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ABSTRACT
Wireless sensing and the Internet of Things support real-time mon-
itoring and data-driven control of the built environment, enabling
more sustainable and responsive infrastructure. As buildings and
physical structures tend to be large and complex, instrumenting
them to support a wide range of applications often requires nu-
merous sensors distributed over a large area. One impediment to
this type of large-scale sensing is simply tracking where exactly
devices are over time, as the physical infrastructure is updated and
interacted with over time. Having low-cost but accurate localization
for devices (instead of users) would enable scalable IoT network
management, but current localization approaches do not provide
a suitable tradeoff in terms of cost, energy, and accuracy for low
power devices in unknown environments.

We propose UbiTrack, a low-cost indoor positioning system
that enables accurate tracking for single antenna commodity WiFi
devices, without the need for a complex antenna array. UbiTrack
leverages two-way channel state information (CSI) across all WiFi
channels to measure the distance between nodes, and uses a new
probabilistic localization algorithm based on Bayesian estimation
to locate each device. We demonstrate the system on commodity
$4.00 ESP32 WiFi chips and realize 1-meter level position accuracy
in an indoor environment. This approach provides localization for
everyday IoT devices, enabling more scalable deployments and new
IoT applications.
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1 INTRODUCTION
New sensors, more computing power, reliable mobile connectivity,
and easier production is enabling growth in the number of de-
ployed Internet of Things (IoT) devices. In turn, this availability and
cost-effectiveness will continue to make new sensor applications
possible, including large-scale monitoring and detection. Many
applications will require high density deployment of IoT devices,
creating a new challenge to determine and track the location of
every deployed device. Overcoming this challenge will require au-
tomatic localization for devices. Automatic device localization will
also simplify device installation, enable smart building deployments
to adapt to changes in building use and physical structure over time,
and unlock the potential for numerous location-based applications.
However, many of today’s IoT nodes do not include any indoor
localization capabilities, and thus require periodic manual location
checks and label updates. This limits the scalability of the smart
IoT system in buildings.

Despite significant progress in the general field of localizing peo-
ple, accurately localizing small commodity IoT devices presents a
different challenge. Many approaches have a significant drawback,
either providing low accuracy with multiple meter error, requiring
uncommon onboard hardware or radios, or requiring significant in-
frastructure to be present. Yet, enabling accurate location-based ser-
vices for small IoT devices could have many benefits. For example,
hospitals could easily keep track of their mobile and shared equip-
ment to more effectively manage resources, networks in homes
could identify and block malicious devices accessing the network
outside building walls, and small items like keys could be easily
found when lost.

Enabling localization services for many resource-constrained
devices on a large scale, rather than localization for human users
or on an ad-hoc basis presents several design challenges that must
be considered: (1) The additional cost for localization must be mini-
mized. Using expensive hardware limits the scalability of the sys-
tem. The design should leverage existing hardware components and
avoid adding extra hardware. (2) Many IoT devices have a restricted
energy budget. The localization approach cannot require a large
number of measurements. (3) The localization accuracy must be
sufficient. As devices and sensors have contextual clues (e.g. a door
sensor is likely on a door) or are attached to physical objects (e.g. a
chair monitoring sensor), centimeter-scale accuracy is not required,
however, meter-level accuracy is needed to resolve ambiguities and
track devices inside of a building.

There exist various works for providing indoor localization for
devices [16, 22, 29, 33]. However, they either do not consider hard-
ware limitations, are too energy-expensive, or do not meet the
accuracy requirements, making them unsuitable for a dense indoor
IoT network. Specifically, some works use ultra-wideband (UWB)
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radios or software defined radio (e.g. a USRP) that permit using
a large bandwidth and can calculate the time of flight (ToF) quite
accurately [3, 17]. However, these approaches require dense de-
ployments (as UWB signals do not travel through walls well) or
expensive USRP hardware (>$1000 each), which is not applicable
to IoT systems which need to be cost-effective to be largely de-
ployed. Some approaches identify the cost problem and develop
indoor localization systems using ubiquitous radios like WiFi [12]
or Bluetooth [25]. However, these approaches either require using
an array of antennas (3 to 12), require NICs that are expensive (i.e.
the Intel 5300 at $30), or are high power and not practical for IoT
systems where energy is limited and most deployed nodes cost less
than the NIC card itself.

In this paper, we target the imbalance between scalability, energy,
and accuracy, and propose UbiTrack, a network localization system
that enables scalable localization for single antenna WiFi devices.
Instead of using special radios like UWB or mmWave radar, Ubi-
Track leverages commodity WiFi radios already found in today’s
IoT devices. UbiTrack leverages the Channel State Information (CSI)
from WiFi signals to calculate distance between nodes. We also
designed a new communication method between nodes that enable
the ad-hoc and association-less wifi connection between devices,
this removes the need to go through re-association process every
time a nodes wakes up and communicate with nearby nodes, re-
duces the energy cost of UbiTrack and helps prolong the operating
time of the deployed device. Further, we design the communication
between nodes to be ad-hoc and association-less, which reduces
the total energy cost to perform ranging. To make our localization
system more accurate and reduce redundant ranging to preserve
energy, we design a novel positioning algorithm based on our pro-
posed Historical-Bayesian (HiBay) estimation.

There are also a Fine Time Measurement (FTM) protocol sup-
ported on newer 802.11mc protocol, however FTM is now only avail-
able on a few platforms, and is not supported on any of the existing
deployed devices, not to mention the raw FTM measurement have
huge location-dependent errors that can sometimes significantly
degrade the localization performance, especially on the crowded
2.4 GHz bands [10]. Other CSI-based approach uses the desktop-
class chips like Intel 5300, leveraging an antenna array and 5 GHz
for better resolution. Their approaches are only suited to localize tar-
gets that use 5GHz WiFi band, such as mobile phone or tablets, and
the performance would be significantly degraded if used in 2.4 GHz
band. Instead, our approach uses a different method for ranging
which leverages all the communication channels on a single antenna
on 2.4 GHz, for the fact that most WiFi IoT devices are working on
this band instead of 5 GHz. To demonstrate the feasibility of our sys-
tem, we implement a prototype of UbiTrack using the cost-effective
Espressif ESP32WiFi chip [8]. Compared to the Intel 5300, the ESP32
is an order of magnitude cheaper ($4 compared to $30), more energy-
efficient (battery-powered vswall-powered), and already ubiquitous.
Considering the market share of ESP32 chips (more than 100 mil-
lion have been sold), our approach can directly extend to numerous
existing IoT networks without additional cost. We also believe that
enable location services will have enough value to add an ESP32
chip to an IoT device as just a localization module a viable prospect.

