2022 21st ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)

An Energy Supervisor Architecture for Energy-Harvesting
Applications

Nurani Saoda
University of Virginia
saoda@virginia.edu

Md Fazlay Rabbi Masum Billah
University of Virginia
masum@virginia.edu

ABSTRACT

Energy-harvesting designs typically include highly entangled app-
lication-level and energy-management subsystems that span both
hardware and software. This tight integration makes developing
sophisticated energy-harvesting systems challenging, as developers
have to consider both embedded system development and intermit-
tent energy management simultaneously. Even when successful,
solutions are often monolithic, produce suboptimal performance,
and require substantial effort to translate to a new design. Instead,
we propose a new energy-harvesting power management architec-
ture, ALTAIR that offloads all energy-management operations to the
power supply itself while making the power supply programmable.

ALTAIR introduces an energy supervisor and a standard interface
to enable an abstraction layer between the power supply hardware
and the running application, making both replaceable and recon-
figurable. To ensure minimal resource conflict on the application
processor, while running resource-hungry optimization techniques
in the supervisor, we implement the ALTAIR design in a lower power
microcontroller that runs in parallel with the application. We also
develop a programmable power supply module and a software
library for seamless application development with ALTAIR.

We evaluate the versatility of the proposed architecture across a
spectrum of IoT devices and demonstrate the generality of the plat-
form. We also design and implement an online energy-management
technique using reinforcement learning on top of the platform and
compare the performance against fixed duty-cycle baselines. Results
indicate that sensors running the online energy-manager perform
similar to continuously powered sensors, have a 10X higher event
generation rate than the intermittently powered ones, 1.8-7x higher
event detection accuracy, experience 50% fewer power failures, and
are 44% more available than the sensors that maintain a constant
duty-cycle.

KEYWORDS

Energy-harvesting System Design, Dynamic Power Management

1 INTRODUCTION

The ubiquitous vision of the Internet-of-Things is greatly ham-
pered by the “battery problem”. As reliable power sources like wall
power are not always available where IoT devices are deployed,
many devices use batteries as their main power source. Batteries,
due to their limited cycle count [5, 35], potential long recharge
times [32, 47], and hazardous nature [25, 29] have become a less

978-1-6654-9624-7/22/$31.00 ©2022 IEEE
DOI 10.1109/IPSN54338.2022.00033

311

Wenpeng Wang
University of Virginia
wangwp@virginia.edu

Bradford Campbell
University of Virginia
bradjc@virginia.edu

attractive option as a power source for applications that require low
maintenance and life-long service. To eliminate these drawbacks,
certain ubiquitous applications which previously relied on batter-
ies as their power source, have adopted energy-harvesting power
supplies as an alternative. Such applications include building and
home automation, smart industrial monitoring, and smart wear-
able applications. Recent works have even pushed the boundaries
of smart sensing by introducing energy-harvesting medical im-
plants [16, 31], wearable activity tracker [28, 42, 46], micro-satellites
for space observation [27], and industrial and residential monitor-
ing [1, 9, 14]. Though energy-harvesting systems are making their
way into mainstream sensing applications, a vast majority of the
commercial off-the-shelf IoT sensors still rely on batteries [10, 20].
Unfortunately, converting a battery-powered application to energy-
harvesting is not as straightforward as replacing the battery with a
harvester. Harvestable energy is usually very limited, intermittent,
and unpredictable which requires special hardware and software
support to achieve useful operation [8, 11, 17, 48].

