
Energy Harvesting Systems Need an
Operating System Too

Samyukta Venkat
University of Virginia
svenkat@virginia.edu

Marshall Clyburn
University of Virginia
mdc5pv@virginia.edu

Bradford Campbell
University of Virginia
bradjc@virginia.edu

Abstract
Software support for intermittent devices has emerged as
a key area of research in resource-constrained computing.
Work in this area aims to ease application development by
providing support for making forward progress in the face
of frequent power outages. Typically, systems in prior work
provide a runtime or a kernel as the system abstraction and
are customized for a small set of hardware. In this paper, we
propose our vision for the future of intermittent computing
and explore extending a general-purpose embedded oper-
ating system to handle intermittent workloads. We show
how many common OS abstractions benefit the highly con-
strained intermittent domain and describe the design exten-
sions required to support intermittent devices. We evaluate
the systemwith respect to memory, time, and developer over-
head and argue that full OS support is a promising direction
for future intermittent systems.

CCSConcepts: •Computer systems organization→Em-
bedded software; •Human-centered computing→Ubiq-
uitous and mobile computing systems and tools.

Keywords: Embedded Software, Energy Harvesting, Oper-
ating Systems, Intermittent Computing
ACM Reference Format:
Samyukta Venkat, Marshall Clyburn, and Bradford Campbell. 2020.
Energy Harvesting Systems Need an Operating System Too. In
The 8th International Workshop on Energy Harvesting and Energy-
Neutral Sensing Systems (ENSsys ’20), November 16–19, 2020, Virtual
Event, Japan. ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/3417308.3430274

1 Introduction
A wide variety of applications in health, transportation, en-
ergy, and other sectors could benefit from devices providing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ENSsys ’20, November 16–19, 2020, Virtual Event, Japan
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8129-1/20/11. . . $15.00
https://doi.org/10.1145/3417308.3430274

a consistent stream of data from various, often hard-to-reach
places [12, 15]. However, these devices will need to be bat-
teryless and capable of harvesting energy from their sur-
roundings, and developing software for energy harvesting
devices that experience frequent power outages is challeng-
ing [8]. Enabling developers to easily write software for
ubiquitous, batteryless computing is paramount.
Generally, existing systems are special-purpose and are

tailored to run on a narrow selection of hardware (i.e. WISP
RFID) [14]. Developers must conform to the hardware and
software stack that is implicitly specified by the system build.
Furthermore, there is tight coupling between the applica-
tions and underlying software system. This makes switching
between systems difficult, and it also leads to application
changes requiring recompilation of the whole system.
In this work, we introduce the use of a general-purpose

embedded operating system for intermittent computing. This
is in contrast to existing, special-purpose systems that run
on specific hardware. Given that, over time, most computing
paradigms have shifted towards being more general-purpose,
intermittent devices may do the same. Using an operating
system provides structured abstractions and separation be-
tween applications and the kernel. It also grants portability
between platforms, flexibility in software development, and
the opportunity for updates and longevity.

For this proof-of-concept work, we augmented Tock [10]
to support a task-based approach. We tested and evaluated
the resulting systemwith respect to time, memory, and devel-
oper overhead. The contributions of this work are 1) propos-
ing our vision for the direction of intermittent computing,
2) integrating support for intermittency into Tock and as-
sessing its overhead, and 3) assessing the constraints of Tock
after being extended for this new type of workload.

2 Background & Related Work
Similarly to continuously-powered embedded devices, the
applications, system software, and hardware used as the
building blocks for intermittent devices are becoming more
flexible and complex. This section examines these approaches
and how they have changed over time. We will also briefly
look at how hardware is trying to push intermittent systems
development to be more general-purpose.

