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ABSTRACT
While relying on energy harvesting to power Internet of Things
(IoT) devices eliminates the maintenance burden of battery replace-
ment, energy generation fluctuation constitutes a major source of
uncertainty to design reliable self-powered IoT devices. To charac-
terize spatial-temporal variability of energy harvesting, data acquisi-
tion campaigns are needed across the range of potential harvesting
sources. In this work we present a dataset to characterize thermal
energy sources in residential settings by measuring thermoelectric
generator (TEG) operating conditions over 16 deployment locations
for periods ranging from 19 to 53 days. We present our easy-to-
use thermal energy measurement platform built from off-the-shelf
component modules and a custom TEG interface circuit. We demon-
strate how the collected measurements can inform the design of
energy harvesting IoT devices by deriving the TEG’s maximum
power output and estimating the available energy at each harvest-
ing location.
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• Hardware → Sensors and actuators; Sensor applications
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1 INTRODUCTION
Energy harvesting is a promising solution to enable ubiquitous In-
ternet of Things (IoT) infrastructure as it can potentially eliminate
human intervention burden associated with battery replacement.
However, the design of reliable energy harvesting IoT devices is
challenging due to energy availability fluctuations resulting from
particular environment conditions surrounding each device. A com-
mon approach to characterize spatial-temporal variability of energy
harvesting conditions is to extensively collect energy harvesting
traces under relevant environments and later use this information to
derive harvester requirements and power consumption constraints
to IoT applications. While significant efforts have been made to
collect energy harvesting traces from solar harvesters [2, 5], traces
from other energy sources as thermal energy are scarce. Collecting
energy harvesting traces from thermal sources can support IoT
designers to evaluate if thermal energy is a viable option to enable
their application, either being used as the main source of energy or
as a complementary source.

To address this energy harvesting knowledge gap, we present a
thermal energy harvesting profiling dataset in residential settings
to support energy harvesting IoT applications for home and build-
ing automation. Our measuring platform collects a thermoelectric
generator (TEG) operating conditions as well as temperature read-
ings using off-the-shelf component modules and a custom circuit
module to interface with the TEG. As part of an IRB approved study,
our platform was deployed by volunteers on 16 different locations
including pipes carrying warm water, electronic devices, a refrig-
erator compressor, and an HVAC vent. The data collection period
varied for each location, the shortest deployment lasting 19 days and
the longest 53 days. In total, the dataset contains 544 days worth of
thermal energy recordings. Using the collected measurements, we
estimated the TEG’s internal resistance, then computed the TEG’s
maximum power point (MPP) and simulated the output current
of a LTC3108 boost converter circuit. To the best of our knowl-
edge this is the first study to spatially and temporally characterize
thermal energy sources in residential settings for multiple weeks.
The dataset and python scripts to process and reproduce plots are
available in [4] through LibraData, the University of Virginia’s data
repository ( https://doi.org/10.18130/V3/M9CP9C).
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Figure 1: Thermal energy harvesting recording platform de-
ployed at a water boiler location (dataset: TEG001_env1.h5).

2 THERMAL ENERGY HARVESTING
RECORDING PLATFORM

The energy harvesting recording platform used for this study fol-
lows the I-V (current-voltage) curve measurement approach intro-
duced by [3], consisting on measuring the energy harvester output
under a range of loading conditions. The advantage of using this
technique is providing a realistic joint characterization of envi-
ronment and harvester that is independent of specific harvester
loading, allowing circuit level simulations of boost converter inter-
faces and the estimation of generated power available to the IoT
device. The I-V curve measurements were performed by a custom
circuit module consisting of an analog to digital converter (ADC)
and four load channels (0.1, 0.47, 1.5 and 4.7 ohms) that can be
independently switched on or off in order to measure the TEG’s
output voltage under each load and hence allow an estimation of
the TEG I-V curve. The resistor loads were chosen to cover the
TEG expected I-V curve range, considering the TEG manufacturer’s
recommended optimal load of 1.5 ohms. To calibrate the platform
measurements, the resistance of each active channel was measured
(0.2251, 0.5990, 1.6245, 4.8070 ohms respectively) as well as the
short-circuited probe’s resistance (0.1080 ohms). The ADC used
was an ADS1015, configured to provide 12-bit voltage readings
and a gain of 8, resulting in a voltage range of [-0.512V, +0.512V]
and resolution of 0.25mV. Finally, the hot surface side and ambient
temperature parameters of the TEG operating conditions were also
measured as additional information valuable to harvester designers.