The operating principle of battery-less energy-harvesting appli-
cations can be broadly categorized into two approaches: intermittently-
powered and energy-neutral. The first category of sensors harvest
energy from the environment through solar, RF, thermal, and kinetic
sources, store the energy momentarily in a capacitor, operate until
the capacitor is depleted, and repeat this cycle continuously, while
the latter store energy for future use and regulate the operational
frequency of the sensor to ensure that the outgoing energy roughly
matches the combined incoming and stored energy. Various designs
implement these techniques to realize energy-harvesting systems,
including hardware-based [12, 18, 24, 49] and software-based so-
lutions [7, 11, 26, 36]. In both cases, however, energy-harvesting
systems typically consist of a single processor along with an energy-
harvesting front-end and application peripherals, where the proces-
sor is responsible for both energy management tasks (i.e. tracking
the amount of energy stored, controlling the wake-up time in-
terval, turning on peripherals at specific voltage levels, etc.), and
application-specific tasks (i.e. sampling, computation, and trans-
mitting radio packets). While this monolithic architecture can be
simple and efficient for the intended application, adopting these
platforms to build new applications can be quite difficult due to
tightly-coupled implementations of energy-management code and
application code. The intertwined application and energy manage-
ment requires the developer to be responsible for understanding
not only how to manage energy and correctly implement the appli-
cation, but also how the two halves might interact.

This tight coupling of energy management and application logic
imposes a major limiting factor for energy-harvesting system de-
sign. In this paper, we propose ALTAIR, a modular architecture for
energy-harvesting system design that decouples energy manage-
ment from application execution. We claim that traditional power
supply interfaces (consisting only of one or more voltage rails
and possibly a power available flag) must expand to allow energy-
harvesting power supplies to encapsulate the complex energy man-
agement tasks required of sophisticated energy-harvesting systems
to achieve energy-neutral operation. By requiring the power sup-
ply itself to handle tasks including energy forecasting, allocation,
measurement, and management, the application logic no longer
has to integrate these tasks. Application platforms can focus on
the IoT task (as they would with a battery-based power supply),
and the new “smart” power supply can make intelligent decisions
about when the application should wake up, what operating mode
it should be in, and how long it should stay active, based on its
careful knowledge of the energy state.

To make these decisions, the ALTAIR design incorporates an
energy supervisor that runs energy management protocols (for
example, reinforcement-based learning algorithms for harvesting
prediction and long-term optimizations for energy neutrality) on
behalf of the application. Since the algorithms and power supply
are tightly coupled, they can be highly optimized, and must only be
implemented once. Many application-level platforms can leverage
the same power supply. Further, the energy supervisor can handle
the uncertainty in energy-harvesting system deployment, relieving
each application from needing to consider the range of potential
deployment conditions it might face, and instead allowing the power
supply to adapt to the local conditions post deployment.

Expanding the role of the power supply also requires fundamen-
tally re-thinking the interface between the application processor
and the energy supervisor. ALTAIR includes a much richer interface
that supports a range of potential application platforms. ALTAIR
supports “harvesting-aware” applications that can instead use the
power supply almost as a co-processor to provide hints about the
correct operating mode to use to meet the application’s overall
operational goals. By supporting a range of use cases, ALTAIR can
help many IoT devices embrace the benefits of energy-harvesting
operation.

While implementing ALTAIR architecture, we ensure minimal
resource conflict on the application hardware by offloading the
energy management algorithm to a power-optimized microcon-
troller. Using a separate core also allows decoupling in the time
and power domain and flexibility to be re-used across a variety
of devices. To realize ALTAIR design and evaluate its extensibility,
we create a prototype implementation of the platform with a func-
tional power supply interface. To demonstrate a potential complex
energy management algorithm, we implement a lightweight rein-
forcement learning (RL)-based duty cycle adaption technique that
can run entirely inside the power supply. We provide a bus-based
power supply interface, as well as a software library that application
platforms can use to interface with the power supply.

In our experiments, we integrate six IoT sensors with the ALTAIR
power supply and compare the performance of a variety of energy
supervisor control algorithms. By demonstrating the performance
of several energy-management techniques on a single hardware

312

platform, integrated with a number of existing devices, we show
the generality, flexibility, and robustness of the energy supervisor
architecture. Our results show that the event capture rate of sensors
when optimized by the RL-based ALTAIR energy supervisor is com-
parable to using a traditional reliable power source, and the capture
rate is 10X higher compared to the intermittently powered ones.
Sensors can achieve 1.8-7X higher event detection accuracy with
opportunistic duty-cycling. We also find that our system incurs
50% fewer power failures and has 44% more availability than the
statically duty-cycled sensors.
To summarize, the main contributions of the paper include:

We propose, ALTAIR, an energy supervisor architecture for IoT
sensing applications that executes energy management decisions
separately from the application. We claim that this separation is
crucial for better energy optimization and independent applica-
tion design of energy-harvesting battery-less devices.

