CS 4810
Introduction to Computer Graphics

Connelly Barnes
University of Virginia

Acknowledgement: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin
Introduction: What is CG?

- 2D image processing
- 3D object representation & manipulation
- Simulating physical processes & materials
- Animating any of the above
Introduction: What is CG?

‣ 2D image processing
‣ 3D object representation & manipulation
‣ Simulating physical processes & materials
‣ Animating any of the above
Introduction: What is CG?

- 2D image processing
- 3D object representation & manipulation
- Simulating physical processes & materials
- Animating any of the above

“Ratatouille” Pixar/Disney
Introduction: What is CG?

- 2D image processing
- 3D object representation & manipulation
- Simulating physical processes & materials
- Animating any of the above

Procedural Shader from Pixar Studios
Introduction: What is CG?

- 2D image processing
- 3D object representation & manipulation
- Simulating physical processes & materials
- Animating any of the above (4D)
Introduction: Applications

- Entertainment
- Computer Aided Design
- Scientific Visualization
- Training & Education
- Commerce
- Art
Introduction: Applications

- Entertainment
- Computer Aided Design
- Scientific Visualization
- Training & Education
- Commerce
- Art
Introduction: Applications

- Entertainment
- Computer Aided Design
- Scientific Visualization
- Training & Education
- Commerce
- Art

Shorten the development period
Shorten the learning curve
Introduction: Applications

- Entertainment
- Computer Aided Design
- Scientific Visualization
- Training & Education
- Commerce
- Art
Introduction: Applications

- Entertainment
- Computer Aided Design
- Scientific Visualization
- Training & Education
- Commerce
- Art

Microsoft Flight Simulator

Image courtesy of Agrawala et al.
Introduction: Applications

› Entertainment
› Computer Aided Design
› Scientific Visualization
› Training & Education
› Commerce
› Art
Introduction: Applications

‣ Entertainment
‣ Computer Aided Design
‣ Scientific Visualization
‣ Training & Education
‣ Commerce
‣ Art

“Cyberflower Duet” by Roman Verostko

“Conflagration” by Diane Vetere
Introduction: More Videos!

https://www.youtube.com/watch?v=u3Z1hDwGEmM

https://www.youtube.com/watch?v=KF_a1c7zytw&feature=youtu.be

https://vimeo.com/94220982

https://www.youtube.com/watch?v=dgKjs8ZjQNg
Outline

- Introduction
- Syllabus
- Coursework
- Miscellaneous
Syllabus

‣ Image Processing (2D)
‣ Ray Tracing (3D)
‣ Polygon Scanline Rendering (3D)
‣ Modeling (3D)
‣ Animation (4D)
Syllabus

- Image Processing
 - Human Vision
 - Color Models
 - Quantization and Dithering
- Sampling
- Filters
- Warping, Morphing, and Compositing
Syllabus

▪ Ray Tracing
 ▪ Cameras
 ▪ Primitives
 ▪ Lights
 ▪ Intersection Acceleration Data Structures
 ▪ Reflection, Transparency and Refraction
▪ Scanline Rendering
 ▪ Coordinate Systems and Modeling Transformations
 ▪ Viewing transformations
▪ Shading
▪ Textures
▪ Visibility
▪ OpenGL
Syllabus

- Modeling
 - Triangles
 - Splines
 - Subdivision Surfaces
- Animation
 - Key-Framing
 - Kinematics
 - Dynamics
Outline

- Introduction
- Syllabus
- Coursework
- Miscellaneous
Coursework

- LOTS of work!
- Exams (30%)
- Programming assignments (60%)
- Class participation (10%)
Coursework

- LOTS of work!
- Exams (30%)
 - Two in-class midterms (no final)
 - 3/3 and 4/28
- Programming assignments (60%)
- Class participation (10%)
Coursework

‣ LOTS of work!
‣ Exams (30%)
‣ Programming assignments (60%)
 ➤ Image Processing (20%)
 ➤ Ray Tracing (20%)
 ➤ OpenGL Rendering (20%)
‣ Class participation (10%)
Coursework

- LOTS of work!
- Exams (30%)
- Programming assignments (60%)
 - Knowledge of C/C++ assumed
 - Must be turned in by 11:55PM on due date
 - 5 (discrete) late days
- Class participation (10%)
Coursework: Collaboration Policy

- You must write your own code
- You must reference sources of ideas/code
- It’s okay to:
 - Discuss ideas with other students
 - Get ideas from books, web sites, etc.
 - But reference it!
- It is not okay to:
 - Share code with other students
 - Copy code from other students
 - Use ideas or code from other sources without attribution and first receiving permission from me
Coursework

• LOTS of work!
• Exams (30%)
• **Programming assignments** (60%)
• Class participation (10%)

Bottom line:
Expect to do a LOT of programming in this class!
Coursework

‣ Lots of work!
‣ Exams (30%)
‣ Programming assignments (60%)
‣ Class participation (10%)
Outline

• Introduction
• Syllabus
• Coursework
• Miscellaneous
Resources

› Course web page:
 › http://www.cs.virginia.edu/~connelly/class/2015/intro_gfx

› Suggested text books (on reserve at Brown):
Miscellaneous

‣ UVA Collab:
 ‣ http://collab.itc.virginia.edu
 ‣ We will use collab for submitting work, managing grades, and posting announcements
 ‣ Setup your workspace and find this course NOW!
Examples of Graphics Research

- http://graphics.cs.cmu.edu/projects/scene-completion/
- http://camouflage.csail.mit.edu/
- http://halide-lang.org/
- https://www.youtube.com/watch?v=FKXOucXB4a8
- http://web.engr.illinois.edu/~dhoiem/projects/popup/index.html