendor specific extensions. With

sufficient popularity, these custom ports provide a pathway for

the introduction of new standard interfaces.

B. Device Wrappers

A device wrapper is our realization of the accessor design

paradigm. Device wrappers are designed to be easy to author,

and our system enables this with a simple framework for

these wrappers. In contrast to the original accessor design,

which requires authors to synthesize both the specification

and device-specific code, we design wrappers to automatically

infer device specifications from the code that implements

the wrapper. Wrappers are authored in JavaScript, chosen

because it has been shown to be both quickly accessible

to novice programmers [26], [31] and viable for advanced

applications [27]. The architecture itself does not require that

the wrappers be in JavaScript, however, and other languages

could be used in the future.

Each device wrapper includes function implementations for

initialization, each port, and each attribute. The init method

is called first to specify the interfaces and device-specific ports

and attributes the device provides, as well as to run any device-

specific setup or connection logic. For each port and attribute,

the wrapper includes functions for when they are read from

or written to. In contrast to more managed systems such as

Power

Activity

Home Theater Wrapper

Power

Source

Volume

Audio Wrapper Power

TV Wrapper

Channel

Source

VolumeSynthetic 
Wrapper 

Logic

Fig. 4: Device wrapper for a synthetic “Home Theater”
device. By including the wrappers for an audio device

and a television with some additional logic, a home theater

interface can be created without reimplementing the logic

for communicating with the contained devices. This example

demonstrates how a synthetic device can be created to provide

a useful interface.

AllJoyn or the Thing System that require authors to integrate

devices into the framework, these function implementations

are the only author responsibilities. Table I summarizes the

complete framework presented to authors.

1) Specialization: A wrapper is designed to encompass a

specific device or product, but often it is desirable to have

specialization for individual instances of a given device, such

as the bridge address of a smart bulb. We introduce the concept

of parameters for accessors, where device-specific parameters

are coupled with the generic wrapper to create a device instance,

which is a unique adapter for a specific device. Decoupling

parameters from ports disentangles writes intended to modify

the underlying devices from writes intended to modify the

device adapter. This permits devices to advertise a generic

interface for control with lightweight parameters, as opposed to

requiring either a centralized database of all device instances

or requiring adapter instantiators to ascertain device-specific

parameters via an unknown third-party mechanism.

2) Synthetic Devices: Wrappers are not limited to a one-

to-one ratio with devices. Often, higher level interfaces may

be more useful than interfaces directly on top of devices. For

instance, consider a “Home Theater” wrapper, as shown in

Figure 4, which abstracts multiple audio-visual devices into

a single device. This wrapper is created by adding a layer of

control logic above the audio device and television wrappers

and correctly mapping ports. Instead of reimplementing the

audio and TV wrappers, they can be included directly in the

home theater wrapper. This method allows the architecture to

support synthetic devices in cases where higher-level interfaces

are more suitable than device-level interfaces.

C. Wrapper Intermediate Representation

While we emphasize minimizing overhead for device wrapper

creators, parsing source code to ascertain device capabilities

burdens developers who wish to use the wrappers in an appli-

cation. To mitigate this issue, our design adds an intermediate

representation that creates a machine (and human) parsable

document that both includes the wrapper code and details the

ports, attributes, interfaces, and other properties of the device.
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Furthermore, this intermediate representation is generated by a

compiler that is able to validate the correctness of device wrap-

pers and detect and explain common errors to wrapper creators.

This compilation step additionally simplifies the design of

downstream users of the device wrapper as they can omit many

correctness checks. This intermediate representation allows

application environments to easily understand commonalities

between devices, properties of each port, and meta information

about devices that may be useful to an application.

D. Runtimes

Once a wrapper exists that describes how to interact with

a device, it must actually execute in some context. Runtimes

provide execution environments that run the code snippets and

provide a context-specific interface to the associated device.