The main contributions of the paper include:

(1) UbiTrack introduces a new two-way CSI method to mea-
sure distance between nodes by leveraging information from
all 13 available WiFi channels, and a new data sanitization
method to minimize the offset caused by hardware and the
environment. UbiTrack achieved an average ranging error of
1.32 m LOS and 1.68 m NLOS using the 2.4 GHz WiFi band.

(2) UbiTrack introduces HiBay, a probabilistic approach based
on Bayesian estimation to localize the target, utilizing his-
torical position to enhance the Bayesian approach. This ap-
proach minimizes the error in distance measurement, and
outperforms the traditional trilateration method. The his-
torical location also benefits the quasi-static devices and
increases their localization accuracy of 25% over time with
periodic network update, having a median localization error
of 1.71 m LOS and 1.93 m NLOS.

(3) UbiTrack proposes a new association-less communication
method for WiFi-based localization to reduce the communi-
cation cost, this method leverages the 802.11 action frames
and removes the need of association process before sending
localization request to other nodes. This specifically benefits
IoT devices which must minimize their active time.

2 RELATEDWORK
In this section, we briefly discuss different WiFi-based indoor lo-
calization techniques that have been used to localize users and
devices.

2.1 CSI-Based Indoor Localization
Many indoor localization techniques have been developed on top
of commodity WiFi infrastructure. WiFi channel state information
(CSI) has been used as a useful parameter to extract information
about an object’s location. CSI includes amplitude and phase re-
sponses of channels over different frequency providing more robust
information of a wireless signal.

SpotFi [16] estimates the AoA and ToF of a target’s signal using
the CSI information provided by the WiFi APs and estimates the
likelihood for each multipath signal to narrow down the location
of the target. The solution requires a minimum of three antennas
to achieve super-resolution which can be a constraint for IoT de-
vices with single antenna. MonoLoco [26] achieves decimeter level
accuracy using a single receiver by using multipath triangulation
technique. The system uses the AoA, AoD and rToF parameters
calculated from the multipath signals of the target and combines
them with the AoA and AoD of the LoS signal to calaculate the
location and orientation of the target. Chronos [29] emulates an
ultra-wideband radio by transmitting multiple packets over mul-
tiple frequencies and achieves high resolution ToF measurements.
The proposed technique achieves a 65 cm median error in line of
sight cases. However, the frequency hopping results in high energy
consumption in the range of a few joules.

All the aforementioned system require powerful WiFi NIC cards
which has three or more antennas. Our system however, only re-
quire using single antenna on each side to estimate distance be-
tween nodes, which significantly reduces the hardware cost.

2.2 FTM-based Indoor Localization
Recently, Wi-fi FTM [1] feature has been used to in RF time-of-
flight measurement based positioning methods. Verification [11]
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Figure 1: Overview of our proposed system. A new device
transmits a broadcast message to begin a ranging event. Af-
ter calculating pairwise distances, each device transmits the
measurements to a nearby gateway which calculates the lo-
cations of each device.
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Figure 2: Comparison of WiFi-based localization ap-
proaches. Each colored line represents wireless commu-
nication between two antennas. (I) shows Chronos [29],
which uses 3*3 antenna pairs. (II) shows SpotFi [16], where
one node transmit packets to 3-antenna arrays on multiple
anchors. Compared to the aforementioned approaches,
UbiTrack only require devices to range with nearby nodes
using a single antenna, beingmore cost and energy efficient.

confirmed that WiFi FTM based ranging can achieve up to 1m of
accuracy by conducting experiments on different real world envi-
ronments. The study showed that at lower bandwidth, in a NLOS
settings, the ranging estimates become unreliable above distances
over 20m. The paper also argued that even though commodityWi-fi
chipsets come with proper hardware support for FTM, the lack of
open-source software hampers further developments using this
technology. In [10], a frequency-diversity method has been intro-
duced that can double the accuracy by leveraging the weighted
averages of uncorrelated errors on different channels. The work
also identified that the high relative permittivity of common build-
ing materials can introduce large distance errors making the matter
worse in real environments.

3 SYSTEM OVERVIEW
UbiTrack uses a two-step process to localize all nodes in a network.
First, the neighboring nodes self-organize to calculate pairwise
ranges between each other. Then, all pairwise range measurements
are calculated and used to estimate the relative position of each
device with a newtork localization approach.

To enable pairwise ranging, UbiTrack uses a particularly use-
ful tool of WiFi: its support for channel state information (CSI)
measurements of each channel and across all subcarriers. This RF
information enables better accuracy when compared to traditional

Radio Signal Strength (RSS) based approaches [2, 23, 35]. However,
CSI has typically only been provided on powerful network cards
like the Intel 5300 or Atheros 9580 which support multiple exter-
nal antennas. Considering that most small IoT devices only cost a
few dollars and use a small battery, the power consumption and
hardware cost prohibits using these hardware radios on all devices
in a dense IoT network. Luckily, the Espressif ESP32 [7] board is
now one of the first products that enables CSI on cost-effective and
energy-efficient WiFi chips.