We propose a new power supply-application interface that sup-
ports building on top of unreliable power sources and implement
a flexible software library to demonstrate the efficiency of the
proposed system.

We implement the proposed architecture as a standalone PCB that
can be easily incorporated into new as well as already existing
battery-powered devices. The platform is open source.

2 SYSTEM DESIGN CHALLENGES

Energy-harvesting devices must balance an unreliable source of
energy with application-level goals. Coupling an application’s task
flow to an unreliable source of energy makes energy-harvesting
systems difficult to develop and debug, and can result in poor per-
formance. Often, the application’s task i.e., sensing, computing, or
transmitting, is carefully mapped to the recent energy state of the
energy storage. This tight integration between an application’s task
flow and energy availability significantly limits today’s battery-less
systems in several ways.

Suboptimal performance. With a high degree of energy-applic-
ation coupling, an application’s execution becomes highly energy-
dependent. With unreliable energy, the application needs to per-
form complex software checkpointing techniques to ensure forward
progress, which is not always guaranteed. Application programs
can enter an endless inactive loop [30, 36], producing suboptimal
performance. The complexity, uncertainty, and software overhead
induced in intermittent computing indicate a need for alternative
approaches to design energy-harvesting systems.

Runtime energy optimization. When an application’s task
execution is directly mapped to its energy status, this mapping is
often performed at design time and is not optimized or re-evaluated
during runtime. Decisions made at design time fail to scale post
deployment. Since the nature of harvestable energy is time, space,
and source dependent, modeling accurate energy states for all pos-
sible scenarios apriori is non-trivial. Figure 1 shows two co-located
intermittently-powered solar energy-harvesting nodes that both
transmit a radio packet each time their capacitor reaches a certain
voltage. Though deployed in relatively similar environments, the
harvesting rate of the sensors varies quite significantly resulting
in different throughput and availability, which is hard to model at
design time. Non-linear device parameters are another source of

1.00
0.75
. Sensor_A
Sensor B 7119 s
g 0.50 4 Sensor’
Sensor_A (735 S)
0.25
sam
0.00

ULALLL BRI SRRLAL SRR AR AR AL
1072107 10° 10' 10% 10® 10*
Time between packets (s)

(a) Deployed sensors (b) Packet reception
o ® 65%
2 2
> Sensor B 3 3%
S o
S)
Sensor A R

Sensor_A Sensor_B

Time

(d) Event detection
comparison

(c) Difference in sensor duty-
cycles

Figure 1: Two energy-harvesting sensors in room a) trans-
mit at a rate shown in b). Performance varies significantly
indicating high energy variability of indoor solar energy. Dif-
ferent duty cycles in c) result in different event detection
percentage in d).

stochasticity in energy-harvesting design. For example, two sensors
deployed nearby and powered by the same PV cell could operate
at different points on its PV curve at a given time and therefore,
produce different output power. Different output power results in
different capacitor recharge times. Both of these two relations are
stochastic and non-linear and fixed design time decisions produce
suboptimal performance in post-deployment phases indicating the
importance of runtime energy modeling.

Impedes development. Developing applications with unstable
power requires more expertise, development time, and rigorous
testing and debugging than with reliable power. With the appli-
cation’s behavior being energy-coupled, developers have to care-
fully implement everything from the low-level energy-harvesting
hardware circuitry to writing optimized code within the system’s
limited energy budget. This creates a large burden on an IoT ap-
plication developer. Moreover, finding the optimal design strategy
often takes multiple design-test-deployment cycles. Successful and
smooth battery-less development requires a well-balance between
providing enough abstraction as well as control into the underlying
energy optimization mechanism [38].