To improve accessibility and make our investigations repro-
ducible to the largest number of researchers and makers possible,
we adopted mostly off-the-shelf component modules for our ther-
mal energy harvesting recording platform. We use a Raspberry Pi
as a computing device, a thermocouple amplifier module to acquire
temperature readings and a custommodule to measure the TEG out-
put voltage under four resistor loads and open circuit conditions.
This approach allows the platform to be more easily assembled
while also providing flexibility to reuse parts to other projects. The
thermal energy harvesting recording platform is assembled using
the components listed in Table 1 and the platform is depicted in
Figure 1. In Figure 2 we show a block diagram of the data acquisi-
tion platform and in Figure 3 we show circuit schematics details of
the custom TEG interface module.
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Figure 2: Block diagramof the data acquisition platform.We
use a custom TEG interface module to switch the load con-
nected to theTEGand tomeasure theTEGoutput voltage for
each loading condition.We also use an off-the-shelf thermo-
couple amplifier module with a type k thermocouple sensor
to measure the TEG hot side surface temperature as well as
the ambient temperature. We use an Raspberry Pi as a con-
troller and data logger, connected to both modules through
an I2C interface.
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Figure 3: TEG interfacemodule schematics.We selected four
fixed resistor loads to characterize the TEGmodel by assum-
ing 𝑅𝑖𝑛𝑡 around 1.5 ohms. We used MOSFET transistors to
switch each load ON or OFF and we used an ADS1015 IC
as the programmable gain amplifier (PGA) and the analog
to digital converter (ADC). 𝑃0 to 𝑃3 are digital output ports
of a PCA9536 IC, an I2C controlled GPIO. We interface the
ADS1015 and the PCA9536 ICs with an Raspberry Pi con-
troller through I2C.

3 DATASET
The thermal energy harvesting recording platform was configured
to perform one measurement every 0.5 seconds consisting of: the
TEG hot surface and ambient temperature; and the TEG output
voltage under open-circuit condition as well as connected to each
load resistor (0.1, 0.47, 1.5 and 4.7 ohms). Measured data points
are saved as CSV files in the Raspberry Pi SD card. The sampling
period of 0.5 seconds was chosen as a compromise between data set
size and time domain resolution to monitor typical thermal sources
present in residential settings.
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Table 1: Thermal energy harvesting recording platform components

Component list specification

Raspberry pi 3 model A+ with a 32GB microSDHC UHS-1 A1 card (Sandisk) and a 2.5A microUSB power supply (Pro-elec).
Qwiic pHat board (Sparkfun) and 2 qwiic cables to connect modules over I2C interface.

Qwiic Thermocouple Amplifier - MCP9600 (Sparkfun) with a K-type thermocouple (Pimoroni).
Custom PCB for TEG I-V curve profiling based on PCA9536 and ADS1015 integrated circuits.

Mini-Harvester Thermal Energy Generator (Marlow EHA-PA1AN1-R03) with 1.5 ohms optimal load and 20x20mm surface area.

Volunteers installed the energy harvesting recording platform
in 16 residential locations following an approved IRB protocol and
they provided a picture of each installation setup, shared as part
of the dataset. Seven of the selected locations were over warm
water conducting pipes close to water boilers. Five were under
sinks, either over warm water conducting pipes or over wastewater
conducting pipes. The following locations only had one deployment:
over a WiFi router, over a NAS data storage system, attached to a
heater system, and over a refrigerator’s compressor. Due to practical
deployment challenges of the profiling devices, accidents during
the deployment resulted in disconnected TEG devices or invalid
temperature readings. To help filtering data, boolean flag columns
were added to the dataset to identify data points related to poor
deployment conditions.

