Direct Illumination

Connelly Barnes

CS 4810: Graphics

Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin
Recall: Ray Casting

```java
Image RayCast(Camera camera, Scene scene, int width, int height) {
    Image image = new Image(width, height);
    for (int i = 0; i < width; i++) {
        for (int j = 0; j < height; j++) {
            Ray ray = ConstructRayThroughPixel(camera, i, j);
            Intersection hit = FindIntersection(ray, scene);
            image[i][j] = GetColor(scene, ray, hit);
        }
    }
    return image;
}
```
Recall: Ray Casting

```java
Image RayCast(Camera camera, Scene scene, int width, int height) {
    Image image = new Image(width, height);
    for (int i = 0; i < width; i++) {
        for (int j = 0; j < height; j++) {
            Ray ray = ConstructRayThroughPixel(camera, i, j);
            Intersection hit = FindIntersection(ray, scene);
            image[i][j] = GetColor(scene, ray, hit);
        }
    }
    return image;
}
```

With Illumination
Illumination

- How do we compute radiance for a sample ray?

\[
\text{image}[i][j] = \text{GetColor(}\text{scene, ray, hit})
\]
Goal

• Must derive models for ...
 - Emission at light sources
 - Direct light on surface points
 - Scattering at surfaces
 - Reception at the camera

• Desirable features …
 - Concise
 - Efficient to compute
 - “Accurate”
Overview

• Direct Illumination
 o Emission at light sources
 o Direct light at surface points

• Global illumination
 o Shadows
 o Inter-object reflections
 o Transmissions
Overview

• Direct Illumination
 o Emission at light sources
 o Direct light at surface points

• Global illumination
 o Shadows
 o Inter-object reflections
 o Transmissions

Lambertian Shading
Overview

- Direct Illumination
 - Emission at light sources
 - Direct light at surface points

- Global illumination
 - Shadows
 - Inter-object reflections
 - Transmissions

Phong Shading
Overview

• Direct Illumination
 - Emission at light sources
 - Direct light at surface points

• Global illumination
 - Shadows
 - Inter-object reflections
 - Transmissions

Shadow Computation
Overview

• Direct Illumination
 o Emission at light sources
 o Direct light at surface points

• Global illumination
 o Shadows
 o Inter-object reflections
 o Transmissions

Reflective Bouncing
Overview

• Direct Illumination
 o Emission at light sources
 o Direct light at surface points

• Global illumination
 o Shadows
 o Inter-object reflections
 o Transmissions
Overview

• Direct Illumination
 o Emission at light sources
 o Direct light at surface points

• Global illumination
 o Shadows
 o Inter-object reflections
 o Transmissions
Modeling Light Sources

- $I_L(x,y,z,\theta,\phi,\lambda)$...
 - describes the intensity of energy, originating from a light source, ...
 - arriving at location (x,y,z), ...
 - from direction (θ,ϕ), ...
 - with wavelength λ
Empirical Models

• Ideally measure irradiant energy for “all” situations
 o Too much storage
 o Difficult in practice
Simplified Light Source Models

- Simple mathematical models:
 - Point light
 - Directional light
 - Spot light
Point Light Source

- Models omni-directional point source
 - Intensity (I_0),
 - Position (px, py, pz),
 - Factors (k_c, k_l, k_q) for attenuation with distance (d)

$$I_L = \frac{I_0}{k_c + k_l d + k_q d^2}$$
Directional Light Source

- Models point light source at infinity
 - intensity \((I_0) \),
 - direction \((dx, dy, dz)\)

No attenuation with distance

\[I_L = I_0 \]
Spot Light Source

• Models point light source with direction
 o intensity (I_0),
 o position (px, py, pz),
 o attenuation (k_c, k_l, k_q)
 o direction (dx, dy, dz)
 o cut-off and drop-off (γ, α)

How can we modify point light to decrease as γ increases?

$$I_L = \frac{I_0}{k_c + k_l d + k_q d^2}$$
Spot Light Source

• Models point light source with direction
 - intensity (I_0),
 - position (px, py, pz),
 - attenuation (k_c, k_l, k_q)
 - direction (dx, dy, dz)
 - cut-off and drop-off (γ, α)

\[
I_L = \begin{cases}
 \frac{I_0 \langle D, L \rangle^\alpha}{k_c + k_l d + k_q d^2} & \text{if } \langle D, L \rangle < \cos(\gamma) \\
 0 & \text{otherwise}
\end{cases}
\]
Overview

• Direct Illumination
 - Emission at light sources
 - Direct light at surface points

• Global illumination
 - Shadows
 - Transmissions
 - Inter-object reflections
Modeling Surface Reflectance

- $R_s(\theta, \phi, \lambda, \gamma, \psi)$...
 - describes the fraction of incident energy,
 - arriving from direction (θ, ϕ), ...
 - with wavelength λ, ...
 - leaving in direction (γ, ψ), ...