15

https://doi.org/10.1145/3417308.3430274
https://doi.org/10.1145/3417308.3430274
https://doi.org/10.1145/3417308.3430274

ENSsys ’20, November 16–19, 2020, Virtual Event, Japan Samyukta Venkat, Marshall Clyburn, and Bradford Campbell

2.1 Task-Based vs. Checkpointing

There are trade-offs between a checkpointing and a task-
based method to making progress. There is greater developer
overhead with task-based systems. The burden is on the
developer to break down an application into appropriate
chunks that can execute in a power cycle, and porting legacy
code from the last 20 years of sensor networking isn’t easy
with a task-based approach. On the other hand, writes to
nonvolatile memory for checkpointing are larger and usually
happen more often than in task-based systems which means
the former is often more performant [11]. State-of-the-art
checkpointing could be closing that gap. However, it usually
relies on having nonvolatile main-memory [9].
2.2 Energy Harvesting Platforms Are Becoming

General Purpose

Early energy harvesting platformswere generally specialized
sensor systems [6, 15]. However, like other computing plat-
forms, energy harvesting needs are becoming more general-
purpose. There has been a recent focus on flexibility which
allows developers to customize hardware to their use case
without needing to build a platform from scratch. Over the
last decade, much of the research in intermittent software
has used theWISP platform or a device that uses an MSP430
MCU with FRAM (same MCU as WISP) [3]. A large fraction
of recent work uses RF energy as the target source which
has slightly stifled development of platforms around other
viable energy sources. Flicker, an energy harvesting platform,
and Capybara, a dynamically-adapting software/hardware
platform, have been developed [5, 7] to address this. Both of
these platforms highlight a push in the direction of general-
purpose platforms for intermittent computing.
As with hardware, several software systems using tasks

or checkpointing have been proposed over the years with
increasing sophistication. Checkpointing systems have gone
from Mementos, inserting checkpoints at compile-time de-
pending on instrumentation mode (e.g. after each function
call) [13] to TICS, which improves on checkpointing by con-
sidering time sensitivity and memory consistency [9]. Task-
based models have advanced from Chain, providing task-
level granularity [4], to Coala saving state at a sub-task scale
and using energy-aware adaptive scheduling [11]. Both ap-
proaches are becoming increasingly complex to address gaps
in prior systems.
2.3 Tock Operating System

Tock is an open-source, secure operating system for embed-
ded platforms with a kernel written in Rust. Tock provides
a process abstraction similar to the abstractions provided
by other general-purpose operating systems. One of Tock’s
main features is sandboxed process execution which main-
tains separation between each process and the kernel. In this
environment, updating an application on a device is easier
because only the application binary needs to be updated and

not the entire firmware like prior work systems. The design
properties of Tock make it a good candidate for this work.

3 Vision for Intermittent Software
We believe that innovations in intermittent computing along
with the previously discussed increase in complexity of these
systems make the need for a general-purpose, batteryless de-
vice inevitable. Here, we will discuss what our future vision
for operating systems on intermittent devices looks like.

3.1 Flexibility in Software System Features

We envision a system where programmers can use default
settings in an intermittent operating system or can change
various parameters to suit their use case. This includes cus-
tomizations such as employing more optimal scheduling
algorithms or being more aggressive in saving state.

With an operating system, processes and their binaries are
decoupled from the underlying system. This isolates faulty
processes from the rest of the system and also means appli-
cations can change without having to alter and re-upload
the operating system. Additionally, there will be increased
flexibility in using external libraries and other languages.
Devices would be easier to multiprogram as applications
don’t need to be compiled with the operating system.

Given that there are trade-offs between using a task-based
approach and a checkpointing approach, a developer should
be able to choose between them. In a system that supports
both approaches, developers can choose, for example, to
port a long-running, legacy program using checkpoints or
to write a new, task-based application.
Lastly, porting an operating system to a new platform

should not be difficult. A large portion of recent work all
runs on the same family of MCUs and are all custom systems.
Having an operating system with structured abstractions
will make porting to new hardware much easier.

3.2 Updates & Cooperative Operation

If an energy harvesting node is deployed somewhere hard to
reach and is intended to operate for decades, it is reasonable
to expect that the node’s functionality should be able to
change over time. A node should be able to perform software
updates to improve operation and patch security problems.
An operating system will make updates easier by providing
the ability to update an application in flash.

We commonly think of embedded devices and energy har-
vesting devices as single-purpose when their firmware is
extremely specific to that purpose. This is distinctly different
from other general-purpose platforms. Instead, the device
could have several applications in flash that make use of the
various on-board peripherals. A subset of these apps can
be chosen to run thus determining the node’s functionality.
During the day, a node may report sensor readings and at
night, switch to a different set of sensors or a long running
computation. There can also be a notion of changing what

16

Extending an Embedded OS for Intermittent Computing ENSsys ’20, November 16–19, 2020, Virtual Event, Japan

a node needs to do over longer periods of time. Similarly,
there can be cooperation between nodes where a node can
offload computation to another node if one node is in much
better harvesting conditions than another. This adaptability
is critical as energy harvesting devices fulfill their main mo-
tivation and scale up significantly in number. If this aspect
of developing intermittent systems is not taken into consid-
eration, the billions of devices we intend to be operating for
decades will not be future-proof.