The abstraction layer from the intermediate representation

allows for many runtimes across many programming languages

and execution environments. The objective of each runtime is

to present the device wrapper in a native way for the given

environment that a developer would find natural.

Runtimes also provide the device wrapper a standard library

to use when communicating with devices. This provides

support for HTTP, CoAP, UDP, BLE, and other communication

protocols. The intermediate representation includes a list of all

libraries used, allowing the runtime to ensure that all required

resources are available in advance.

E. Device Discovery

For devices to be included in applications they must be

enumerated. Manual device registration may be effective for

small numbers of devices or for accurately grouping devices

by location or user, but in other contexts manually listing

devices may be infeasible. Dynamic applications, for instance,

that intend to operate with a class of devices present in any

space where the application is run may wish to discover

devices dynamically. Also, devices themselves may wish to

discover other nearby devices that provide a particular service

the original device cannot provide.

Device discovery and the corresponding wrapper discovery

are complimentary problems. Existing discovery technologies,

such as Zeroconf (mDNS+DNS-SD) and UPnP [15], [16],

[34], announce the presence of a device and possibly some

services exposed by the device. Advertising the wrapper instead

announces both the presence of a device and its services based

on the interfaces it provides. Critically, it also announces how
to interact with the device. Our architecture leverages existing

device discovery protocols for advertising devices supported

by this architecture to take advantage of existing tools.

F. Applications

Once devices can be modeled, grouped, described, discovered,

and accessed, they can be connected, in an abstract sense, to

create interesting applications. The main property of applica-

tions within the architecture is that application specification

is independent of application implementation, as illustrated in

Figure 5. That is, applications can be described in a generic

Person ∧ Night → Lights 

{  blocks: […],
   ports: […],
   connections: […]  }

D1

D2 D1

Cl

D2

Logic Description

Application 
Representation

Application 
Impementation

Fig. 5: Application creation structure. The abstraction layers

in the architecture allow applications to be considered at three

levels. The first level specifies the conceptual representation of

an application, and this example uses a logic statement. The

next level is a standard representation of the application that can

be instantiated. The final level are possible implementations.

way and that application description in conjunction with locally

available devices and computational resources can later be

executed. This well-defined abstraction layer between what

an application should do and how it executes is critical for

developing a successful ecosystem around this architecture.

Above the abstraction layer, there may be many methods for

describing applications, such as block diagrams, converting

speech to commands, writing pseudo-code, and interpreting

existing actions to automatically create applications. Allowing

these methods to be explored without including the burden

of application execution aids application creation. Below the

abstraction layer, how an application executes may change as

devices are added, updated, or removed, connectivity options

change, or local computational resources change. Decoupling

the application specification from immediately available re-

sources allows the system to adapt over time and to run the

application in the most reliable and efficient manner.

At a high level, applications in our architecture are described

by connecting the ports of devices to each other. For instance, a

simple conceptual application may be “when I enter my office

turn the air conditioner on” and a very simple version of this

application might be described as connecting the “Door opened”

output of a door sensor to the “Enable” input port of the air

conditioner. In practice, applications will be more intricate than

this simple example and will require additional logic between

devices, data processing at various points, external data inputs,

and other features beyond just devices. Despite this, we argue,

applications are fundamentally composed of interconnected

device ports with some possible intermediate logic.

G. Standardization Vision

Device wrappers and their runtimes are necessary to create

standard interfaces and reusable applications out of widely vary-

ing devices. However, a standard for device communication may

emerge and become prevalent, particularly if interoperability

becomes commercially desirable or advantageous. Based on

our architecture, we advocate for a a REST style interface

based on CoAP [33]. This meshes with our architecture for
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// name: ACME Power Meter
// author: Wiley E. Coyote
 
// ACME Power Meter
// ================
//
// ACME (AC Meter) is a power met
// LimitDailyPower powers off for th

var ip; 
function init () {
    provide interface(’/onoff’);
   provide interface(’/sensor/power’);
   create port(’input’, ’LimitDailyPo

   ip = get parameter(’ip addr’); 

Wrapper

// name: ACME Power Meter
// author: Wiley E. Coyote
 
// ACME Power Meter
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Fig. 6: Implementation overview. A device wrapper is a JavaScript file that imperatively describes the interfaces and ports of

a device and provides code for using them. Users author these device wrappers and commit them to a single, global repository.

