3D Object Representation

Connelly Barnes

CS 4810: Graphics

Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin
3D Object Representation

• How do we ...
 • Represent 3D objects in a computer?
 • Construct such representations quickly and/or automatically with a computer?
 • Manipulate 3D objects with a computer?

Different methods for different object representations
How can this object be represented in a computer?
This one?

H&B Figure 10.46
3D Objects

How about this one?
3D Objects

This one?

H&B Figure 9.9
3D Objects

This one?
Representations of Geometry

• 3D Representations provide the foundations for
 o Computer Graphics
 o Computer-Aided Geometric Design
 o Visualization
 o Robotics

• They are languages for describing geometry
 data structures algorithms

• Data structures determine algorithms!
3D Object Representations

- Raw data
 - Point cloud
 - Range image
 - Polygon soup

- Surfaces
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- High-level structures
 - Scene graph
 - Skeleton
 - Application specific
Point Cloud

- Unstructured set of 3D point samples
 - Acquired from range finder, random sampling, particle system implementations, etc

Hoppe

Czech Academy of Sciences
Point Cloud

- Unstructured set of 3D point samples
 - Acquired from range finder, random sampling, particle system implementations, etc

Can associate colors/normals/etc. to the points

Czech Academy of Sciences
Range Image

- An image storing depth instead of color
 - Acquired from range scanners — e.g. Microsoft Kinect
Polygon Soup

- Unstructured set of polygons
 - Created with interactive modeling systems, combining range images, etc.
3D Object Representations

- Raw data
 - Point cloud
 - Range image
 - Polygon soup

- Surfaces
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- High-level structures
 - Scene graph
 - Skeleton
 - Application specific
Mesh

• Connected set of polygons (usually triangles)
 • May not be closed
Subdivision Surface

- Coarse mesh & subdivision rule
 - Define smooth surface as limit of sequence of refinements
Parametric Surface

- Tensor product spline patches
 - Careful use of constraints to maintain continuity

FvDFH Figure 11.44
Implicit Surface

- Points satisfying: $F(x,y,z) = 0$
3D Object Representations

- Raw data
 - Point cloud
 - Range image
 - Polygon soup

- Surfaces
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- High-level structures
 - Scene graph
 - Skeleton
 - Application specific
Voxels

- Uniform grid of volumetric samples
 - Acquired from CT, MRI, etc.

FvDFH Figure 12.20

Stanford Graphics Laboratory
BSP Tree

- Binary space partition with solid cells labeled
 - Constructed from polygonal representations
Constructive Solid Geometry (CSG)

- Hierarchy of boolean set operations (union, difference, intersect) applied to simple shapes
Sweep

• Solid swept by curve along trajectory
Sweep

- Solid swept by curve along trajectory

- Curve may be arbitrary
- Sweep polygon may deform (scale, rotate) with respect to the path orientation

Stephen Chenney
U Wisconsin
Example of Several Representations

• **Scalable KinectFusion**

• Which representations are being used?
3D Object Representations

- **Raw data**
 - Point cloud
 - Range image
 - Polygon soup

- **Surfaces**
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- **Solids**
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- **High-level structures**
 - Scene graph
 - Skeleton
 - Application specific
Scene Graph

- Union of objects at leaf nodes

Bell Laboratories

avalon.viewpoint.com
Skeleton

• Graph of curves with radii
Application Specific

Apo A-1
(Theoretical Biophysics Group,
University of Illinois at Urbana-Champaign)

Architectural Floorplan
Equivalence of Representations

• Thesis:
 - Each fundamental representation has enough expressive power to model the shape of any geometric object.
 - It is possible to perform all geometric operations with any fundamental representation!

• Analogous to Turing-Equivalence:
 - All computers today are Turing-equivalent, but we still have many different processors.
Computational Differences

• Efficiency
 - Combinatorial complexity
 - Space/time trade-offs
 - Numerical accuracy/stability

• Simplicity
 - Ease of acquisition
 - Hardware acceleration

• Usability
Surfaces

- What makes a good surface representation?
 - Concise
 - Local support
 - Affine invariant
 - Arbitrary topology
 - Guaranteed continuity
 - Natural parameterization
 - Efficient display
 - Efficient intersections

H&B Figure 10.46
Surfaces

• What makes a good surface representation?
 o Concise
 o Local support
 o Affine invariant
 o Arbitrary topology
 o Guaranteed continuity
 o Natural parameterization
 o Efficient display
 o Efficient intersections

Not Local Support
Surfaces

• What makes a good surface representation?
 o Concise
 o Local support
 o Affine invariant
 o Arbitrary topology
 o Guaranteed continuity
 o Natural parameterization
 o Efficient display
 o Efficient intersections
Surfaces

- What makes a good surface representation?
 - Concise
 - Local support
 - Affine invariant
 - Arbitrary topology
 - Guaranteed continuity
 - Natural parameterization
 - Efficient display
 - Efficient intersections

Topological Genus Equivalences
Surfaces

• What makes a good surface representation?
 o Concise
 o Local support
 o Affine invariant
 o Arbitrary topology
 o Guaranteed continuity
 o Natural parameterization
 o Efficient display
 o Efficient intersections
Surfaces

• What makes a good surface representation?
 o Concise
 o Local support
 o Affine invariant
 o Arbitrary topology
 o Guaranteed continuity
 o Natural parameterization
 o Efficient display
 o Efficient intersections

A Parameterization (not necessarily natural)
Surfaces

• What makes a good surface representation?
 o Concise
 o Local support
 o Affine invariant
 o Arbitrary topology
 o Guaranteed continuity
 o Natural parameterization
 o Efficient display
 o Efficient intersections