3.3 Image Recognition to Retrofit Meters & Gauges

Here, we will present an example of an application that can
benefit from an operating system. There are many gauges
and meters deployed in the world that are not “smart” and
require manual checks. This can be highly inconvenient
and can make quick response to issues infeasible. There is a
desire to digitize and make these gauges wireless, and that
desire is being addressed by products like EnergyCam [2].
EnergyCam’s website claims that the Munich airport alone
has 10,000 analog meters. With the need to retrofit meters
and gauges around the world, it becomes clear that these
devices will need to be batteryless. But EnergyCam must be
battery or wall-powered. Instead, intermittent devices could
take low-resolution images and perform analysis to transmit
information about these meters and gauges.
This application would work well atop an operating sys-

tem. It has a machine learning aspect that may require adap-
tation or updates over time. One could imagine that these
devices could come in a form where sensing code could be
left unchanged with only updates to the model or analysis
code. This is made difficult if the whole system needs to
be compiled and re-distributed. There are many such appli-
cations for intermittent devices, and the complexity could
benefit from operating system.

4 Extending Tock for Intermittency
Tock was designed for continuously-powered systems, so
additions and changes (shown in Figure 1) were required to
allow it to support task-based execution. This section will
lay out the design of features added to Tock.

4.1 Task Scheduling

As in prior work, the programmer must break the appli-
cation into discrete parts, or tasks. Tock runs tasks based
on a directed graph the programmer provides. If a power
failure occurs during task execution, the device will next
resume operation at the beginning of that task. With this
approach, each Tock process is a task. Figure 2 illustrates
how a task graph maps to Tock processes and how data is
passed between them.

We altered Tock’s scheduler to work with the task graph
and determine which processes are ready to run. Due to
Tock’s existing design, even running complex graphs with
multiple flows is easy because it can already handle multiple

Developer
Specifies Task-
Graph via New

Abstraction

Getting Ready
Processes

From Graph &
Scheduling

Tock boots

Preemptive,
Round Robin
Scheduling

Ready to Run
Process(es)

Executes
Process(es)

Unchanged Tock

Added Features

Current Flow

Prior Tock Flow

Write Data for
Next Process

to Use via
New IPC

Mechanism

Process Yields

Process
Completes (exit

syscall)

Process = Task

Process Yields

Store Graph &
Process State
to Nonvolatile

Storage

Sleep or
Power Off

Process
Discovery &

Process Struct
Creation

Ke
rn

el
 S

pa
ce

U
se

rs
pa

ce Finished task?
Ke

rn
el

 S
pa

ce

Reading Graph
State from
Nonvolatile

Storage
Enter Kernel

Loop
Enter Kernel

Loop

Figure 1. System Diagram. The darker boxes are Tock con-
structs that were largely left unchanged or were part of the
system before. Lighter boxes are extensions for power failure
immunity.

processes being ready. The scheduler checks provided de-
pendencies and marks all processes that are not waiting for
the completion of another process. Processes that are ready
to run are then executed.

4.2 Saving State to Nonvolatile Memory

The kernel is responsible for writing state to nonvolatile
memory so the device can restart at an appropriate place in
the task graph after recovering from power failure. Before a
power failure, the kernel writes information about progress
through the task graph and any data that needs to be passed
between processes. When Tock boots, it reads the task graph

17

ENSsys ’20, November 16–19, 2020, Virtual Event, Japan Samyukta Venkat, Marshall Clyburn, and Bradford Campbell

A
Sense

B
Sense

C
Compute

D
Transmit

A B C D

Kernel

Processes /
Tasks

(b)

Capsules (BLE, Temp Sensor, etc.)

MCU Peripheral Drivers (SPI, DAC, etc.)