However, small IoT devices introduce additional limitations to
the deployment of the system. Small IoT devices are normally
battery-powered or energy-harvesting, which limit the energy bud-
get for communication. Thus, staying connected with neighbor-
ing devices, or going through a long WiFi association process to
complete a ranging event with another device is not only energy-
inefficient for a single device, but also would negatively affect
the network performance for a large-scale device network. More-
over, small WiFi nodes in an IoT system are ubiquitous, and can-
not always guarantee a direct line-of-sight (LOS) connection with
the access point (AP), and the multipath effect in none-line-of-
sight (NLOS) conditions could significantly affect the localization
accuracy, thus a new method is required to overcome this limita-
tion. What is worse, due to their form factor small devices are also
unable to support a series of antennas often used in WiFi-based
localization schemes [16, 26, 29, 32, 33].

UbiTrack introduces a new approach to overcome the afore-
mentioned limitations and provides an accurate, energy-efficient
localization for small IoT devices. To overcome the single antenna
limitation, UbiTrack leverages CSI from all available channels in
WiFi radio. UbiTrack collect CSI from both sides and apply dif-
ferent offset removal method to minimize the imperfections in
collected CSI. To overcome the energy concern, UbiTrack intro-
duced a new “association-less” WiFi communication method to
remove the lengthy re-association process of WiFi connection to
minimize packet transmission across devices. To improve the local-
ization accuracy, UbiTrack introduces a new positioning algorithm
based on historical-Bayesian estimation. Compared to traditional
trilateration algorithm which suffers from non-convergence issues,
our algorithm use a probabilistic model with historical priori to
better localize devices.

Figure 1 shows an overview of our proposed system. When a
new device joins the network, it first sends out broadcast message
to neighbor nodes, where the neighbor nodes would start unicast
communication with the target node. This process scans through 13
WiFi channels andmeasure CSI on both sides. In the next step, all de-
vices transmit the collected CSI data to a nearby Access Point (AP),
where the AP integrates all data and computes the location of the
new device. Two process are required to localize a new node: rang-
ing and positioning. The first process performs distance estimation
using CSI data on both sides, afterwards the distance is sent to
our proposed historical-Bayesian algorithm which estimates the
position of the device. Our approach minimizes the effect of the
inevitable error of distance estimation by applying a probabilistic
approach with the location history of the device. A comparison of
the approach of UbiTrack with similar works can be seen in Figure 2.
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Figure 3: Different offsets in CSI. We use the zero subcarrier
to minimize the impact of SFO and PDD, and measure two-
way CSI to combat the offsets from CFO and PLL.

4 RANGING
In this section, we describe the procedure of measuring distance
between nodes from two-way CSI measurements, and explain dif-
ferent methods to minimize the influence of different offsets that
are causing significant errors in ranging.

4.1 Measure Distance from CSI Data
WiFi is a narrow-band wireless protocol that typically struggles to
accurately measure the time-of-flight (ToF) between nodes due to
its limited bandwidth (normally 20 MHz) which directly limits its
resolution. As a result, traditional WiFi approaches that directly
measure ToF often fail to achieve accuracy better than 50 ns (or a
15-meter distance error) [24]. Pure ToF measurement also requires
tight time synchronization between nodes, which is intractable in
a low-cost large-scale network. Instead, we measure the distance
between nodes based on the phase shift between received WiFi
signals. As a signal propagates from a transmitter to receiver, a
phase shift will occur on the frequency and the distance between
transmitter and receiver. A mathematical expression of the phase
shift 𝜃 on a particular channel 𝑖 can be written as:

𝜃𝑖 = 2𝜋
𝑑 𝑓𝑖

𝑐
𝑚𝑜𝑑2𝜋 (1)

where, 𝑑 is the distance between transmitter and receiver, 𝑓𝑖 repre-
sents the center frequency of the 𝑖th channel, and 𝑐 is the speed of
light. We can then extract the distance 𝑑 from the above equation:

𝑑 =
𝜃𝑐

2𝜋 𝑓𝑖
± 𝑛 𝑐

𝑓𝑖
(2)

where, 𝑛 is an integer value. Here we note that for each channel 𝑖 ,
there can be many possible distances, each separated by a step
size, 𝑐/𝑓𝑖 . The real distance 𝑑 is the common value among possible
results from all channels. A mechanism for calculating the real dis-
tance is illustrated in [30]. Mathematically, the method for finding
the real distance is a form of the well-known Chinese Remainder
Theorem (CRT), which can be solved using standard modular arith-
metic algorithms [29]. However, we note that even after we apply
the sanitization algorithm to the collected phase shifts to minimize
offsets, the small error in the phase shift can still create a large
error in the calculated distance. Instead of directly calculating the
distance using all channels [29], we solve the ambiguity problem of
CRT using remainders of coprime divisors. The IEEE 802.11 stan-
dard specifies 14 channels for WiFi communication in the ISM band,
where center frequencies among channels 1-13 are separated 5 MHz
apart from each other. We observe that the frequencies among every
two adjacent channels are coprime, therefore, we can calculate a
distance based on two neighboring channels. If there is a total of 𝐾
channels that we use for distance estimation, we then compute𝐾−1

measured distances, which we denote as ˆ𝑑𝑚 where𝑚 ∈ {1, 𝐾 − 1}.
A final estimation result can be obtained by calculating the value
that can achieve the minimum mean square error (MMSE):

𝑑 = argmin
𝑥

∑
𝐾

( ˆ𝑑𝑚 − 𝑥)2 (3)

It is also worth noting that the corresponding estimation range
of our coprime pair in the 2.4 GHz band is 144 m. Therefore, it is
sufficient to use in indoor localization where the ranges between
devices in an IoT network are typically within tens of meters.

4.2 CSI Calibration
So far, we have explained how UbiTrack calculates distance based
on CSI measurements from multiple channels. However, obtaining
accurate CSI data is a challenge as the collected CSI measurement
does not only describe the channel properties in passband but also
the properties of the signal processing circuits in baseband. Previous
studies have pointed out several major sources of CSI measurement
errors that are a result of the hardware imperfection [29, 30]. Since
our work only leverages the collected phase from the whole mea-
surement, we only target errors that could create phase offsets. This
includes the sampling frequency offset (SFO), packet detection de-
lay (PDD), carrier frequency offset (CFO), and random initial phase
offset. Figure 3 shows an overview of the process of CSI measure-
ment, and explains where each error occurs along the process. We
now introduce how we minimize the offset from these errors.
4.2.1 Minimizing PDD and SFO. Packet detection delay is the time
between when a signal arrives and when it reaches the detection
threshold. After down-converting and ADC sampling, the packet
detection delay occurs due to energy detection and correlation de-
tection in digital processing. As a result, PDD leads to a time delay
in each received packet, causing CSI phase rotation error that is
proportional to subcarrier index.