This combination of challenges suggests that a different design
architecture for energy-harvesting is required.

3 OVERVIEW OF ALTAIR

We propose ALTAIR, a new energy-management architecture for
energy-harvesting applications that decouples energy related deci-
sions from an embedded application’s task execution. This separa-
tion introduces an abstraction layer between the application and
power management which enables independent, modular, and faster
design of both subsystems. ALTAIR hides the low-level complex-
ity of energy measurement and management from an application
developer, while exposing critical energy parameters through the
ALTAIR energy APL

313

The Energy

Supervisor -
Power Main
Energy- Application
harvesting &
Power Supply Low- N Control Energy
Hardware level Energy API
. API
drivers Data

Energy-Application
Interface

Figure 2: Overview of ALTAIR energy supervisor architecture.

Figure 2 depicts the high-level overview of the ALTAIR energy su-
pervisor architecture. The design consists of three core components:
the energy supervisor, the energy-application interface, and the
main application. The energy supervisor monitors the energy states
of the storage along with load energy consumption and determines
the optimal duty-cycle to achieve energy-neutral operation within
the limited energy budget. The supervisor works as a wrapper func-
tion that implements power supply functionality and an interface
to facilitate calls between the supervisor functions and main appli-
cation. The main application implements the application specific
tasks of an IoT sensor such as sampling, computation, and data com-
munication, and makes call into the energy supervisor using the
interface. The energy-application interface handles requests from
the main application, defines the function-specific input/output
parameters, and ensures reliable data communication. Algorithm 1
outlines how the application and the supervisor can interact. The
function MAIN invokes ENERGY_SUPERVISOR specifying applica-
tion requirements (p1, p2, ..) to receive the rate at which a task is
performed. Instead of tying an application’s task with the specific
energy status of the storage as done in many battery-less appli-
cations, the main application offloads the decision to determine
an optimal wake-up rate of the sensor to the energy supervisor.
This way, the dependence between the energy supervisor and the
application is reduced.

3.1 Enabled Properties

ALTAIR enables several desired properties of energy-harvesting
system design that traditional implementations often cannot. It in-
troduces a general, reusable, and reliable application-power supply
interface for energy-harvesting applications and achieves indepen-
dent and modular design. Since the energy supervisor and the main
application are separate modules of code and the application’s task
flow is not directly logically dependent on the outcomes of the
supervisor, development can be performed in a parallel fashion.
This decoupling also simplifies adding new APIs to the energy-
supervisor and new functionality in the application. A standard
interface between the energy-harvesting power supply hardware
and the IoT sensor enables integrating a variety of sensors with a
single power supply without re-designing the harvesting circuity
or energy management logic, enabling reusability and scalability of
the platform. Also, since the application does not interact with the
underlying energy-harvesting power supply hardware, the IoT ap-
plication developer does not need to implement power-supply spe-
cific drivers in the application code. Moreover, though we propose
ArTAIR for energy-harvesting applications, the general architecture
can be adopted in battery-powered IoT and mobile applications as
well as for advanced power optimization.

Algorithm 1

function ENERGY_SUPERVISOR (p1, P2, ., Pn)
return action_rate
function APP_ROUTINE (rate), // application task code
return
function MAIN
After each tyerioq {
rate = ENERGY_SUPERVISOR (p1, p2, ., Pn)
APP_ROUTINE (rate) }

4 ALTAIR SYSTEM DESIGN

An IoT application interfaces with the energy supervisor of ALTAIR
to maximize its energy utilization. In this section, we discuss the
core components of the architecture and how they interact. We also
investigate the design choices to understand the trade-offs in the
design space.