Syscall Interface

Scheduler, internal structures

C's Output
C's Inputs D's Input

A's Output B's Output

(a)

Task Graph

Figure 2. Task-based Tock system overview. (a) is an exam-
ple task graph. (b) shows how tasks map to Tock’s processes.
Each task’s input is a pointer to the previous task’s output
buffer.

progress (or initializes it if it’s the first boot), computes ready-
to-run processes, and begins executing them.

4.3 Inter-Process Communication

Tasks in the task graph need to be able to pass informa-
tion between each other. Tock has an existing mechanism
for inter-process communication, but it is not suitable for
task-based execution. It requires two or more processes to
coordinate to share data. One process must advertise that it
will share data, and the other process must then decide to
use the data. This does not map well to the task model.

In the new IPCmechanism, each process is given an output
buffer allocated in its own memory space and one or more
input buffers from other processes. This allows multiple
processes to share data with a single process and vice-versa.
At startup, all processes are loaded into main memory from
flash. During this time, all input and output buffers are setup
using the supplied task graph. Because there are possibly
multiple input buffers for a single task, a process provides a
specifier unique to the process it is reading from.

5 Implementation
This section will cover the details of the constructs used for
augmenting Tock for intermittency. This includes specifics
on how the kernel stores state and how information is passed
between processes. There were times when existing design
choices in Tock placed constraints on this work but also
instances of Tock enabling much needed generality.

5.1 Graph Information Struct for Saving State

A struct containing information about processes is used to
keep state about task execution. This struct, graph_info has
four fields. The first is an initialization indicator that lets the
kernel know if the struct has been initialized yet. The next
three fields are arrays holding process state data. The first is
an array of ready-to-run processes. The second is an array
of ended processes. These two arrays together contain the
information necessary to determine which processes can be
executed. The final field is the data that needs to be passed
between processes stored in an array. When all processes
complete (excluding long-running, independent tasks), the
graph is reset and program execution restarts.

5.2 Using Nonvolatile Memory in the Kernel

The kernel is responsible for making calls to read and write
the graph state. For this implementation, the nonvolatile
storage is flash, therefore writes are slow whereas reads are
relatively fast. While flash was used for nonvolatile storage
Tock has a unified interface for any type of nonvolatile stor-
age. It could easily be swapped with another storage type,
like FRAM.

5.3 Altering The Process Struct for IPC

The new IPC mechanism handles both multiple processes
needing to pass data to one process and one process needing
to pass input to multiple processes. An output buffer and
pointers to input data from other processes are provided
in a process’ memory space. This works in much the same
way stdin and stdout file descriptors do, except there can be
multiple inputs. The maximum number of input pointers is
limited by the number of processes that can be loaded into
memory. The limit on the platform used for implementation
is generally four.

5.4 Hardware Platform

This systemwas implemented on the Imix platform [1] which
was developed for use with Tock. Imix uses a SAM4L Cortex-
M4 MCU running at 48MHz with 512 kB of flash storage
and 64kB of SRAM. The platform has a BLE radio, an ac-
celerometer, and sensors for light, temperature, and humid-
ity. We chose Imix due to Tock’s stability on the platform
and because it is a general-use device that allows a variety
of applications to be developed.

6 Evaluation
We evaluate Tock for energy harvesting platforms by imple-
menting a task-based application. We look at the memory,
time, and developer overheads of Tock and discuss each one.

6.1 Experimental Setup

For our experiments, we ran the augmented version of Tock
on an Imix board. The time overhead was measured using
a Techtronix TBS2000 Series oscilloscope. A GPIO pin was

18

Extending an Embedded OS for Intermittent Computing ENSsys ’20, November 16–19, 2020, Virtual Event, Japan

Table 1. Memory Overhead. Parenthesized values refer to
how the Tockloader utility flashes applications onto the
board. Tockloader loads processes into flash by padding bi-
nary size up to a power of two.

Flash (w/ padding) Memory
Kernel Unchanged 154.8KB (155.1KB) 24.6KB
Kernel for Intermittency 157.9KB (158.2KB) 32.8KB
Lighting App Sense 4.3KB (8.2KB) 8.2KB
Lighting App Compute 7.8KB (8.2KB) 8.2KB
Lighting App Transmit 30.7KB (32.8KB) 16.4KB

selectively toggled at runtime to assess the time taken by
different parts of the code. In this implementation, any pro-
cess ready to run will do so, the kernel will write the state to
memory, and then the chip will sleep and wait to be rebooted.
This made it easy to simulate power outages.