Sampling frequency offset is created by a difference in frequen-
cies used in Digital to Analog Converter (DAC) and Analog to
Digital Converter (ADC). This adds an extra phase shift propor-
tional to subcarrier index and cumulative in time. The measured
CSI with PDD and SFO can be expressed as:

𝜙 𝑗,𝑘 = 𝜃 𝑗,𝑘 + 𝑘𝜆0 + 𝑘𝜆𝑏 (4)
where 𝜆0 is the phase shift introduced by SFO, and 𝜆𝑏 is the phase
shift introduced by PDD. Thus, if we can extract the zero subcarrier
from the acquired CSI data, we can minimize the offset from this
linear time delay. However, CSI measurements cannot measure the
zeroth subcarrier as no data is being transmitted. Fortunately, due
to the physics of signal propagation, phases are continuous over a
small number of OFDM subcarriers [12]. Thus, we can use the phase
in other subcarriers to approximate the phase in zero subcarrier.
We applied the cubic spline interpolation method in Chronos [29]
to estimate the zero subcarrier.
4.2.2 Minimizing CFO and Initial Phase Offset. Due to hardware
imperfections, the carrier frequency of the transmitter and the
receiver are not tightly synchronized. Although there is a CFO
corrector to minimize the frequency difference, this compensation
is not perfect due to hardware imperfections. Signals across all
bands still carry a residual error 𝛽 , which is the frequency difference
between the transmitter and receiver. Besides CFO, the received CSI
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Figure 4: Association-less communication design which dis-
cards the WiFi re-association process. This method only re-
quires two packets on each channel to measure CSI, mini-
mizing the number of packets for ranging.

also has another additional offset, the initial phase offset. This offset
is often referred as Phase-Locked Loop (PLL) phase offset, which is
created during the PLL circuit generating the carrier frequency. We
denote the initial phase difference between transmitter and receiver
as 𝛾 . We can express the measured CSI phase of zero-subcarrier on
channel𝑚 on a receiver as:

𝜃𝑖 𝑗,𝑚 = −2𝜋 𝑓𝑚𝜏 + 2𝜋𝛽𝜏 + 𝛾 (5)
Where 𝑖 is the transmitter and 𝑗 is the receiver. Similarly, if we

have the receiver transmit back a packet, the CSI collected on the
transmitter side would be:

𝜃 𝑗𝑖,𝑚 = −2𝜋 𝑓𝑚𝜏 − 2𝜋𝛽𝜏 − 𝛾 (6)

Therefore, if we add the two measured CSI and subtract by two,
we can remove the offset from the CFO and the initial phase off-
set. However, in practice, we note that this error cannot be fully
removed, as the measured CSI suffers from additional phase rota-
tions coming from the hardware imperfections, and thus affect the
accuracy on shorter distances where the offset is more significant.
4.2.3 Alleviate Multipath Effect. The wireless signals received by
the receiver are not just from the direct path from the transmitter,
but instead are the combination of different paths due to reflections
from wall, furniture, or other objects in the space. In a multipath-
weak and direct line-of-sight environment, the direct path is domi-
nant and thus the multipath effect is minimized. However, in indoor
environments, especially in residential buildings, the multipath ef-
fect can substantially affect the accuracy.We identify that the center
frequencies of the 13 channels we choose have the same distance
of 12 MHz between each set of two neighbors. Therefore, since the
received CSI is a result of the fast Fourier transform, we can apply
an inverse Fourier transform to separate the paths.

4.3 Association-less Communication
We designed a new communication method to overcome the repeat-
ing re-association process of WiFi protocol with other nodes. We
leverage the vendor specific information element inside of 802.11
action frames to transmit channel switching command and data
between devices.We design our two-way CSI communication in Fig-
ure 4 to minimize the extra communication process. In this process,
when a device initiates the ranging request a broadcast message.
Then, a number of nearby devices receive the request and respond
with a unicast message specifically for the requesting device. The
new node then selects three nearby nodes with highest RSSI, and

starts sending unicast message to collect CSI data with the selected
nodes. Each device sends one packet on each channel to the other
device. This packet contains channel switching information. The
requesting device first sends a channel switching command, then
switches to new channel. The anchor node receives the command,
switches to the new channel, and then sends out the confirmation
packet. The whole process scans through 13 available WiFi chan-
nels in the 2.4GHz band. As a fail-safe, in case where the packet
is not successfully delivered to another device, we design a resend
mechanism that resends the packet several times following a certain
delay. If the packet is still not delivered and the receiving device has
not received any packets for a certain timeout, all devices switch
back to channel 1 and restart communication.

5 LOCALIZATION
To solve for the locations of all of the target nodes, we treat the co-
ordinates of a target nodes as random variables. Localizing a target
node is then equivalent to finding an assignment of coordinates that
maximizes the log-likelihood in Equation (10). Directly using a con-
vex optimization method to solve the maximization is impractical
because the objective function is highly non-convex in early stages,
and will be trapped into a local minimum leading to poor perfor-
mance [15]. Rather than using an optimization-based approach,
we use Bayesian posterior estimation to maximize Equation (10).
However, conventional Bayesian estimation normally drops the
prior term because of insufficient knowledge of target nodes. In
doing this the system would suffer from redundant calculation for
partial movement of target nodes. To improve the efficiency of
Bayesian estimation and make the most of periodic updates of our
system, historical knowledge is incorporated into localization. Thus,
we propose a Historical Bayesian (HiBay) approach to localize the
target nodes for regular system updates.