![Diagram showing incident and reflected light](image)
Empirical Models

- Ideally measure radiant energy for “all” combinations of incident angles
 - Too much storage
 - Difficult in practice
Gonioreflectometry
Goniorelectometry

[Image of goniorelectometry setup]

[Matusik et al. 2003]
Simple Reflectance Model

- Simple analytic model:
 - diffuse reflection +
 - specular reflection +
 - emission +
 - “ambient”

Based on model proposed by Phong
Simple Reflectance Model

- Simple analytic model:
 - diffuse reflection +
 - specular reflection +
 - emission +
 - "ambient"

Based on model proposed by Phong
Diffuse Reflection

- Assume surface reflects equally in all directions
 - Examples: chalk, clay
Diffuse Reflection

• How much light is reflected?
 o Depends on angle of incident light
 o aka “Lambertian”
Diffuse Reflection

- How much light is reflected?
 - Depends on angle of incident light

Think of a flashlight!
Diffuse Reflection

- How much light is reflected?
 - Depends on angle of incident light

\[dL = dA \cos \Theta \]
Diffuse Reflection

- Lambertian model
 - ocosine law (dot product)
 - oK_D is surface property
 - oI_L is incoming light

(If the dot product is less than zero, then I_D is zero)

$$I_D = K_D (N \cdot L) I_L$$
Diffuse Reflection

- Note that lights and surface properties have R, G, and B components!
 - So amount of red light reflected is not necessarily equal to amount of green light, etc.
 - You will need to run calculation below on EACH color channel
 - This holds true for all lighting calculations

\[I_{D_Red} = K_{D_RED} (N \cdot L) I_{L_RED} \]
Diffuse Reflection

- Assume surface reflects equally in all directions
 - Examples: chalk, clay
Simple Reflectance Model

- Simple analytic model:
 - diffuse reflection +
 - specular reflection +
 - emission +
 - "ambient"

Surface
Specular Reflection

- Reflection is strongest near mirror angle
 - Examples: non-metallic “shiny” surfaces
Specular Reflection

- Reflection is strongest near mirror angle
 - Examples: non-metallic shiny surfaces
Specular Reflection

How much light is seen?

Depends on:
- Angle of incident light
- Angle to viewer

\[R = -L + 2(N \cdot L)N \]

N: Normal
L: Light direction
R: Reflected light direction
V: View direction
Specular Reflection

- Phong Model
 \[o \cos(\alpha)^n \]

This is a physically-motivated hack!

\[I_S = K_S (V \cdot R)^n I_L \]

(Again, if dot product is negative, then \(I_S \) should be set to zero)
Specular Reflection

- Reflection is strongest near mirror angle
 - Examples: non-metallic shiny surfaces
Simple Reflectance Model

- Simple analytic model:
 - diffuse reflection +
 - specular reflection +
 - emission +
 - "ambient"
Emission

 Represents light emanating directly from a surface that cannot be described by the three light sources

\[\text{Emission} \neq 0\]
Emission

\[I = I_E \]

Emission \(\neq 0 \)
Simple Reflectance Model

• Simple analytic model:

\[\text{odiffuse reflection} + \text{ospecular reflection} + \text{oemission} + \text{“ambient”} \]
Ambient Term

- Represents reflection of all indirect illumination

This is a total hack (avoids complexity of global illumination)!
Ambient Term

- Represents reflection of all indirect illumination

\[I_A = K_A I_{AL} \]
Simple Reflectance Model

- Simple analytic model:
 - diffuse reflection +
 - specular reflection +
 - emission +
 - "ambient"
Simple Reflectance Model

• Simple analytic model:
 - diffuse reflection +
 - specular reflection +
 - emission +
 - "ambient"
Surface Illumination Calculation

- Single light source:

\[I = I_E + K_A I_{AL} + K_D (N \cdot L) I_L + K_S (V \cdot R)^n I_L \]
Surface Illumination Calculation

- Multiple light sources:

\[I = I_E + K_A I_{AL} + \sum_i (K_D (N \cdot L_i) I_i + K_S (V \cdot R_i)^n I_i) \]
Next Lecture

• Direct Illumination
 o Emission at light sources
 o Direct light at surface points

• Global illumination
 o Shadows
 o Transmissions
 o Inter-object reflections