4.1 Design Space Trade-off

We note that the isolation between the energy management and
application sub-blocks proposed by ALTAIR can be implemented
in both software and hardware. In software, this isolation would
be possible by delegating the energy management portion in a
separate module with the implementation of appropriate interface
functions accessed by the main application. In the hardware ver-
sion, the energy management functionality could be executed in
a separate core or a processor with dedicated hardware resources.
We identify some crucial factors when choosing between these
various design points. While implementing ALTAIR as a software
component would provide the desired logic detanglement and inde-
pendent code development, we advocate for the hardware version
of ALTAIR design to take advantage of several benefits.

4.1.1 Minimal resource conflict. Today’s IoT devices are extremely
resource-constrained due to their size and power restrictions, yet,
they are expected to perform a diverse range of processing-intensive
applications. Such applications include critical real-time processing,
multi-radio wireless communications, and even running machine
learning inferences. Typically these computation-intensive tasks
are handled in real-time by a low-end microcontroller causing sig-
nificant burden on the shared memory and CPU bandwidth. Adding
an online energy management algorithm would exacerbate these
concerns. Instead, we leverage an ultra-low power microcontroller
with dedicated clock, memory, and I/O bandwidth to execute the
energy supervisor in parallel with the application.

4.1.2 Decoupling in the power domain. Using hardware isolation
and adding additional hardware components to the system might
impose an additional energy cost in an energy-harvesting appli-
cation. However, we argue that the average energy overhead can
actually be reduced by leveraging a lower power core than the main
application. As these two cores are decoupled in the power domain
and they can be turned on/off independently, one can reduce the
overall energy cost. This architecture has been implemented by
silicon vendors in many low power dual-core processors [43, 45].
Furthermore, the energy-management core can be further power-
optimized with the recent growth of ultra-low power chip technol-

ogy.

314

Table 1: List of ALTAIR APIs.

Energy Supervisor Main Application

c_param_t dc_t get_optimal_dutycycle()
get_critical_parameters()

list_param_t get_app_list()

double
get_current_energy_status()
int get_update_period()

mode_param_t
get_power_modes()

model_array_t
get_energy_model()

4.1.3 Reusability and generality. A hardware implementation of
ALTAIR accelerates the development phase and reduces developer
effort by providing modularity and reusability across multiple appli-
cations. To promote reusability, we adopt the hardware-accelerated
software energy management of ALTAIR and implement the energy
supervisor in a lower power microcontroller taking inspiration from
the ARM’s big. LITTLE technology [4] that leverages a smaller lower
power core to enable power optimization. In the evaluation, we
test the performance with a variety of IoT sensors and demonstrate
the composability and generality of the platform. This enables fu-
ture embedded designers to rapidly develop their own applications
while adopting energy-harvesting functionality.

4.2 The Energy Supervisor

The energy supervisor of ALTAIR handles the tasks of energy man-
agement, prediction, and allocation, and makes decisions indepen-
dently from the application logic. To accomplish this, the energy
supervisor has two key components. First, the supervisor interacts
with an energy-harvesting front-end to collect useful information
about the harvesting conditions. This information includes the aver-
age input power, the charging rate of the storage, and instantaneous
and average stored energy. The energy-harvesting front-end typ-
ically accommodates an energy-harvester (e.g. solar, RF, thermal,
or piezoelectricity), a charge controller, and an energy storage (e.g.
capacitor). Second, the supervisor implements the dynamic power
management scheme and the interface presented to the main ap-
plication. For dynamic energy management, the application can
specify the parameters (i.e., duty-cycle) to be optimized and an
optimization algorithm among the supported ones. The supervisor
can also inform the application about which operating mode the
application peripherals should be running in, or the recommended
order of priorities for multiple applications.

The supervisor makes power management decisions by keeping
track of system’s past experience and predicting future expected en-
ergy incomes. Learning and adapting the optimization parameters
at runtime, as opposed to fixed design time or datasheet parameters,
makes the energy supervisor more robust to real-world deployment
conditions. The supervisor attempts to support any type of appli-
cation workload. However, as the underlying hardware can only
buffer a finite amount of energy, the average energy consumption
of the application must be below the maximum buffered energy.