5.1 Ranges to Localization
To calculate the position of each device, we consider the network
as a 2D network consisting of 𝑛 +𝑚 nodes with positions 𝑐𝑖 ∈ R2,
where,𝑛 are anchor nodes with known locations,𝑚 are target nodes
with unknown locations, and 𝑐𝑖 represents the coordinates of the
node 𝑖 in the network. As a matter of convenience, 𝑖 = 1 to 𝑖 =𝑚 are
targets nodes and 𝑖 =𝑚 + 1 to𝑚 +𝑛 are anchor nodes. The distance
between nodes 𝑖 and 𝑗 is 𝑑𝑖 𝑗 . This distance can be calculated by two
nodes’ locations 𝑑𝑖 𝑗 =

𝑐𝑖 − 𝑐 𝑗 . The observed distance 𝑜𝑖 𝑗 between
nodes 𝑖, 𝑗 from ranging procedure is represented as

𝑜𝑖 𝑗 = 𝑑𝑖 𝑗 + 𝜖𝑖 𝑗 (7)

where, 𝜖𝑖 𝑗 is the error of distance measurement which follows the
Gaussian distribution. This is commonly used in modeling localiza-
tion problem [27]. Using trilateration, one target node can be local-
ized using the distances to three different anchor nodes [21]. How-
ever, there is always an error lying in distance measurement [36].
Some optimization approaches, e.g., Minimal Mean Square Error
(MMSE) and Minimal Mean Absolute Error (MMAE) [4, 34], can
minimize the error of localization. However, the lack of initial in-
formation of target nodes leads to poor performance of these algo-
rithms. Instead, we estimate each node’s position by a probabilistic
method. The likelihood of the observed distance between two nodes
𝑖, 𝑗 is given by
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𝑝𝑖 𝑗 (𝑜𝑖 𝑗 |𝑐𝑖 , 𝑐 𝑗 ) =
1√

2𝜋𝜎2
𝑖 𝑗

exp
{
−1
2𝜎2
𝑖 𝑗

(𝑜𝑖 𝑗 −
𝑐𝑖 − 𝑐 𝑗 )2}, (8)

where, 𝜎2
𝑖 𝑗
is the variance of the observed distance 𝑜𝑖 𝑗 . The coor-

dinates of target nodes are set as random variables, so they can
be estimated by maximizing the log-likelihood function of all ob-
served distances. We define the vector 𝑂 , and the coordinates set
𝐶 that contains all observed distances 𝑜𝑖 𝑗 , and all coordinates 𝑐𝑖 ,
respectively. The joint likelihood 𝑝 (𝑂 |𝐶) can be represented as

𝑝 (𝑂 |𝐶) =
∏
𝑜𝑖 𝑗 ∈𝑂

𝑝𝑖 𝑗 (𝑜𝑖 𝑗 |𝑐𝑖 , 𝑐 𝑗 ) . (9)

The log-likelihood 𝑙 (𝑂 |𝐶) of all observed distances is given by
𝑙 (𝑂 |𝐶) = ln 𝑝 (𝑂 |𝐶) =

∑
𝑜𝑖 𝑗 ∈𝑂

ln 𝑝 (𝑜𝑖 𝑗 |𝑐𝑖 , 𝑐 𝑗 )

= −
∑
𝑜𝑖 𝑗 ∈𝑂

1
𝜎2
𝑖 𝑗

(𝑜𝑖 𝑗 −
𝑐𝑖 − 𝑐 𝑗 )2 . (10)

Equation (10) computes given a possible set of coordinates, how
likely are the observed distances to show up. That is, a set of
coordinates that maximize the possibility of observed distances
are the most possible coordinates. In this way, localizing target
nodes is equivalent to maximizing the Equation (10). We proposed
a Bayesian approach with historical prior knowledge to solve the
maximization in Section 5.

5.2 Bayesian Estimation
From a Bayesian point of view, the knowledge of unknown target
nodes with coordinates 𝐶 can be encoded as a probability distribu-
tion 𝑝 (𝐶). Initially, we have little knowledge about the positions of
target nodes. The probability distribution prior to observation, or
prior distribution, is a uniform distribution meaning every target
node can be anywhere within the map. After computing pairwise
ranges, the knowledge about their positions changes, resulting in
the posterior distribution 𝑝 (𝐶 |𝑂), where 𝑂 is the set of observed
distances. In Bayesian estimation, posterior distribution is propor-
tional to prior distribution multiplied by the likelihood.

𝑝 (𝐶 |𝑂) ∝ 𝑝 (𝐶)𝑝 (𝑂 |𝐶), (11)

where, 𝑝 (𝑂 |𝐶) is the likelihood as described in Section 5.1. Due
to the independence of different nodes, the joint prior distribu-
tion 𝑝 (𝐶) and the joint posterior distribution 𝑝 (𝐶 |𝑂) of all nodes’
coordinates can be factorized as

𝑝 (𝐶) =
𝑚∏
𝑖=1

𝑝 (𝑐𝑖 ), (12)

and

𝑝 (𝐶 |𝑂) ∝
𝑚∏
𝑖=1

𝑝 (𝑐𝑖 )
∏
𝑜𝑖 𝑗 ∈𝑂

𝑝 (𝑜𝑖 𝑗 |𝑐𝑖 , 𝑐 𝑗 ), (13)

respectively. Traditional Bayesian approach drops the prior term
because of missing initial positions of target nodes. However, this
leads to repeated calculation if the target node is slightly moved.
We model the posterior distribution in a factor graph as well as
incorporate historical distribution into the prior term. In this way,
the posterior probability is calculated by factorizing marginal prob-
ability in the factor graph.

C1 C2 C3 C4

F1 F2 F3 F4

F12 F13 F14 F23 F24 F34

Figure 5: A factor graph example of a four-node network.