They are then compiled into an intermediate representation that validates correctness and extracts rich metadata for automated

tools to leverage. A Host Server is a generic server that hosts compiled wrappers and can be queried for available wrappers.

Device instances—the combination of a generic wrapper and parameters for a specific instance of a device—integrate with

Zeroconf (mDNS + DNS-SD) for automated discovery or are served from static, pre-configured device registries. Applications

load instances into a runtime, a compatibility library layer between the native application execution environment (e.g. Python)

and the framework that wrappers are programmed against.

two reasons. First, URIs map well to devices, interfaces, and

ports. As an example, a controllable light might have the

URI “http://192.168.1.2/lighting/light/Power” which is the URI

for turning the light on and off inside of the “lighting/light”

interface. Second, the CoAP REST commands map to port types

well. GET corresponds to an attribute, POST to an input port,

and GET with the observe option corresponds to subscribing to

a port. Finally, CoAP is designed to be sufficiently lightweight

to be viable for resource-constrained devices, which represent a

growing proportion of intelligent, networked devices. While our

architecture is explicitly designed so as not to require devices

to support any eventual standard, it is also aims to encourage

devices themselves to buy in, and drive towards a system with

minimal to no need for device wrappers.

If this standard, or a different similar one based on ports, did

emerge, our architecture is designed to gracefully support the

change without requiring changes to applications. The runtime

layer simply drops the device wrapper and maps application

interactions directly on to the standard interface.

V. IMPLEMENTATION

As a teaser to motivate our ecosystem, we present here in

full a Python applet that turns off the lights when everyone

leaves the room:

1 # /usr/bin/env python
2 import device_runtime as rt
3 room = rt.get_nearby(’/occupancy’, limit=1)
4 lights = rt.get_by_location(room[’_location’], ’/lighting’)
5 room.Empty.subscribe(lambda : lights.Power = False)

In line 3 a synthetic device made up of all nearby devices

that implement the /occupancy interface is created auto-

matically by the runtime. The get_nearby constructor adds

_location metadata, which is used in line 4 to ask the

runtime to create another synthetic device that collects all of

the nearby devices that implement the /lighting interface.

Finally, line 5 attaches a function to the Empty output port

of the room, which writes to the Power port of the lights
whenever a new event arrives.

The remainder of this section presents our implementation

from bottom-up, beginning with how the device wrappers

are developed and compiled. We next consider discovery and

distribution, the infrastructure that powers the get_nearby
and get_by_location methods. Finally, we explore the

mechanics of implementing a runtime and differing mechanisms

for bridging runtimes and native execution environments.

Figure 6 gives an overview of how all the components of

the system fit together.

A. A Wrapper and IR

Recall that a wrapper is simply JavaScript code that is then

compiled into an intermediate representation (IR), which is

a JSON document containing the wrapper code and parsed

metadata. This compilation also ensures adherence to declared

interfaces and performs parameter validation and other static

checks for correctness. Figure 7 shows an example of a

complete wrapper and part of its compiled IR.