To complement the dataset, we estimated the TEG internal re-
sistance from our measurements by performing a least squares fit
of the I-V curve data points at each timestamp value. For the used
TEG device under typical operating conditions, the estimated inter-
nal resistance is approximated to either 1.2 or 1.3 ohms. Using the
estimated internal resistance, we calculated the maximum power
point (MPP) of the TEG device and the maximum power density of
this device by dividing the MPP to the TEG surface area. Finally,
we interpolated the LTC3108 curves provided in the manufacturer
data sheet [1] to derive the relationship between TEG open-circuit
voltage and output charging current for the estimated TEG internal
resistance of either 1.2 ohms or 1.3 ohms. This open-circuit voltage
to charge current curve represents a LTC3108 based boost converter
circuit with a 1:100 ratio transformer as specified in page five of [1].
All the dataset measured and calculated parameters are summarized
in Table 2. The dataset were formatted using python Pandas module
as dataframes and saved as Hierarchical Data Format (HDF) files
using the function "pandas.to_hdf()" with default settings.

4 DATASET USE CASE EXAMPLES
A straight forward dataset use case would be evaluating how much
energy can be generated at different locations as a first estimate of
application feasibility. For instance, the calculated TEG MPP output
represents the best case scenario for the used TEG device in the
recorded conditions. Figure 4 depicts power generation distribution
at MPP for two boiler locations deployments as in Figure 1. An IoT
designer could use these distributions to evaluate what fraction of
the time the power available could support an specific application
or it could also be used to determine if an application outcome
is expected to be similar for these locations. As a reference, the
harvesting levels of hundreds of micro-watts recorded at the boiler
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Figure 4: Both recorded environments near boilers have po-
tential to generate 330 𝜇W or more for two thirds of the
time, however environment TEG010_env1 can generate at
least 260 𝜇Wmore consistently than TEG001_env1.
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Figure 5: Using the dataset with a LTC3108 circuit model, we
simulated the net current available to an IoT device. For the
shown period of dataset TEG001_env1, an IoT designer can
select an energy storage device to buffer energy through one
hour windows and set an energy-adaptive device to operate
with average current consumptionmodes between 32 and 56
𝜇A.

environments is comparable to the energy harvested by small solar
cells in low-level indoor light conditions [6].

While the TEG MPP represents an upper bound on the available
energy to an IoT device, the boost converter output current provides
a more realistic estimation of the IoT’s net usable energy by taking
into account practical circuit efficiency parameters. Using the TEG
internal resistance and the LTC3108 boost converter circuit model
curves previously mentioned, it is possible to estimate the output
current that is available to charge a storage device, for instance a
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Table 2: Thermal energy harvesting profiler dataset parameters

Parameter Unit Description

timestamp milliseconds Unix timestamp in UTC
voltage_open_circuit volts TEG open-circuit output voltage

voltage_R_p1 volts TEG output voltage with 0.1 ohm load
voltage_R_p47 volts TEG output voltage with 0.47 ohm load
voltage_R_1p5 volts TEG output voltage with 1.5 ohm load
voltage_R_4p7 volts TEG output voltage with 4.7 ohm load

temperature_ambient degree Celsius Ambient temperature
temperature_surface degree Celsius TEG hot surface temperature

teg_internal_resistance ohms Internal resistance of the TEG model
teg_mpp_uw microwatts TEG maximum power point (MPP) output

teg_mpp_density_uw_per_cm2 microwatts / centimeter squared TEG MPP density
boost_voc_mv millivolts TEG open circuit voltage input for LTC3108 model
boost_ichg_ua microamperes Charging current output of LTC3108 model

flag_thermocouple_invalid - Boolean flag for invalid temperature measurements
flag_teg_disconnected - Boolean flag for invalid TEG measurements

super capacitor. Figure 5 depicts the estimated charging current
output profile of the LTC3108 boost converter if it was connected to
the TEG in the recorded environments. This profile can inform how
long it would take to a capacitor to fully charge in these conditions
and what is the expected maximum average current consumption of
a energy harvesting IoT device for this environment. Furthemore,
energy harvesting prediction algorithms to adapt IoT operation
given energy generation fluctuations can also be evaluated using
this dataset as performed by [5].
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