5.3 Factor Graph
A factor graph is convenient for representing the factorization of a
joint probability distribution by utilizing the conditional indepen-
dence of variables [19]. The network topology of the localization
problem is naturally mapped to the nodes and links of the factor
graph. Figure 5 shows an example of the relationship between a net-
work consisting of four nodes and the corresponding factor graph.
There are two types of nodes in the factor graph, variable nodes and
factor nodes. 𝑐𝑖 is the variable node, and 𝐹𝑖 and 𝐹𝑖 𝑗 are the factor
nodes. The factor node 𝐹𝑖 represents the prior distribution function
to the variable node 𝑐𝑖 , while the factor node 𝐹𝑖 𝑗 represents the
likelihood function to both variable node 𝑐𝑖 and 𝑐 𝑗 . In this way, we
can model Equation (13) as the factor graph. In the factor graph,
the joint posterior distribution is given by

𝑝 (𝐶 |𝑂) ∝
𝑚∏
𝑖=1

𝐹𝑖 (𝑐𝑖 )
∏

(𝑖, 𝑗) ∈𝐸
𝐹𝑖 𝑗 (𝑐𝑖 , 𝑐 𝑗 ), (14)

where 𝐸 is the set of index pairs (𝑖, 𝑗) that contains every pair of
variable nodes connected by the same factor node. The factor node
𝐹𝑖 and 𝐹𝑖 𝑗 are defined as

𝐹𝑖 (𝑐𝑖 ) ∝ 𝑝 (𝑐𝑖 ), (15)

and
𝐹𝑖 𝑗 (𝑐𝑖 , 𝑐 𝑗 ) ∝ 𝑝𝑖 𝑗 (𝑜𝑖 𝑗 |𝑐𝑖 , 𝑐 𝑗 ), (16)

respectively. For the convenience of writing, F 𝑘 is used to represent
the factor node of either 𝐹𝑖 or 𝐹𝑖 𝑗 , where 𝑘 is the index of the factor
node. With the factor graph, the posterior distribution of a variable
node can be obtained by the message passing algorithm. There are
two types of messages exchanged in each iteration 𝑡 . 𝜇𝑡F𝑘→𝑐𝑖

is the

message from the factor node F 𝑘 to the variable node 𝑐𝑖 . 𝜇𝑡
𝑐𝑖→F𝑘

is

the message from the variable node 𝑐𝑖 to the factor node F 𝑘 . These
are computed as follows

𝜇𝑡F𝑘→𝑐𝑖
(𝑐𝑖 ) = F 𝑘 (𝑐𝑖 )

∏
𝑐 𝑗 ∈𝑁 (F𝑘 )\{𝑐𝑖 }

𝜇𝑡
𝑐 𝑗→F𝑘 (𝑐 𝑗 ),

𝜇𝑡
𝑐𝑖→F𝑘 (𝑐𝑖 ) =

∏
F𝑙 ∈𝑁 (𝑐𝑖 )\{F𝑘 }

𝜇𝑡F𝑙→𝑐𝑖
(𝑐𝑖 ),

(17)

where 𝑁 (𝑐𝑖 ) is the set of neighbor nodes of 𝑐𝑖 , and \{F 𝑘 } is the
node set excluding F 𝑘 . The posterior distribution, or belief 𝐵𝐿𝑡

𝑖
, of

the variable node 𝑐𝑖 can be obtained by multiplying all the incoming
messages from the factor nodes it is connected to. The definition of
𝐵𝐿𝑡
𝑖
is given as follow:

𝐵𝐿𝑡𝑖 (𝑐𝑖 ) =
∏

F∈𝑁 (𝑐𝑖)
𝜇𝑡F→𝑐𝑖

(𝑐𝑖 ) (18)
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5.4 Historical Bayesian (HiBay) Algorithm
The conventional Bayesian localization always simplifies the prior
distribution as the uniform distribution. However, there will be new
adding nodes and periodic network-wide update of the localization.
The Bayesian estimation will calculate the probability of positions
that are far from the real position even if partial objects are slightly
shifted. In order to reduce the redundant calculations, we incorpo-
rate the historical probability distribution of target nodes’ positions
into Bayesian estimation. It assigns low weights to the positions
that are far from the previous calculated positions. The factor graph
with Message Passing algorithm can naturally solve the problem.
We define the algorithm is convergent at iteration 𝑡 iff𝐵𝐿𝑡𝑖 − 𝐵𝐿𝑡−1𝑖

 < 𝜖, for 𝑖 = 1, 2, ...,𝑚, (19)

where 𝜖 is the threshold of variation between the current and pre-
vious belief, and 𝐵𝐿𝑡

𝑖
is the vector of beliefs over all sampling coor-

dinates calculated by Equation (18). Suppose that, we are adding a
new node or proceeding periodical system update. We have already
run the HiBay algorithm for 𝑡 iterations. To incorporate the histor-
ical knowledge of target positions into the current calculation of
target nodes, we modify the 𝐹𝑖 as the previous belief of node 𝑐𝑖

𝑓
𝑢𝑝𝑑

𝑖
= 𝐵𝐿𝑡𝑐𝑖 . (20)

Algorithm 1 shows the our proposed HiBay algorithm. The co-
ordinates of anchor nodes are always fixed. The factor graph can
be constructed by directly mapping into the network topology. The
factor node 𝐹𝑖 , as well as the prior distribution, is at first initialized
as the Uniform distribution. Then, we can draw samples of variable
nodes from the factor node 𝐹𝑖 . Starting from 𝐹𝑖 , every node calcu-
lates and passes the messages to neighbors. Since 𝑓𝑖 is the leaf node,
it can pass the message directly to the variable node 𝑐𝑖 without
waiting for messages from other nodes. For example in Fig. 5, 𝐹1
first passes the message 𝜇𝑓1→𝑐1 to its neighbor 𝑐𝑖 .Then, the factor
node 𝐹𝑖 𝑗 can receive the messages 𝜇𝑐𝑖→𝐹𝑖 𝑗 and 𝜇𝑐 𝑗→𝐹𝑖 𝑗 from vari-
able nodes 𝑐𝑖 and 𝑐 𝑗 , respectively. This is because the variable node
only has two neighbors. If a variable node 𝑐𝑖 receives the message
from the neighbor 𝐹𝑖 , it can calculate and pass the message to the
other neighbor 𝐹𝑖 𝑗 . Finally, the factor node 𝐹𝑖 𝑗 will calculate and
pass the messages 𝜇𝐹𝑖 𝑗→𝑐𝑖 and 𝜇𝐹𝑖 𝑗→𝑐 𝑗 to the neighbor 𝑐𝑖 and 𝑐 𝑗 ,
respectively.