For testing, we used a lighting control application broken
down into three tasks. First, it senses ambient light. Then,
it performs a computation on that sample to yield a value
by which lighting should be adjusted. Lastly, it advertises
that value over BLE. The kernel was set up so that it ran a
process and a physical button press caused a reset to happen.
The metrics we used to assess Tock were the time overhead,
the memory overhead, and the developer overhead.
6.2 Memory Overhead

Table 1 lists memory overhead. Tock has much larger over-
head in both nonvolatile memory and RAM than prior work.
Prior work systems are normally in the range of several KB
in non-volatile storage and under 2 KB in memory. In part,
this is to be expected as it is a general-purpose operating sys-
tem and provides abstractions that require a larger memory
footprint. Additionally, other systems don’t have dedicated
kernel or app space.

It’s important to observe how changes made to the kernel
affected memory overhead. The kernel grew by a few KB
which had a significant impact on RAM usage, but there
are places in the code that can still be optimized. Copying
that takes place in the added code could be done more op-
timally. Non-trivial functions that were implemented could
be optimized to reduce memory footprint. However, they do
represent a significant augmentation to the functionality of
the kernel.
There is a lot of additional process overhead from map-

ping the task abstraction to Tock processes. Libraries are
compiled into each process separately and could possibly
be duplicated. All applications issued printf commands,
without which would have led to smaller memory footprints.
The task abstraction makes sense for certain applications.
It’s easier to "plug-and-play", and it’s often useful to write
modular code. However, Tock may also lend itself well to
checkpointing so that additional process overhead is limited.

Table 2. Time Overhead. For these measurements, the Tock
bootloader, which allows interfacing with the device over
USB, was removed.

Tock Function (Startup Cost) ≈ Time (𝜇s) Percentage
Total Tock Startup Time 8500
Peripheral Initialization 7600 89.4%
Process Discovery/Creation 390 4.6%
Reading State from Flash 110 1.3%
Getting Ready Processes &
Scheduling

400 4.7%

Tock Function (Addt. Overhead) ≈ Time (𝜇s) Percentage
Writing to Flash 10800 N/A

It isn’t feasible to run this task-based implementation of
Tock on platforms seen in much of the related work. How-
ever, with some optimizations and the addition of FRAM,
it may be feasible to run on some slightly less constrained
intermittent devices in the near future.
6.3 Time Overhead

Table 2 shows an itemized list of timings. With the exception
of writing to flash, a lot of the time costs of Tock are in line
with recent work. However, this comparison is not valid
given the difference in the platforms used. For example, the
Imix SAM4L’s clock speed was set at 48MHz which is at least
six times faster than the MCUs in related systems.

Instead, we can use the timings to see how the new code
adds to the time overhead. The features added to Tock con-
tribute approximately 6% to the startup time which shows
that the new functionality doesn’t increase the time overhead
very much. The largest startup cost comes from initializing
and configuring on-board peripherals. This is necessary since
peripheral and capsule state is lost after power failure. This
cost could be reduced by only initializing and configuring
peripherals that are necessary for the selected applications.
The other obvious part to consider is writing to flash, which
takes longer than the startup time to complete. The best way
to mitigate this is to use a faster storage medium, such as
FRAM. There was also 200 ms of time from when the MCU
was powered to when Tock started. This could be attributed
to the chip performing operations such as clock and register
setup, but further investigation is needed.
Process discovery in Tock is different than systems in

prior work. By design, Tock inspects storage at runtime for
headers containing address information to load processes
into memory. This overhead is incurred only once and can
be avoided by inserting address information at compile-time.
6.4 Developer Overhead

This system has reasonable usability with a few notable hin-
drances. New language constructs to learn include how to
create task graphs, retrieve input/write output, and signal

19

ENSsys ’20, November 16–19, 2020, Virtual Event, Japan Samyukta Venkat, Marshall Clyburn, and Bradford Campbell

task completion. In contrast with other systems, Tock does
not need an additional construct for creating tasks since
tasks map to processes. Some recent works have more lan-
guage constructs to learn, however, those provide features
like timing constraints which this implementation of Tock
does not offer. Aside from the three new constructs, two of
which go in application code, applications can be written
like normal C code. There is, however, some difficulty in
development that arises from the need to know the task’s
IDs. This is discussed further in Section 7.2.