Energy supervisorcode App code

intmain (){ intmain (){

configure_supervisor();

wait_for_cmd_from_app ();
get_critical_parameters();

get_app_list();
get_ power_modes();

get_current_energy_status();
t_timer = get_update_period();
/I once set_timer expires
get_optimal_duty_cycle();

Figure 3: Example workflow diagram between the application
and energy supervisor. The direction of the arrow specifies
the direction of API calls.

4.3 Energy-Application Interface

The energy-application interface enables the abstraction layer be-
tween the main application and the energy supervisor module.
It facilitates communication between the energy supervisor and
the main application by implementing a set of useful APIs. This
standard interface enables updates and improvements to the en-
ergy supervisor and any optimization algorithms without requiring
direct changes in the application.

4.3.1 ALTAIR Energy API. Table 1 shows the list of available APIs

provided by ALTAIR. The energy supervisor calls get_critical_parame-

ters, get_app_list, and get_power_modes to acquire application or
device specific information. These are fixed configuration parame-
ters of the application that are not expected to change at runtime.
get_critical_parameters returns an array of permitted duty-cycles of
the running application, according to which the energy supervisor
optimizes for long term energy neutrality, and which energy opti-
mization algorithm from the supported ones to use. Currently, the
platform implements three duty-cycling mechanisms (described in
Section 6.2). To understand how energy is being spent, get_app_list
provides the list of energy-atomic operations performed by the ap-
plication. Energy-atomic operations are categorized into sampling
a sensor, computing and analysing the sampled data, transmitting
data, or receiving data. Each of these operations is associated with
a unique operation ID. The application specifies the required op-
erating power modes using get_power_modes. ALTAIR saves this
information into the non-volatile memory of the energy supervisor
to eliminate the need to repeat the APIs calls after a power failure.

On the application side, ALTAIR provides another four APIs,
namely get_current_energy_status, get_optimal_dutycycle, get_update-
_period, and get_energy_model. get_optimal_dutycycle returns the
calculated optimal duty-cycle which is one of the values specified
by get_critical_parameters and the power modes of each operation.
The application performs sensor sampling, computation, and com-
munication at this optimal rate and enters sleep mode in between
operations. The get_update_period returns at what interval the ap-
plication should check for the updated duty-cycle. This depends on
how variable the incoming energy profile of the device is (defaults to
15 minutes). The get_current_energy_status and get_energy_model
offer finer insight into the system’s energy status. By calling these,
the application receives the current stored energy on the capaci-
tor and the current numeric input values used by the duty-cycle
algorithm to calculate the duty-cycle, respectively.

315

4.3.2 Hardware Energy Interface. The hardware energy interface
consists of the hardware abstraction layer that configures the hard-
ware interface between the supervisor and the application. Each
API call is executed by a set of hardware signals and a data com-
munication channel. The interface consists of voltage, control, and
data channel as shown in Figure 2. The data channel enables a syn-
chronous communication channel between two processors where
the application processor provides the clock signal. When the ap-
plication processor makes a call into the API functions, it sends an
interrupt signal to the energy processor. The energy processor uses
the interrupt to configure the communication hardware and initiate
data transfer. The energy API calls described in the previous section
are translated into data packets. The first byte of energy API packet
encapsulates header information specifying the intended API call
and a read/write bit, and the next two bytes specify the message
length. To invoke the energy supervisor to call an API, the main
application sends a write request and an API call from the applica-
tion is sent as a read request. Both processors avoid sending a new
request if there is any previous unresolved or pending request. We
also keep a timeout timer to avoid a communication deadlock.

Figure 3 shows a flow diagram between the energy supervisor
and the application code using ALTAIR energy API. Upon startup,
the main application uses the configure_supervisor to send write re-
quests and prompt the energy supervisor to call the next three func-
tions for configuration. get_current_energy_statusand get_energy_m-
odel is called at any time application, while, the get_optimal_dutycycle
is invoked according to get_update_period.