Above is the first iteration of message passing, while the other
iterations are likewise. During the message passing process, the
variable node will calculate the belief 𝐵𝐿𝑡𝑐𝑖 , as well as the poste-
rior distribution of the variable 𝑐𝑖 . Then, 𝑐𝑖 𝑡 can be estimated by
inputting the samples to maximize the belief function. The message
passing process will continue until the convergence condition is sat-
isfied by Equation (19). If there is system-wide update or adding new
node, all the factor nodes will be updated by Equation (20). Then,
the message passing process is running for updated factor graph𝐺 .

6 IMPLEMENTATION
We implement a prototype of UbiTrack based on the ESP32 plat-
form, one of the most popular WiFi IoT platforms with over 100
million devices [8], and selected the ESP-WROVER-KIT with ESP32-
WROVER-E WiFi module, as shown in Figure 7. This module sup-
ports WiFi on 2.4 GHz, and is equipped with a single on-board PCB
antenna. The association-less communication is implemented based

Algorithm 1: HiBay Algorithm
1 Initialize anchor nodes;
2 Construct factor graph 𝐺 ;
3 for every variable node 𝑐𝑖 do
4 Draw a sample 𝑆𝑖 of size𝑀 from 𝑓𝑖 ;
5 end
6 for all 𝑓𝑖 do
7 Emit message 𝜇1

𝑓𝑖→𝑐𝑖
to neighbor node 𝑐𝑖 ;

8 end
9 t := 1;

10 while not 𝐺.𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠 () do
11 for each node 𝑖 receiving messages do
12 Compute messages 𝜇𝑡

𝑖→𝑁 (𝑖) to all neighbors N(i) by
Eq (17)

13 if 𝑖 is a variable node then
14 Compute belief vector 𝐵𝐿𝑡𝑐𝑖 over 𝑆𝑖
15 by Eq (18)
16 end
17 end
18 for each variable node 𝑐𝑖 do
19 𝑐𝑖

𝑡 = argmax𝑠∈𝑆𝑖BL
𝑡
𝑐𝑖
(𝑠)

20 end
21 while true do
22 if system updates or add new nodes then
23 for all 𝑓𝑖 node do
24 𝐺.𝑢𝑝𝑑𝑎𝑡𝑒 (𝑓𝑖 ) by Eq (20)
25 end
26 if add new nodes then
27 for each new node 𝑐 𝑗 do
28 𝐺.𝑎𝑑𝑑 (𝑐 𝑗 )
29 end
30 go to 𝑙𝑖𝑛𝑒10
31 end

4.5m

11m

Figure 6: Testbed inside a resident building. Red nodes are
initial anchors, yellow nodes are targets to be localized, and
the blue node is the desktop for data processing.

on the ESPNOW protocol which is pre-built by Espressif [7], and
leverages the vendor-specific information element in 802.11 frames
to transmit information without association. We use a 100 ms de-
lay for re-transmission for all nodes in case of a lost packet. To
overcome the delay in channel switching, we design a 50 ms wait
period for all receiving devices before replying with a confirmation
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Figure 7: Node deployed on the wall. All nodes are deployed
at 2 m height using an on-board PCB antenna.
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Figure 8: Ranging Accuracy. At shorter distances, remaining
offsets are themajor source of error. At longer distances, the
propagation environment has a larger affect on accuracy.
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Figure 9: CDF for localization error in both LOS and NLOS
scenarios. A median error of LOS is 1.71 m and the median
error of NLOS is 1.93 m.
message. Devices in the network update their locations periodi-
cally, where they recalculate the distance with nearby devices and
transmit the updated measurement to the central desktop. Since
new devices can be added into the network, the network topology
might change and the measurement will be different. We use a
Linux desktop to compute the location of each node using the new
measurement and the historical location as a priori.

7 EVALUATION
7.1 Experimental Setup
We deploy 10 ESP32 boards at different positions in two rooms in
a residential building, as shown in Figure 6, with four devices in
one room, six devices in the second room, and two devices in the
hallway. The first three initial nodes are marked in red and their
location is known, all other nodes participating in the localization
scheme are marked in yellow. All devices are deployed at a height
of 2 m to minimize the impact from furniture. Figure 7 shows our

deployment for one device on the wall. To test the system in a real
environment, we did not turn off any wireless devices around our
testbed, and signals from 12 adjacent access points are present in
the testbed.

We tested the ranging error in both LOS and NLOS environments,
and evaluated the localization error using our positioning algorithm.
We also compared how different iterations can affect the accuracy
of our historical-bayesian approach, and how sensitive the system
is to ranging errors in potential different environments.

7.2 Ranging Accuracy
The ranging results with average error and standard deviation is
shown in Figure 8. Among the measurements, we get our best
results of 0.76 m error at 4-6 meters LOS and 1.03 m error at NLOS.
We also noticed that ranging error increases at shorter distance of
0-2 meters, this is mainly due to the remaining offset from hardware
imperfections. As distance increases, the percentage of phase shift
from distance increases, however, the error from signal propagation
also increases, resulting in an error of 1.43 m at 10-12 meters at
LOS and 1.92 m error at NLOS. The difference in errors between
LOS and NLOS scenarios is mainly due to the multipath effect. In
LOS scenarios, direct path is likely to be the strongest among all
communication paths. However, in NLOS scenarios, indirect path
is likely to have higher power than direct path, creating an extra
residual phase shift even after the CSI calibration.