6.5 Toggling Node Functionality

We implemented a second application to test using two differ-
ent task graphs to toggle the operation of the node. Multiple
task graphs in a task-based system is not new, however, this
explores the notion of having a platform ship with apps and
easily being able to change its function while deployed. We
deployed four tasks to the board: sense temperature, print
temperature, sense light, and print light. Based on input
from a GPIO pin, the board would either sense and print the
temperature or sense and print the light level. The device
needed to reboot before a new task graph could be assigned,
but given the frequency of rebooting, this is not a problem.

7 Limitations & Future Work
In this section we will address the shortcomings of our sys-
tem and the next steps to improving the performance of Tock
for intermittent computing.

7.1 Tock Inefficiencies

In this implementation, Tock’s process discovery and cre-
ation model was left relatively untouched. As mentioned
previously, Tockloader loads processes into flash by round-
ing the binary size up to a power of two. Then, based on a
configured parameter for the number of processes to load and
the space in RAM, Tock loads all of the processes it discovers
and has room for from flash at boot. This is problematic
for systems where tasks are energy-atomic. Systems with
large computations can have many nodes in the task graph.
Another challenge is that inputs in Tock are pointers to a
previous task’s space in RAM. We explored loading only the
necessary processes (i.e. processes that will execute and their
dependencies), but this feature was not fully implemented.

7.2 Tooling for Graph Processing

Our system relies on the developer to supply a manually con-
structed task graph that matches processes on-board. Process
IDs used to construct the graph must be obtained manually.
This is not particularly difficult, but it is sub-optimal. Instead,
constructing a graph of task names or other suitable iden-
tifiers that is later converted to the correct representation
would be a more seamless experience.

7.3 Inter-Process Buffers

A process needs its predecessors in RAM to get valid input
pointers. This is an inconvenience, and there are a number
of different ways to change process discovery. State and
outputs could be saved with each process instead of in the
graph_info struct. This would allow the kernel to perform
a hand-off of the inputs.

Process output buffers were small and could only pass up
to four bytes. This was sufficient for a proof-of-concept, but
increasing the buffer size should be relatively simple.

7.4 Checkpointing

While this work focuses on extending Tock with a task-based
approach, an important step towards enabling the future
vision laid out in Section 3.1 is adding checkpointing to Tock.
This could be using any of the state-of-the-art checkpointing
technologies such as checkpoints assigned at compile-time
then altered at runtime. The addition of checkpointing to
Tock will provide developers with the ability to port existing
code bases to new systems.

7.5 Memory Protection Unit

The memory protection unit was disabled for this work to
allow processes to write to their output in the grant region
within their own process memory. Other processes then have
read access to this one area. For future iterations the mem-
ory protection unit will be enabled to ensure that processes
cannot do anything malicious or erroneous.

8 Conclusion
Intermittent systems are becoming more general-purpose
and, if not now, will be in need of an operating system soon.
We cannot expect to deploy billions or trillions of sensors
with software tightly coupled with hardware and also ex-
pect that they will operate optimally over their lifetime. We
present our vision for full OS support and show how a modi-
fied version of a particular OS, Tock, is well suited for energy-
harvesting devices.

Like previous computing paradigms, we expect application-
specific intermittent devices to transition to general-purpose
platforms over time. This should enable more sophisticated
devices with applications that evolve over a device’s lifetime,
with proactive security updates, and with suitability for more
use cases. Moving away from application-specific and cus-
tom intermittent devices will also simplify development and
increase the reach of battery-less devices, ultimately helping
these devices reach the transformative scale that motivates
their existence.

References
[1] 2020. Imix. Retrieved July 10, 2020 from https://github.com/helena-

project/imix
[2] 2020. Q-Loud EnergyCam. Retrieved July 10, 2020 from https://www.q-

loud.de/energycam-automatic-mechanical-meter-reading

20

https://github.com/helena-project/imix
https://github.com/helena-project/imix
https://www.q-loud.de/energycam-automatic-mechanical-meter-reading
https://www.q-loud.de/energycam-automatic-mechanical-meter-reading

Extending an Embedded OS for Intermittent Computing ENSsys ’20, November 16–19, 2020, Virtual Event, Japan

[3] 2020. WISP5. Retrieved July 10, 2020 from http://wisp5.wispsensor.net/
[4] Alexei Colin and Brandon Lucia. 2016. Chain: tasks and channels

for reliable intermittent programs. In Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications. 514–530.