B. Host Server

This host server provides a repository of available device

wrappers that other pieces of the infrastructure use to find and

download the device wrappers. Currently, we implement this

as a public GitHub repository and a webserver that keeps an

up-to-date copy of each device IR available. The webserver also

presents a browsable view of the available device wrappers, as

well as any compilation errors that could prevent wrappers from

working correctly, as shown in Figure 8. A suitable management

and distribution policy for the repository is left to future work,

but we are inspired by systems such as Homebrew [23] that

succeed with a similar model.
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1 // name: ACME Power Meter
2 // author: Wiley E. Coyote
3
4 // ACME Power Meter
5 // ================
6 //
7 // ACME is a power meter with a relay for load shedding.
8 // LimitDailyPower powers off if limit is exceeded.
9
10 var ip;
11
12 function init () {
13 provide_interface(’/onoff’);
14 provide_interface(’/sensor/power’);
15 create_port(’input’, ’LimitDailyPower’,

{type: ’integer’, min: 100, units: ’watthour’});
16 ip = get_parameter(’ip_addr’);
17 }
18
19 // The asynchronous runtime (art) returns promises
20 onoff.Power.input = async function (state) {
21 await art.coap.post(’coap://[’+ip+’]/Power/’+state);
22 }
23
24 onoff.Power.read = async function () {
25 return await art.coap.get(’coap://[’+ip+’]/Power/’);
26 }
27
28 sensor.power.Power.subscribe = async function (cb) {
29 await art.coap.observe(’coap://[’+ip+’]/Watts’, cb);
30 }
31
32 // Create a virtual port required by the interface
33 sensor.power.PowerChange.subscribe = async function (cb) {
34 var threshold = get_parameter(’power_threshold’, 10);
35 await sensor.power.Power.subscribe(function (watts) {
36 var power = onoff.Power.read();
37 if ((watts < threshold) && power) {
38 cb(false);
39 } else if ((watts > threshold) && !power) {
40 cb(true);
41 } });
42 }
43
44 LimitDailyPower.input = async function (l) {
45 await art.coap.post(’coap://[’+ip+’]/DailyLimit’+l);
46 }

(a) ACME Wrapper: acme.js
{

"code": "var ip;function init () \{ <snipped>",
"dependencies": [],
"parameters": [ {

"name": "ip_addr"
"required": true, (line 17: no default value)

}, {
"name": "power_threshold",
"required": false, (line 34: provides default value)
"default": "10",

} ],
"runtime_imports": [ "coap" ], (lines 21,25,29: use art.coap)
"ports": [ {

"name": "/onoff/Power" (/onoff interface definition)
"type": "bool",
"display_name": "Power",
"direction": "input",

}, <snipped>
],
"implements": [

{ (line 13: provides /onoff)
"interface": "/onoff",
"provides": [ [ "/onoff.Power", "PowerControl" ] ],
"ports": [ "onoff.Power" ]

}, <snipped>
],
<snipped>

}

(b) ACME Wrapper IR: acme.json

Fig. 7: Wrapper example. The ACME Power Meter is

an AC meter and load-controlling switch. Additionally, it

adds a novel vendor feature, a daily power cutoff. It does

not natively report when the attached load switches on or

off, so the wrapper emulates the required PowerChange
port. The compiled wrapper embeds the original code as an

element. It resolves interfaces to list all ports and identifies

all aliased interfaces. The IR also extracts all parameters and

external dependencies. This verbose, compiled form enables

powerful queries across wrappers, permits runtimes to ensure

all parameters are specified and dependencies satisfied, and

facilitates the creation of on-demand user interfaces.

(a) Library of devices.

(b) Wrapper compilation error.

Fig. 8: Host Server. The host server creates a web interface

for exploring the wrappers in the repository. Users can find

wrappers by device name, interfaces provided, or other metadata.

For wrappers with compilation errors, the host server provides

a clear explanation of the error. Additionally, the Notti smart

light [35] gives an example of a device with a custom port in

addition to the standard interface, as this light adds a custom

“fade out” feature.

HOST          SERVICE                          PORT
acme.local    _wrapper_sensor_power._udp       5683
   TXT: wrapper_path=/sensor/meter/ACME

hue.local     _wrapper_lighting_hue._tcp       4999
   TXT: wrapper_path=/lighting/hue/huesingle
        username=MyHueUser

Fig. 9: DNS Service Discovery records for devices with
wrappers. Interfaces are advertised as services with the service

type marked by “ wrapper”. The DNS infrastructure handles

naming the device and port, and the TXT field is used for the

wrapper path and parameters.