4.4 The Main Application

The main application is a piece of software that performs the typical
workload of an IoT sensor, i.e. sampling, computing, processing,
and transmitting.

5 ALTAIR PLATFORM IMPLEMENTATION

We implement the ALTAIR energy-harvesting power supply module
in a custom PCB.

5.1 Hardware Components

The ALTAIR hardware consists of two primary modules: a power
system module and an external application module. The power
system module implements the energy supervisor, low level energy-
harvesting hardware, and the hardware interface between the en-
ergy supervisor and the main application. The main application is
representative of a typical IoT sensing application that is powered
through the power supply interface.

Power supply module. The power supply module of ALTAIR
hardware accommodates an energy-harvesting front-end and a
companion microcontroller that implements the energy supervisor
software. Figure 4 shows the power supply module and the block
diagram of the core components.

An ultra-low power battery charger IC SPV1050 charges the
supercapacitor from a solar or TEG harvester until it reaches 3.1 V.
A nano-power boost regulator MAX17222 with > 70% efficiency
at 10 pA of input current regulates the supercapacitor voltage after
its voltage reaches 2 V. The platform currently uses a monocrys-
talline IXYS solar cell as the harvester and a 470 mF supercapacitor

wan Lo] - MU |- - [rado]

Appiication

Power
Supply
Module

Enersphanestng [o |
frontend
s

T Eions

(b) Hardware block dia-
gram.

(a) ALTAIR Power supply board inter-
facing with a sensor.

Figure 4: The ALTAIR hardware platform consists of a power
supply module that implements the energy supervisor and
a discrete power supply application interface that can be
plugged in directly with an external application.

with an ESR value of 25 2 as electrical storage. We size the capacitor
empirically to ensure that it can supply the highest system peak
current.

The energy supervisor uses an ultra-low power 32-bit ARM
Cortex-M0+ with a 8 kB of SRAM and 64 kB of flash with different
low power modes. The power supply consists of a current-sense
amplifier MAX9634 to keep track of the load energy consumption.
A nano-power power gating IC TPL5110 with reconfigurable time
interval allows the MCU to duty cycle the application in hardware
with minimal calibration. The MCU leverages a digital potentiome-
ter to dynamically reconfigure the time interval according to the
calculated duty cycle.

The interface. The interface of the power supply module pro-
vides two voltage rails of 3.3V and 1.8V, one duty-cycled voltage
rail, capacitor voltage output. We use SPI to exchange information
between the two microcontrollers and one GPIO to trigger inter-
rupts. For debugging and evaluation, the interface exposes a UART
channel that can be used to log the instantaneous capacitor voltage
state and current measurement channel.

Application module. The application module of ALTAIR plat-
form is an externally attached sensor. We implement an air quality
and pressure sensor board as a part of the platform.

5.2 Energy Supervisor Implementation

We implement an example energy supervisor to show how the
architecture can be leveraged to optimize the duty-cycle of the con-
nected application. With the dedicated hardware resources of the
energy supervisor microcontroller, processing-intensive on-device
energy optimization can be implemented without imposing signifi-
cant resource conflict on the application microcontroller. One of the
useful properties of the energy supervisor is its capability to learn
to behave optimally post deployment without explicitly modeling
the harvesting environment pre-deployment. To demonstrate this,
we implement an on-device energy supervisor using reinforcement
learning. Reinforcement learning has shown promising results as a
power management technique since it can enable the sensor node
to learn to adjust its duty cycle in a completely unknown environ-
ment [3, 21, 41]. The RL-based energy supervisor reacts to changes
in available energy to update an application’s operation, in this

316

Algorithm 2 RL Algorithm for Energy Management

Initialize S, A, Q(s,a) =0, a,y,€,8
while true do
for each episode do
s « Sample current states
a < Choose current action from s using e-greedy policy
wait for a duration of t,4ir
for each step of the episode do
Perform action a for the duration of tszep
wait for a duration of ty,qi¢
s’ « Sample next states
r « reward (s’, a) according to equation (3)
a’