[5] Alexei Colin, Emily Ruppel, and Brandon Lucia. 2018. A reconfigurable
energy storage architecture for energy-harvesting devices. In Pro-
ceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems. 767–781.

[6] Samuel DeBruin, Bradford Campbell, and Prabal Dutta. 2013. Monjolo:
An energy-harvesting energy meter architecture. In Proceedings of the
11th ACM Conference on Embedded Networked Sensor Systems. 1–14.

[7] Josiah Hester and Jacob Sorber. 2017. Flicker: Rapid prototyping
for the batteryless internet-of-things. In Proceedings of the 15th ACM
Conference on Embedded Network Sensor Systems. 1–13.

[8] Josiah Hester and Jacob Sorber. 2017. The future of sensing is bat-
teryless, intermittent, and awesome. In Proceedings of the 15th ACM
Conference on Embedded Network Sensor Systems. 1–6.

[9] Vito Kortbeek, Kasim Sinan Yildirim, Abu Bakar, Jacob Sorber, Josiah
Hester, and Przemysław Pawełczak. 2020. Time-sensitive Intermittent
Computing Meets Legacy Software. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems. 85–99.

[10] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B Giffin, Pat
Pannuto, Prabal Dutta, and Philip Levis. 2017. Multiprogramming a
64kb computer safely and efficiently. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles. 234–251.

[11] Amjad Yousef Majid, Carlo Delle Donne, Kiwan Maeng, Alexei Colin,
Kasim Sinan Yildirim, Brandon Lucia, and Przemysław Pawełczak. 2020.
Dynamic task-based intermittent execution for energy-harvesting
devices. ACM Transactions on Sensor Networks (TOSN) 16, 1 (2020),
1–24.

[12] J Paulo and Pedro Dinis Gaspar. 2010. Review and future trend of
energy harvestingmethods for portable medical devices. In Proceedings
of the world congress on engineering, Vol. 2. WCE, 168–196.

[13] Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2011. Mementos:
System support for long-running computation on RFID-scale devices.
In Proceedings of the sixteenth international conference on Architectural
support for programming languages and operating systems. 159–170.

[14] Alanson P Sample, Daniel J Yeager, Pauline S Powledge, Alexander V
Mamishev, and Joshua R Smith. 2008. Design of an RFID-based battery-
free programmable sensing platform. IEEE transactions on instrumen-
tation and measurement 57, 11 (2008), 2608–2615.

[15] Sujesha Sudevalayam and Purushottam Kulkarni. 2010. Energy har-
vesting sensor nodes: Survey and implications. IEEE Communications
Surveys & Tutorials 13, 3 (2010), 443–461.

21

http://wisp5.wispsensor.net/

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Task-Based vs. Checkpointing
	2.2 Energy Harvesting Platforms Are Becoming General Purpose
	2.3 Tock Operating System

	3 Vision for Intermittent Software
	3.1 Flexibility in Software System Features
	3.2 Updates & Cooperative Operation
	3.3 Image Recognition to Retrofit Meters & Gauges

	4 Extending Tock for Intermittency
	4.1 Task Scheduling
	4.2 Saving State to Nonvolatile Memory
	4.3 Inter-Process Communication

	5 Implementation
	5.1 Graph Information Struct for Saving State
	5.2 Using Nonvolatile Memory in the Kernel
	5.3 Altering The Process Struct for IPC
	5.4 Hardware Platform

	6 Evaluation
	6.1 Experimental Setup
	6.2 Memory Overhead
	6.3 Time Overhead
	6.4 Developer Overhead
	6.5 Toggling Node Functionality

	7 Limitations & Future Work
	7.1 Tock Inefficiencies
	7.2 Tooling for Graph Processing
	7.3 Inter-Process Buffers
	7.4 Checkpointing
	7.5 Memory Protection Unit

	8 Conclusion
	References