C. Device Discovery

We extend the Multicast DNS (mDNS) [16] and DNS Service

Discovery (DNS-SD) [15] discovery services with a protocol

to enable clients to find devices that have available wrappers.

With DNS-SD, services that a device provides are encoded as

dot separated strings, such as “ ipp. tcp” for a printer.

Devices that have a corresponding wrapper can advertise their

interfaces as services. To comply with the DNS-SD protocol,

the service is prepended with “ wrapper” to denote that there

is a corresponding wrapper. For example, a Hue light may

advertise the “ wrapper lighting Hue” service. Inside of the

TXT record in the service advertisement, the light includes the

key “wrapper path” which allows the application to fetch the

correct wrapper. Any other parameters the device requires are

also included in the TXT section. Figure 9 shows the records

devices in our architecture may advertise.
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Fig. 10: Runtime overhead. To estimate runtime overhead,

we run a loop of HTTP requests to localhost using

wrappers from various runtimes compared against an equivalent

native Node.js app. Running wrapper JavaScript code in non-

JavaScript-based runtimes requires an embedded a JavaScript

engine (Java) or communicating with an external JavaScript

engine (Python). For embedded runtimes (Java), loading the

JavaScript engine adds a one-time warmup penalty. For the non-

embedded (Python) case, inter-process communication adds

significant overhead to the continued execution. In steady-state,

requests from the Java-based runtime actually run slightly faster

than the native Node.js app.

D. Runtimes

The responsibility of the runtime is to provide an execution

environment for device wrappers, while making each device

available as a native object in the host application language.

1) Hosted Runtimes: We implement three runtimes, en-

abling native application development in Node.js, Java, and

Python. The Node.js runtime has native support for executing

JavaScript [4]. The Java runtime uses the Nashorn scripting

engine to execute JavaScript [28]. Nashorn executes JavaScript

directly on the Java virtual machine, facilitating high perfor-

mance and easing the passing of data between the Java and

JavaScript environments. Unfortunately, Nashorn does not yet

fully support ECMAScript 6. Traceur is a tool that “transpiles”

ECMAScript 6 code to valid ECMAScript 5 code, at the cost

of about 30% performance overhead [22]. The Host Server will

transpile a wrapper on-demand if an ECMAScript 5 version is

requested. Python has no means to directly execute JavaScript,

so we use python-bond, a library that bridges Python and an

instance of Node.js via RPC calls [20].

The majority of the runtime code is shared across implemen-

tations, executing in the JavaScript context. The IR enables

runtimes to pre-load parameters, libraries, and dependencies

before executing the device wrapper. Only the top box of

functions from Table I need to be shimmed at runtime.

To provide some understanding of the tradeoffs between the

different runtimes and execution environments, we benchmark

I/O performance across the three runtimes. Figure 10 compares

the overhead of the native (Node.js), embedded and transpiled

(Java + Nashorn), and remote (Python + python-bond + Node.js)

runtimes. We run a small app that makes continuous HTTP

requests to localhost. We also include a native JavaScript applet

that directly issues the same HTTP requests as a baseline.

Fig. 11: Auto-generated GUI for a Phillips Hue. The web

runtime automatically generates device GUIs from devices.

Advanced UI elements are inferred from port types. The Color
port renders as a color picker because the port is of type color.

The Brightness port renders as a slider because it is an

integer type port with a min and max. This entire UI

element is auto-generated using only the wrapper IR.

Loading the JavaScript engine imposes a heavy startup cost on

the non-native runtimes. For our I/O-heavy workload, however,

the runtime overhead of Traceur is unsurprisingly not a large

penalty. Indeed, the Java runtime slightly outperforms Node.js

for this microbenchmark. The RPC calls in the Python runtime

impose a heavier runtime burden. Upon further examination,

this effect is amplified by the relatively naı̈ve and inefficient

RPC mechanism employed by the python-bond library.