7.3 Localization Error
Figure 9 plots the CDF of localization error under both LOS and
NLOS scenarios. In this figure, the error of 90% nodes is within 3 m
under LOS scenarios, while the error of 80% nodes is lower than 3 m
in NLOS scenarios. Themedian error is 1.71m for LOS scenarios and
1.93 m for NLOS scenarios, respectively. The distance estimation
error with nearby nodes increases the uncertainty of localization.
Due to energy constraints, the system cannot do multiple ranging
rounds to increase the localization accuracy. Even under the cost
and energy restrictions, the result still demonstrates that UbiTrack
can provide meter-level accuracy on a budget IoT platform.

To test the probability of our proposed HiBay algorithm, we print
the sampling distribution of estimated target position, where val-
ues for LOS scenarios are shown in Figure 10, and NLOS scenarios
in Figure 11. The red dot and rectangular denote the true location
of the target in LOS and NLOS scenarios, respectively. Comparing
Figure 10 with Figure 11, we see that our system works better under
LOS scenarios than NLOS scenarios. This is because higher variance
of ranging error in NLOS scenarios increases the uncertainty of
probability distribution of the target node’s position. It is also worth
noting that from iteration 1 to iteration 10, The sampling distribu-
tion gradually concentrates around the true location of the target,
and the variance decreases with more iterations. The distribution
stays mostly steady after 10 iterations, indicating that factor graph
of the algorithm is convergent. This is where our HiBay algorithm
stands out from traditional trilateration approach, the accuracy of
the first iteration is similar to trilateration approaches, as there
are no prior knowledge of the location. For a static device, in the
following iterations, the positioning accuracy continues to increase
with HiBay algorithm with the periodic update, thus resulting in a
better accuracy compared to trilateration methods.
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(d) 10𝑡ℎ iteration
Figure 10: Sampling distribution of estimated target position compared to true location for LOS.
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Figure 11: Sampling distribution of estimated target position compared to true location for NLOS.
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Figure 12: Localization error in response to ranging error.
The results indicates that the system is stable to small vari-
ances in ranging error.
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Figure 13: Performance comparison between HiBay and tra-
ditional Bayesian. HiBay achieves a quicker convergence
and 25% better accuracy over traditional method.

7.4 Localization Sensitivity to Ranging Error
To test the sensitivity of localization module in response to ranging
error, we simulate input distance estimation error from 0.5 m to
2.5 m, and compare the localization error in the presence of rang-
ing errors. The results are shown in Figure 12, demonstrating that
the growth of localization error is an order of magnitude slower
than the increase of input ranging error. The experimental result
indicates that our system is stable and robust to small errors.

7.5 Performance of HiBay compared to
traditional Bayesian

Since most deployed IoT devices in buildings are static devices,
we compared the performance of HiBay with traditional Bayesian
estimation for static devices, and Figure 13 shows the result. Com-
pared to traditional Bayesian estimation, HiBay converges faster,
is more efficient and have achieved 25% better accuracy with the
incorporation of historical data.

8 DISCUSSION
8.1 Why WiFi for Indoor Localization
Compared to BLE and UWB approaches, the WiFi approach used in
UbiTrack balances cost and accuracy. Although BLE is also a preva-
lent wireless technology, it does not provide the fine-grained CSI in-
formation and performs poorly in complex multipath environments.
Many BLE based approaches use Received Signal Strength (RSS) [14,
18], which is influenced by shadowing effects due to the presence
of obstacles and reflections of typical indoor environments. UWB
is another wireless technology used in indoor localization. UWB
devices transmit nanoseconds short-duration pulses that can be
used to provide accurate localization. Currently, the cost of UWB
is much more than WiFi [5, 9], making it more expensive to deploy.
There are some approaches that combine WiFi with UWB to bal-
ance cost and accuracy [20], which could be a potential solution
for future indoor localization.

8.2 Energy Consumption
Energy consumption is a key factor that limits the use of some
indoor localization approaches on small IoT devices. It is difficult to
provide a fair energy comparison across different approaches with
different wireless protocol and operational techniques. Instead, we
compare the current of both TX and RX on WiFi and UWB. Cur-
rently, the ESP32 WiFi chip consumes an average of 190 mA of
current in TX and 98 mA in RX [6], while the DW1000 UWB chip
consumes an average of 140 mA of current in TX and 193 mA in
RX [28]. The WiFi approach requires more packet transmission,
leveraging multiple channels to achieve a closer accuracy compared
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to UWB approach. There are works that aims to tackle this prob-
lem by reducing the energy consumption of WiFi chips and by
introducing new protocols to achieve higher accuracy with fewer
transmissions. Adopting low-power hardware could save both trans-
mission and standby power by more than 20% [31]. Additionally,
new WiFi protocols like FTM [1] have great potential to provide
sub-meter level ranging with possibly less energy consumption.

8.3 Limitations and Future Work
One limitation of UbiTrack is the use of the on-board PCB antenna
on ESP32 chips. As PCB trace antennas are highly susceptible to en-
vironmental noise [13], during experiments we found that transmis-
sion often required frequent re-transmissions during a ranging mea-
surement. We will explore how PCB antennas can affect the ranging
accuracy compared to external antennas used on other approaches.

In our next step, we plan to look into more opportunities that
can increase the localization accuracy and reduce the number of
transmissions of WiFi-based approaches. One direction is to see if
combining CSI with FTM together can achieve a better performance
compared to use these techniques separately. Another direction is
to explore energy efficient protocols for WiFi ranging. For example,
adding a wake-up receiver can significantly reduce the standby
energy of WiFi with sacrificing a slight overhead at wake-up [31].

9 CONCLUSIONS
UbiTrack provides a scalable & low-cost network localization ser-
vice for devices using onboard wifi. Compared to other approaches
using WiFi NIC cards using array of antennas, UbiTrack only re-
quires one single antenna on both devices, and is more cost-effective
and energy-efficient. UbiTrack leverages the already densely de-
ployed IoT devices and proposes HiBay, a historical-bayesian net-
work localization algorithm that helps to increase the overall local-
ization accuracy. UbiTrack has demonstrated meter-level accuracy
in indoor environments, and opens up great potential for location-
based services which are often not included in today’s IoT devices.
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