2) Proxy Runtime: We initially attempted a browser-based

runtime, but rejected the effort as browsers are too sand-

boxed of an environment to support many of the commu-

nication protocols used by devices. Browsers support only

websockets, requiring a support server to proxy other pro-

tocols such as UDP or TCP. The browser-enforced same-

origin policy prevents support for devices that neglect the

Access-Control-Allow-Origin header—which only

one of the dozen commercial devices we tested set—, requiring

a proxy for HTTP requests as well.

Instead, we build an RPC webserver with a HTTP REST

API. This maps a PUT to input, a GET to read, and uses

websockets for subscribing to ports. The webserver uses the

metadata from the IR to build a GUI on-demand, like the Hue

GUI in Figure 11. Complex UI elements such as color pickers,

sliders, and drop-down lists are inferred from port types.

More generally, this RPC server can act as a proxy runtime

for any device. This is a powerful step towards a standardization

vision, especially with the advent of local cloudlets and

intelligent gateways. One could imagine gateways automatically

running a proxy runtime for all connected devices. In this way,

even if no device ever implemented our standard API, every

networked device would transparently adhere to the API.
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(a) Application Specification (b) Direct Device-to-Device

(c) Cloudlet Based

Fig. 12: Describing an application using a block editor. An

application, shown in (a) and conceptually described as “when

devices in a space are drawing power, turn on the lights”, is

implemented in two ways using a block-connecting approach.

In (b), the chosen power meter and lights have ports that match

the description, allowing a direct connection to satisfy the

specification. In (c), a different power meter (“Monjolo”) is

used that sends pulses proportional to the metered load. The

pulse stream must be filtered and fed into a type conversion

block (“Constant”) to generate an “On” signal. A “Delay” block

is used to automatically turn off the lights. As the dashed area

generates “PowerChangeEvent”s, the application requirements

are now satisfied. Because this application performs additional

processing, it is run in a cloudlet. Implementing the same

application description in multiple ways demonstrates how the

architecture is able to adapt to changing devices.

VI. CASE STUDIES

To demonstrate how our architecture and system imple-

mentation help create applications, we implement two device-

centric applications. As performance and correctness metrics

are difficult to define for this architecture, we do not evaluate in

the traditional sense but attempt to explain how the architecture

aids creating these applications and others in the future.

A. Responsive Lighting Application

Commercially available “smart lights” surpass conventional

lighting by allowing remote control and programmatic access,

but often still rely on manual intervention for determining when

to illuminate or switch states. Our first application attempts to

add automatic control to smart lighting by integrating inputs

from other sensors, such as power meters. Conceptually, the

application can be specified as:

When devices in a localized area are drawing power,

turn the lights in that area on, and when then devices

are not, turn the lights off.

This results in an intuitive and responsive application where

lights respond to activity and not direct control.

To create this application we use a browser-based visual block

editing interface written on top of jsPlumb [30] to describe how

components interact. Figure 12a shows the block representation

of the high-level application description. It encompasses two

devices, a power meter and the lights. The functionality requires

a “PowerChangeEvent” port to be connected to the “Power”

port of the lighting. This describes a power meter that, when

the attached load turns on or off, will send a message to another

device, in this case lighting, to turn it on and off. This depiction

is what we consider to be the application description layer, as

described in Section IV-F, and relies on the port abstraction to

model how the devices should interact.

Given the application description, the system is able to

implement the application in two ways. First, as shown in

Figure 12b, two devices matched the required ports and were

eligible to directly communicate to execute the application. At

the system configuration level, the power meter is considered

to be able to run the lighting device’s wrapper to control its

state. In practice, the power meter can be configured to send an

event to a particular destination when the load changes state.

The second implementation, shown in Figure 12c, uses

nested applications to implement the same functionality, and

demonstrates how the system can adapt to device diversity.

Instead of the same true power meter, sensing is performed

by a rudimentary power meter known as a Monjolo sensor

which uses energy-harvesting principles to pulse packets at a

rate roughly proportional to the load being metered [19]. This

provides sufficient power metering for the application, but due

to its energy-harvesting operating principles, cannot determine

when the load has turned off. Therefore, the sensor is wrapped

with additional logic, shown inside of the dashed box, to add

a delay to turn the light back off when the pulses cease, and

to do type conversion. This causes the dashed box portion to

become its own application with the correct ports to satisfy the

power metering requirement of the original application goal.

The block editing environment understands that the additional

logic requires runtime computation and therefore runs this

implementation in a local cloudlet.

The responsive lighting application is enabled by many

aspects of the architecture. The application itself is specified

in a wholly device-independent manner, facilitating diverse

implementations. Devices are modeled with ports, and possible

implementation strategies can be easily validated by the block

editing tool (or any other system) based on matching ports.

The two implementations further highlight the flexibility of the

architecture. For the severely resource-limited energy harvesting

power meter, a local cloudlet runs a device wrapper to interface

with the Monjolo device’s Pulse output and then presents an

interface that satisfies the remainder of the application. The

other case eschews wrappers entirely and demonstrates how a

standard for device communication can enable direct device-

to-device communication. In this way no additional servers are

required to support applications and no third parties ever learn of

events in the system. Empirically, occupants in our preliminary

deployment quickly adapted to rely on the responsive lighting

environment provided by both implementations.

B. Security and Safety on the Factory Floor

A critical issue for manufacturers is to ensure the security and

safety of their factories. An application using smart devices

may be desirable for this issue, but in industrial settings a
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Fig. 13: Factory security and safety application. This app

leverages the system infrastructure to dynamically discover

peripheral sensors, download the correct wrappers, and execute

the application logic on a nearby gateway. As wrappers can be

discovered and downloaded dynamically, the application works

in other zones or environments without modifications.

key challenge for multi-device applications is interoperability

across devices from different vendors. To demonstrate this and

to propose a solution enabled by our architecture, we examine

a particular example: ensuring worker safety by defining a

restricted zone around dangerous equipment. The application

can be specified as:

When the potentially dangerous equipment is not

drawing power and sensors detect a worker nearby,

turn on the light.

When the equipment is on and sensors in the warning

zone detects motion, turn on a warning light.

If sensors in the restricted zone detect a worker, shut

down the machine.

This requires defining a restricted zones near the equipment,

reliably detecting if the equipment is running, and leveraging

multiple sensor types to to ensure reliable worker detection

This application has two key challenges: it must minimize

the possibility of false positives, and it must be capable of

working with different types of sensors from different vendors.

The solution provided by our architecture is shown in Figure 13.

A power meter monitors the power supply of the machine to

determine if the machine is on based on whether it is drawing

power. Laser trip sensors monitor the restricted zone, while

ultrasonic and PIR sensors monitor the warning zone. Devices

that have device wrappers advertise the interfaces they support

as services. To find nearby sensors, the application queries for

all devices that support the desired services. The application

then iterates through those responses and downloads the correct

wrappers from the host server. It can then use the intermediate

representation to select the right port from the interface and

the wrapper to query its value and generate different responses

based on the inputs.

The application emphasizes several aspects of the architec-

ture. In this case we make no assumption of the vendors or their

interfaces for the hetergeneous array of sensors, breaking the

traditional communication boundaries. Coordinating between

different types of sensors minimizes the false positive problem

that often occurs on single sensors improving the reliability of

the system. Moreover, by providing the application the ability

to fetch the wrapper on-demand based on the immediately

available sensors – in contrast to a statically defined application

and sensor configuration –, the same application can execute

in multiple zones with different types of sensors without

any modification. This makes it easier to divide buildings

into zones based on logical divisions rather than specific

sensor installations. Furthermore, this security and safety

application can be applied to different companies with same

needs without requiring customization. For existing buildings

with old platforms, this application is isolated and does not

intervene with extant systems, thus it will not have any adverse

affect on any of the current systems running in the building.

These case studies illustrate two points on the spectrum

of device-centric applications, and help demonstrate how our

architecture and implementation can directly simplify creat-

ing applications in two very different realms. While these

examples do not capture the breadth of possible applications,

they provide intuition and motivation for the possibilities an

application architecture can promote. While previous systems

have realized various capabilities presented by this design—

device abstraction, cloud-to-cloud interaction, device-to-device

interaction, and device discovery—it is the union of these

capabilities that marks the key novelty of this new architecture.

With support for current devices and the ability to adapt to

future devices, this architecture encourages adoption by end

users, manufacturers, and application creators, and could finally

enable truly modular and adaptive applications.

VII. DISCUSSION

Our prototype system presents several areas for future work

and exploration.

A. Authentication

The system we propose provides a method for users to access

data and control devices but does not provide a mechanism for

validating that the users should be able to access those devices.

We intentionally do not build authentication into the host server

as this does not provide a method for revoking access. A user

can cache a wrapper and execute it later, even if the user

could not re-request the wrapper from the server. Therefore,

authentication must exist between the executing wrapper and the

end device. This, however, requires the wrapper to understand

the identity of the user and perform the possibly complex

authentication procedure itself, burdening the wrapper creator.

A possible solution is to allow the runtime to perform

the authentication on behalf of the wrapper and then have it

provide the wrapper with a token that it can use in its requests.

This approach is feasible if specifying the authentication

scheme and authentication parameters can be done in a

11



concise way for a range of devices, that is, that there are

only a handful of authentication schemes used in practice

that can be consistently parameterized. Surveying currently

used authentication mechanisms and integrating them into the

architecture is left as future work.

B. Authorizing Device Communication

Once devices can communicate, there needs to be a mech-

anism for determining if they should communicate. While

devices may initially be trusted, bugs or malicious code should

not be able to cause devices to interact in a manner the user

does not expect. The port based definition of devices allows for

one natural method to restrict communication. A management

environment can issue a pair of cryptographic keys for the

communicating devices that are assigned to the relevant ports.

Those devices will now only listen to messages for specific

ports that are encrypted with the correct keys. Any attempts

by a misbehaving device to control a device it is not allowed

to will be ignored.

C. Seamless Cloud Interaction

Device wrappers and the standard device model provide

two natural mechanisms for leveraging cloud resources with

device interactions. First, certain low-capability devices that

are constrained by energy-harvesting power supplies or limited

network connectivity can be proxied in the cloud. That is,

a cloud endpoint (or equivalently a local gateway/cloudlet)

would provide the port interface on behalf of the device, and

all interactions would be handled by the cloud instead of the

actual device. Second, specified ports could be handled by the

cloud instead of the device. For instance, in a power metering

example, the power meter can easily handle a current power

query, but a port that provides historical power data over some

time range may be much easier to implement with a cloud

service that is collecting the historical data. A mechanism

similar to an HTTP redirect issued by the device would likely

make the hand-off seamless.

VIII. CONCLUSIONS

Our contribution in this work is a coherent architecture

for networked devices. We identify the key abstraction layers

between an abstract application concept—“turn the lights off

when I leave the room”—and the details of exactly how and

when to send what bits to which devices. This starts with

defining ports and attributes for devices and modeling all

interaction with the device as interactions with this interface.

It builds to presenting the interface to applications with device

wrappers, or small adapters that encapsulate the device-specific

API. These wrappers share interfaces among devices, further

raising the level of abstraction when designing applications. It

ends with application frameworks that help create and execute

applications on top of the networked devices. This architecture

facilitates communication between previously incompatible

devices to enable the applications that a fully-connected world

promises.
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